Driven by factors such as structural economic shifts, technological breakthroughs, policy changes, and global economic transformations, China's economic growth drivers have continuously evolved. We constructed a panel dataset encompassing 31 provinces in China from 2002 to 2021 and utilized both panel data models and panel quantile models to delve into the underlying factors driving this transition. We further investigated the varying impacts of these factors across different temporal and geographical contexts based on the stage analysis and spatial cluster analysis. The findings revealed that capital accumulation, digital economy, and technological innovation were the major drivers shaping China's economic growth momentum transition, exhibiting significant heterogeneity across different quantile levels. Additionally, we observed heterogeneity in the influencing factors across temporal periods and regions.
Citation: Jinhong Wang, Yanting Xu. Factors influencing the transition of China's economic growth momentum[J]. National Accounting Review, 2024, 6(2): 220-244. doi: 10.3934/NAR.2024010
[1] | Noor Wali Khan, Mohammed S. Alshehri, Muazzam A Khan, Sultan Almakdi, Naghmeh Moradpoor, Abdulwahab Alazeb, Safi Ullah, Naila Naz, Jawad Ahmad . A hybrid deep learning-based intrusion detection system for IoT networks. Mathematical Biosciences and Engineering, 2023, 20(8): 13491-13520. doi: 10.3934/mbe.2023602 |
[2] | Ridha Ouni, Kashif Saleem . Secure smart home architecture for ambient-assisted living using a multimedia Internet of Things based system in smart cities. Mathematical Biosciences and Engineering, 2024, 21(3): 3473-3497. doi: 10.3934/mbe.2024153 |
[3] | B. Kiruthika, Shyamala Bharathi P . Intelligent dynamic trust secure attacker detection routing for WSN-IoT networks. Mathematical Biosciences and Engineering, 2023, 20(2): 4243-4257. doi: 10.3934/mbe.2023198 |
[4] | Peng-Yeng Yin, Chih-Chun Tsai, Rong-Fuh Day, Ching-Ying Tung, Bir Bhanu . Ensemble learning of model hyperparameters and spatiotemporal data for calibration of low-cost PM2.5 sensors. Mathematical Biosciences and Engineering, 2019, 16(6): 6858-6873. doi: 10.3934/mbe.2019343 |
[5] | Jiushuang Wang, Ying Liu, Huifen Feng . IFACNN: efficient DDoS attack detection based on improved firefly algorithm to optimize convolutional neural networks. Mathematical Biosciences and Engineering, 2022, 19(2): 1280-1303. doi: 10.3934/mbe.2022059 |
[6] | Ching-Chun Chang, Chang-Tsun Li . Algebraic secret sharing using privacy homomorphisms for IoT-based healthcare systems. Mathematical Biosciences and Engineering, 2019, 16(5): 3367-3381. doi: 10.3934/mbe.2019168 |
[7] | Muhammad Zia Ur Rahman, Ali Hassan Raza, Abeer Abdulaziz AlSanad, Muhammad Azeem Akbar, Rabia Liaquat, Muhammad Tanveer Riaz, Lulwah AlSuwaidan, Halah Abdulaziz Al-Alshaikh, Hatoon S Alsagri . Real-time artificial intelligence based health monitoring, diagnosing and environmental control system for COVID-19 patients. Mathematical Biosciences and Engineering, 2022, 19(8): 7586-7605. doi: 10.3934/mbe.2022357 |
[8] | Huqing Wang, Zhixin Sun . Research on multi decision making security performance of IoT identity resolution server based on AHP. Mathematical Biosciences and Engineering, 2021, 18(4): 3977-3992. doi: 10.3934/mbe.2021199 |
[9] | Dengzhi Liu, Zhimin Li, Chen Wang, Yongjun Ren . Enabling secure mutual authentication and storage checking in cloud-assisted IoT. Mathematical Biosciences and Engineering, 2022, 19(11): 11034-11046. doi: 10.3934/mbe.2022514 |
[10] | Jingxu Xiao, Chaowen Chang, Yingying Ma, Chenli Yang, Lu Yuan . Secure multi-path routing for Internet of Things based on trust evaluation. Mathematical Biosciences and Engineering, 2024, 21(2): 3335-3363. doi: 10.3934/mbe.2024148 |
Driven by factors such as structural economic shifts, technological breakthroughs, policy changes, and global economic transformations, China's economic growth drivers have continuously evolved. We constructed a panel dataset encompassing 31 provinces in China from 2002 to 2021 and utilized both panel data models and panel quantile models to delve into the underlying factors driving this transition. We further investigated the varying impacts of these factors across different temporal and geographical contexts based on the stage analysis and spatial cluster analysis. The findings revealed that capital accumulation, digital economy, and technological innovation were the major drivers shaping China's economic growth momentum transition, exhibiting significant heterogeneity across different quantile levels. Additionally, we observed heterogeneity in the influencing factors across temporal periods and regions.
Biofilms are dense accumulations of microbial cells on biotic or abiotic surfaces (called substrata) in aqueous environments. Once the microbial cells become sessile, they produce extracellular polymeric substances (EPS) that protect them against antibiotic attacks and mechanical washout [29]. Due to the sorption properties and enhanced mechanical stability of biofilms, they are beneficially used in wastewater treatment, soil remediation and groundwater protection [43]. On the other hand, biofilm formation and detachment can have very disadvantageous effects and lead to serious infections in the human body, biocorrosion of drinking water pipes or industrial facilities [11], contamination in food processing plants [27,30], etc. Biofilm formation is characterized by the balance of attachment, growth and detachment or dispersal processes [23,41]. Among these phenomena, there is a growing interest in the study of the latter, i.e. the release of microbial cells from the biofilm into the aqueous environment. Commonly, by detachment one refers to cell losses into the aqueous environment that are caused by external forces. Usually these external forces are shear forces due to bulk flow hydrodynamics [32]. These detachment losses can manifest themselves as sloughing or erosion of cells from the outer layers of the biofilm. By dispersal we refer to cell losses that can be internally triggered, e.g. by enzyme-mediated breakdown of the biofilm matrix [6], production of surfactants which loosen cells from the biofilm [8]; or externally triggered, e.g. by changes in nutrient availability [23], production of free radicals [4], or controlled by quorum sensing systems [34,37,45]. Dispersed cells can originate from inner layers of the biofilm and can contribute to downstream colonization, and thus eventually result in pipe obstruction, bacterial infection (biomedical implants), or increased microbial contamination in food processing plants [40].
Numerous mathematical models of biofilms have been proposed in the literature, focusing on different time and length scales and processes, and utilizing different mathematical concepts, from agent based to continuum mechanistic and from stochastic to deterministic. All dynamic models of biofilm formation include growth processes, including their dependence on nutrients. On the other hand, detachment and dispersal processes are often neglected, or treated in a rather qualitative manner, e.g. by coupling the detachment rate to biofilm thickness [12,43,44] or geometrical properties of the biofilm structure [46], without accounting for the processes that induce cell loss. No biofilm model is known that includes several or all known detachment and dispersal mechanisms. Rather each modeling study focuses on one particular trigger. A number of biofilm growth models have been proposed that include a physics based description of sloughing or erosion due to external forces, cf [1] for a simple one-dimensional model set in the Wanner-Gujer framework, and [31] for a 2D cellular automaton model. Only few papers have been published that use models of internally triggered biofilm dispersal: A cellular automaton model for nutrient limited dispersal was presented in [22,23], a cellular automaton model for detachment caused by enzymatic breakdown of the EPS matrix was presented in [47]. A partial differential equation based model for cell dispersal triggered by quorum sensing was presented in [18] and investigated there in first computer simulations. The question of well-posedness of the solutions of this model remained open. To give an answer to this question will be the focus of our current paper.
The model in [18] is an extension of a prototype biofilm growth model, which was originally introduced in [13] and did not include any detachment or dispersal processes. The biofilm is characterized in terms of the volume fraction that cells and EPS locally occupy. This is described by a highly non-linear diffusion-reaction equation for biomass, with two non-Fickian effects: (a) the diffusion operator degenerates like the porous medium equation for vanishing biomass densities and (b) it blows up if the local cell density approaches its maximum value. These effects ensure that the biofilm/water interface spreads at a finite speed and that the maximum biomass density is never exceeded. The biofilm expands spatially if the local cell density fills up the available volume while it does not spread notably if there is space locally available to accommodate new cells. In the prototype biofilm growth model, this biomass model is coupled with an additional non-degenerate diffusion-reaction equation for the nutrient that limits biomass growth. In [18] this model was extended to account also for the concentration of the quorum sensing molecules that trigger dispersal, and for an equation that describes the dispersed cells.
Previous extensions of this prototype biofilm growth model that included quorum sensing effects focused on the role of bulk hydrodynamics to facilitate non-local up-regulation due to advective transport [21], and on quorum sensing controlled EPS production [20] as a mechanism to switch from a colonization mode, in which resources are primarily invested in proliferation, to a protected mode of growth, in which EPS is produced, e.g. to mechanically stabilize the biofilm. In these models, down-and up-regulated cells are treated as two different cell fractions. For the model in [21] existence and uniqueness were derived in [38], whereby special features of the model assumptions could be used that do not hold in other, seemingly similar applications of the same biofilm modeling framework. In the current model, up-regulation is implicit. Rather than distinguishing between down-and up-regulated cells, we distinguish between cells that are sessile in the biofilm and motile ones, which after up-regulation disperse from the colony. The structure of the quorum sensing induced dispersal model is different from the previous multi-component biofilm models [10,24,38,40], in which one biomass type is described by a degenerate diffusion-reaction equation, and the other one by a semi-linear one.
To prove existence and uniqueness of solutions and continuous dependence of solutions on initial data we will use here ideas applied in [17] for the mono-species model and in [3] for a scalar degenerate reaction-diffusion equation of porous-medium type.
We analyze the mathematical model of quorum sensing induced detachment in biofilms which was proposed in [18]. In this model we consider particulate biomass, i.e. biofilm bacteria, and suspended biomass, i.e. dispersed cells. As is common in many biofilm modeling studies, cf [44], we do not explicitly track EPS but subsume them in the biomass. The growth of both biomass fractions depends on a growth limiting nutrient. The bacterial cells have the ability to produce quorum sensing signal molecules which can trigger a switch from the sessile to the suspended mode of growth. The model is formulated for the dependent variables local density of particulate biomass (biofilm),
∂˜t˜M=∇˜x⋅(˜DM(M)∇˜x˜M)+˜μ˜C˜k1+˜C˜M−˜k2˜M−˜η1(˜Am˜τm+˜Am)˜M,∂˜t˜N=˜d1Δ˜x˜N+˜μ˜C˜k1+˜C˜N−˜k2˜N+˜η1(˜Am˜τm+˜Am)˜M,∂˜t˜C=˜d2Δ˜x˜C−˜σ˜C˜k1+˜C(˜M+˜N),∂˜t˜A=˜d3Δ˜x˜A−˜λ˜A+[˜α+˜β˜Am˜τm+˜Am](˜M+˜N). | (1) |
In model (1) we have intentionally omitted the re-attachment terms which were originally included in the model [18], because the simulations in [18] show that only a negligible amount of dispersed cells gets re-attached. Hence the inclusion or exclusion of the re-attachment terms will not make a significant difference from an application point of view, but it simplifies the mathematical analysis.
In the first equation of model (1), the diffusion term describes spatial expansion of the biofilm. This is a volume filling problem: as long as locally space is available to accommodate new cells the biofilm expands very slowly or not at all. When the maximum biomass density
˜DM(M)=˜dMa(1−M)b,wherea>1,b>1,˜d>0. | (2) |
Here
In model (1), diffusion of
The reaction terms in (1) describe the following processes that are the same as in the model of [18]:
• Growth of sessile and dispersed cells
• Natural cell death occurs at the same rate
• Dispersal, i.e. the transition of bacteria from the sessile state
• Consumption of nutrients is proportional to biomass growth, i.e. described by the same Monod kinetics. The maximum consumption rate is defined as
• The signal molecules
To non-dimensionalize the model we express the biofilm biomass density
N:=˜N˜M∞,C:=˜C˜C∞,,A:=˜A˜τ, |
where
t:=˜μ˜t,x:=˜x˜L, |
where
∂tM=∇⋅(DM(M)∇M)+Ck1+CM−k2M−η1 (Am1+Am)M,∂tN=d1ΔN+Ck1+CN−k2N+η1 (Am1+Am)M,∂tC=d2ΔC−σ Ck1+C(M+N),∂tA=d3ΔA−λA+[α+βAm1+Am](M+N). | (3) |
Here the spatial derivative operators
Parameter | Description | Value | Source |
half saturation concentration (growth) | | [44] | |
| lysis rate | | assumed |
nutrient consumption rate | | [19] | |
| maximum dispersal rate | varied | [18] |
| quorum sensing abiotic decay rate | | [39] |
constitutive autoinducer production rate | varied | - | |
| induced autoinducer production rate | | [19] |
| degree of polymerization | | [19] |
| constant diffusion coefficients for | | assumed |
| constant diffusion coefficients for | | [15] |
| constant diffusion coefficients for | | [15] |
| biomass motility coefficient | | [13] |
| biofilm diffusion exponent | | [13] |
| biofilm diffusion exponent | | [13] |
| system length | | [15] |
| system height | | assumed |
In this model, the actual biofilm is the region where sessile biomass is present,
It remains to specify initial and boundary values for the biomass fraction
For technical reasons we study the model in the auxiliary form
∂tM=∇⋅(DM(M)∇M)+Ck1+CM−k2M−η1 (|A|m1+|A|m)M⏟=g(M,N,C,A),∂tN=d1ΔN+Ck1+CN−k2N+η1 (|A|m1+|A|m)M⏟=f1(M,N,C,A),∂tC=d2ΔC−σ Ck1+C(M+N)⏟=f2(M,N,C,A),∂tA=d3ΔA−λ|A|+[α+β|A|m1+|A|m](M+N)⏟=f3(M,N,C,A), | (4) |
with the initial and boundary conditions
M|∂Ω=0,N|∂Ω=0,C|∂Ω=C∞,A|∂Ω=0,M|t=0=M0,N|t=0=N0,C|t=0=C0,A|t=0=A0, | (5) |
where
‖M0‖L∞(Ω)<1−ρ, | (6) |
for some
We point out that non-negative solutions of (3) solve (4) and vice versa, i.e. after the non-negativity is shown, the absolute value
Here and in the sequel, we use the following notations,
Φ(M):=∫M0DM(s)ds=∫M0dsa(1−s)bdsfor 0≤M<1. | (7) |
Definition 3.1. We call
M,N,C,A∈C([0,T];L1(Ω))∩L∞(QT) |
and satisfy (4) in distributional sense.
More precisely, if
∫Ω(Mφ)|s=t−∫ΩM0φ|s=0−∫Qt(M∂sφ+Φ(M)Δφ)=∫Qtg(M,N,C,A)φ, | (8) |
for all
∫Ω(Cφ)|s=t−∫ΩC0φ|s=0−∫Qt(C∂sφ+CΔφ)+∫t0∫∂ΩC∞∂νφ=∫Qtf2(M,N,C,A)φ, | (9) |
for all
We consider smooth non-degenerate approximations for system (4) and show that their solutions converge to the solution of the degenerate problem (4). The ideas are based on the proof developed for scalar degenerate reaction-diffusion equations of porous medium type in [2], the solution theory in [17] for the single species biofilm model and the ideas applied in [10,24,38] and [39] for multi-species biofilm models.
For small
Dε(M):={dεaif M<0,d(M+ε)a(1−M)bif 0≤M≤1−ε,d1εbifM≥1−ε,Φε(M):=∫M0Dε(s)ds, | (10) |
and denote the solutions of the regular auxiliary systems
∂tMε=∇⋅(Dε(Mε)∇Mε)+g(Mε,Nε,Cε,Aε),∂tNε=d1ΔNε+f1(Mε,Nε,Cε,Aε),∂tCε=d2ΔCε+f2(Mε,Nε,Cε,Aε),∂tAε=d3ΔAε+f3(Mε,Nε,Cε,Aε). | (11) |
where
Lemma 3.2. Let the boundary and initial data be non-negative and smooth,
Proof. By the classical theory for quasilinear parabolic equations there exist unique solutions
All components of the solution take non-negative values at the boundary, and the initial data are non-negative. Moreover, we observe that
g(0,N,C,A)=0=f2(M,N,0,A), |
and, hence, zero is a subsolution for
f1(M,0,C,A)≥0for M≥0, |
we conclude the non-negativity of
f3(M,N,C,0)≥0for M≥0,N≥0, |
which implies that zero is a subsolution for
To show the uniform boundedness of
Δθ=−1in Ω,θ|∂Ω=0. | (12) |
The maximum principle for elliptic equations [33] implies that
1≤Mθ(x)≤1+R1, x∈Ω |
for some constant
M0=Mε|t=0≤Mθ|t=0,0=Mε|∂Ω≤Mθ|∂Ω |
and since
∂tMθ−∇⋅(Dε(Mθ)∇Mθ)−Cεk1+CεMθ+k2Mθ+η1(|Aε|n1+|Aε|n)Mθ=0+dεb−Cεk1+CεMθ+k2Mθ+η1(|Aε|n1+|Aε|n)Mθ≥dεb−Mθ+k2Mθ≥dεb−(1+R1)≥0=∂tMε−∇⋅(Dε(Mε)∇Mε)−g(Mε,Nε,Cε,Aε) , | (13) |
for all sufficiently small
Next, we show the uniform boundedness of the nutrient concentration
∂tCmax−d2ΔCmax+σCmaxk1+Cmax(Mε+Nε)=σCmaxk1+Cmax(Mε+Nε)≥0, | (14) |
where we used the non-negativity of the sessile biomass
∂tˆN=d1ΔˆN+ˆN−k2ˆN+η1(1+R1),ˆN|∂Ω=0,ˆN|t=0=N0, | (15) |
where
∂tˆN−d1ΔˆN−Cεk1+CεˆN+k2ˆN−η1|Aε|m1+|Aε|mMε≥ ∂tˆN−d1ΔˆN−ˆN+k2ˆN−η1(1+R1)=0= ∂tNε−d1ΔNε−Cεk1+CεNε+k2Nε−η1|Aε|m1+|Aε|mMε. | (16) |
Consequently,
Finally, we prove the uniform boundedness of the quorum sensing signal molecule concentration by showing that there exists a constant
∂tAmax−d3ΔAmax+λAmax−[α+β|Amax|m1+|Amax|m](Mε+Nε)=λAmax−[α+β|Amax|m1+|Amax|m](Mε+Nε)≥λAmax−(α+β)(|Mε|+|Nε|)≥λAmax−(α+β)(1+R1+ˆN)≥0, | (17) |
where we use the boundedness of
In the following Lemma, we improve the upper bound on the sessile biomass density, in particular, we show that the singularity for
Lemma 3.3. Under the hypothesis of Lemma 3.2, there exist
Proof. In order to improve the upper estimate on
Δθ=−c1in Ω,θ|∂Ω=c2. | (18) |
The constants
c1:=‖g(Mε,Nε,Cε,Aε)‖L∞(QT),c2:=‖Φε(M0)‖L∞(Ω), | (19) |
for
Φε(M0)=∫M00(s+ε)a(1−s)bdsfor 0≤M0<1−ε. | (20) |
We remark that for sufficiently small
For
∂tZε−Δ(Φε(Zε))=c1=‖g(Mε,Nε,Cε,Aε)‖L∞(QT)≥∂tMε−Δ(Φε(Mε)) |
in
Zε|∂Ω=Φ−1ε(θ)|∂Ω=Φ−1ε(c2)≥Mε|∂Ω=0, |
and the initial data satisfies
Zε|t=0=Φ−1ε(θ)|t=0≥Φ−1ε(c2)≥Φ−1ε(Φε(M0))=M0, | (21) |
where we used the monotonicity of the function
Lemma 3.4. Under the hypotheses of Lemma 3.2, the solutions
∫QTDε(Mε)(∂tMε)2+supt∈[0,T]∫Ω|∇Φε(Mε)|2≤c, ∫QT(|∂tNε|2+|∂tCε|2+|∂tAε|2)+supt∈[0,T]∫Ω(|∇Nε|2+|∇Cε|2+|∇Aε|2)≤c, | (22) |
for some constant
Proof. We first multiply the second equation in (11) by
∫tτ∫Ω|∂sNε|2=−d12∫tτ∫Ω∂s|∇Nε|2+∫tτ∫Ω∂sNεf1(Mε,Nε,Cε,Aε), | (23) |
where
∫tτ∫Ω|∂sNε|2+d12∫Ω|∇Nε|2|s=t=d12∫Ω|∇Nε|2|s=τ+∫tτ∫Ω∂sNεf1(Mε,Nε,Cε,Aε)≤d12∫Ω|∇Nε|2|s=τ+ξ∫tτ∫Ω|∂sNε|2+Cξ∫tτ∫Ω|f1(Mε,Nε,Cε,Aε)|2, | (24) |
for small
(1−ξ)∫Qt|∂sNε|2+d12∫Ω|∇Nε|2|s=t≤d12∫Ω|∇N0|2+Cξ∫Qt|f1(Mε,Nε,Cε,Aε)|2, | (25) |
for small
∫QT|∂tNε|2≤C′,supt∈[0,T]∫Ω|∇Nε|2≤C′, | (26) |
for some constant
To derive the estimates for the biomass fraction
G(Mε,Nε,Cε,Aε):=∫Mε0Dε(ζ)g(ζ,Nε,Cε,Aε)dζ. | (27) |
Multiplying the first equation of (11) by
∫tτ∫ΩDε(Mε)(∂sMε)2=∫tτ∫Ω∂s(Φε(Mε))∂sMε=∫tτ∫Ω∇⋅(Dε(Mε)∇Mε)∂s(Φε(Mε))+∫tτ∫Ω∂s(Φε(Mε))g(Mε,Nε,Cε,Aε)=−∫tτ∫ΩDε(Mε)∇Mε⋅∂s∇(Φε(Mε))+∫tτ∫Ω∂s(Φε(Mε))g(Mε,Nε,Cε,Aε)=−12∫tτ∫Ω∂s|Dε(Mε)∇Mε|2+∫tτ∫Ω∂s(Φε(Mε))g(Mε,Nε,Cε,Aε), | (28) |
where we used integration by parts in the second step. Consequently, using the identity
∫ΩG(Mε,Nε,Cε,Aε)|s=t−∫ΩG(Mε,Nε,Cε,Aε)|s=τ=∫tτ∫Ω∂s(G(Mε,Nε,Cε,Aε))=∫tτ∫Ω∫Mε0Dε(ζ)∂s(g(ζ,Nε,Cε,Aε))+∫tτ∫Ω∂sMεDε(Mε)g(Mε,Nε,Cε,Aε)=∫tτ∫Ω∫Mε0Dε(ζ)(∂sN∂Ng(ζ,Nε,Cε,Aε)+∂sC∂Cg(ζ,Nε,Cε,Aε)+∂sA∂Ag(ζ,Nε,Cε,Aε))+∫tτ∫Ω∂s(Φε(Mε))g(Mε,Nε,Cε,Aε), | (29) |
it follows that
∫tτ∫ΩDε(Mε)(∂tMε)2+12∫Ω|Dε(Mε)∇Mε|2|s=t=12∫Ω|Dε(Mε)∇Mε|2|s=τ+∫ΩG(Mε,Nε,Cε,Aε)|s=t−∫ΩG(Mε,Nε,Cε,Aε)|s=τ+∫tτ∫Ω∫Mε0Dε(ζ)(∂sN∂Ng(ζ,Nε,Cε,Aε)+∂sC∂Cg(ζ,Nε,Cε,Aε)+∂sA∂Ag(ζ,Nε,Cε,Aε)), | (30) |
where
dεa≤Dε(Mε(t,x))=d(Mε(t,x)+ε)a(1−Mε(t,x))b≤d(1−δ+ε)a(1−(1−δ))b≤dδb,(t,x)∈ QT, |
for all
∫tτ∫Ω∫Mε0Dε(ζ)(∂sN∂2g(ζ,Nε,Cε,Aε)+∂sC∂3g(ζ,Nε,Cε,Aε)+∂sA∂4g(ζ,Nε,Cε,Aε))≤dδb∫tτ∫Ω((|∂sN|2+|∂sC|2+|∂sA|2)+∫Mε04∑i=2|∂ig(ζ,Nε,Cε,Aε)|2). | (31) |
By the above estimates (26), Lemma 3.2, Lemma 3.3 and setting
∫QTDε(Mε)(∂tMε)2≤C′,supt∈[0,T]∫Ω|Dε(Mε)∇Mε|2≤C′, |
for some constant
Lemma 3.5. Under the hypotheses of Lemma 3.2 the approximate solutions of (11) converge to a solution of the degenerate system (4) as
Proof. By Lemma 3.3 the solutions
dεa≤Dε(Mε(t,x))≤dδb,(t,x)∈ QT, |
for all
DM(Mε)≤Dε(Mε)≤dδb, |
and consequently,
Φ(Mε(t,x))≤Φε(Mε(t,x))≤(1−δ)dδb,(t,x)∈ QT. |
Lemma 3.3 and Lemma 3.4 further imply that
∫QT(∂t(Φ(Mε)))2=∫QT(DM(Mε)∂tMε)2≤∫QT(Dε(Mε)∂tMε)2≤‖Dε(Mε)‖L∞(QT)∫QTDε(Mε)(∂tMε)2≤cdδb,supt∈[0,T]∫Ω|∇Φ(Mε)|2=supt∈[0,T]∫Ω|DM(Mε)∇Mε|2≤supt∈[0,T]∫Ω|Dε(Mε)∇Mε|2≤c, | (32) |
for some constant
Moreover, by Lemma 3.4 the approximate solutions
Nεn→N, Cεn→C, Aεn→AinC([0,T];L2(Ω)). |
We can now pass to the limit
Lemma 3.6. Let the hypotheses of Lemma 3.2 be satisfied. If
‖M(T)−˜M(T)‖L1(Ω)−‖M0−~M0‖L1(Ω)≤∫T0∫Ω|g0(t,x)|dxdt,‖N(T)−˜N(T)‖L1(Ω)−‖N0−~N0‖L1(Ω)≤∫T0∫Ω|h1(t,x)|dxdt,‖C(T)−˜C(T)‖L1(Ω)−‖C0−~C0‖L1(Ω)≤∫T0∫Ω|h2(t,x)|dxdt,‖A(T)−˜A(T)‖L1(Ω)−‖A0−~A0‖L1(Ω)≤∫T0∫Ω|h3(t,x)|dxdt, | (33) |
where the functions
g0:=g(M,N,C,A)−g(˜M,˜N,˜C,˜A),hi:=fi(M,N,C,A)−fi(˜M,˜N,˜C,˜A), | (34) |
for
Proof. The estimates immediately follow from Lemma 3.3 in [17].
Lemma 3.7. Let
|g(M,N,C,A)−g(˜M,˜N,˜C,˜A)|+3∑i=1|fi(M,N,C,A)−fi(˜M,˜N,˜C,˜A)≤ c(|M−˜M|+|N−˜N|+|C−˜C|+|A−˜A|), | (35) |
for some constant
Proof. Let
|f2(M,N,C,A)−f2(˜M,˜N,˜C,˜A)|=−σ|[(Ck1+C)(M+N)−(˜Ck1+˜C)(˜M+˜N)]|≤ r1(|M−˜M|+|N−˜N|), | (36) |
for some constant
Am1X1−Am2X2=Am1(X1−X2)+X2(Am1−Am2)= Am1(X1−X2)+νX2(A1−A2)∫10(sA1+(1−s)A2)m−1ds, | (37) |
which implies that
Applying this to
|f1(M,N,C,A)−f1(˜M,˜N,˜C,˜A)|= |[(Ck1+C−k2)N+η1(Am1+Am)M] −[(˜Ck1+˜C−k2)˜N+η1(˜Am1+˜Am)˜M]|≤ |1−k2||N−˜N|+|η1|[|M−˜M|+|M(A−˜A)|]≤ r2(|N−˜N|+|M−˜M|+|A−˜A|) | (38) |
for some constant
|f3(M,N,C,A)−f3(˜M,˜N,˜C,˜A)|= |[−λA+[α+βAm1+Am](M+N)] −[−λ˜A+[α+β˜Am1+˜Am](˜M+˜N)]|≤ λ|A−˜A|+α[|M−˜M|+|N−˜N|] +β[|M−˜M|+|˜M||A−˜A|]+β[|N−˜N|+|˜N||A−˜A|]≤ r3(|A−˜A|+|M−˜M|+|N−˜N|) | (39) |
for some constant
|g(M,N,C,A)−g(˜M,˜N,˜C,˜A)|= |[(Ck1+C−k2)M−η1(Am1+Am)M] −[(˜Ck1+˜C−k2)˜M−η1(˜Am1+˜Am)˜M]|≤ |1−k2||M−˜M|+η1[|M−˜M|+|˜M||A−˜A|]≤ r4|M−˜M|+r2|A−˜A| | (40) |
for some constant
|g(M,N,C,A)−g(˜M,˜N,˜C,˜A)|+3∑i=1|fi(M,N,C,A)−fi(˜M,˜N,˜C,˜A)|≤ r′(|M−˜M|+|N−˜N|+|C−˜C|+|A−˜A|) | (41) |
for some constant
Theorem 3.8. For every
M0≥0,‖M0‖L∞(Ω)<1−ρ,N0≥0,C0≥0,A0≥0,C0|∂Ω=1, M0|∂Ω=N0|∂Ω=A0|∂Ω=0, |
for some
Proof. We first assume the initial data are smooth and satisfy the hypotheses of Lemma 3.2.
If
F(T)−F(0)≤c∫T0F(s)ds, |
where
F(t):=‖M(t)−˜M(t)‖L1(Ω)+‖N(t)−˜N(t)‖L1(Ω)+‖C(t)−˜C(t)‖L1(Ω)+‖A(t)−˜A(t)‖L1(Ω). | (42) |
By Gronwall's Lemma we conclude that
F(T)≤F(0)ecT, | (43) |
for some constant
‖Mn0−M0‖L1(Ω)+‖Nn0−N0‖L1(Ω)+‖Cn0−C0‖L1(Ω)+‖An0−A0‖L1(Ω)→0 |
as
supt∈[0,T]{‖Mn(t)−Mk(t)‖L1(Ω)+‖Nn(t)−Nk(t)‖L1(Ω)+‖Cn(t)−Ck(t)‖L1(Ω)+‖An(t)−Ak(t)‖L1(Ω)}≤ CT(‖Mn0−Mk0‖L1(Ω)+‖Nn0−Nk0‖L1(Ω)+‖Cn0−Ck0‖L1(Ω)+‖An0−Ak0‖L1(Ω)). | (44) |
for some constant
In the previous section we established the well-posedness of the quorum sensing induced biofilm detachment model, however, we are currently unable to describe the solutions of the model qualitatively based on rigorous analytical arguments. Hence, we illustrate the model behaviour in computer simulations.
For the numerical solution of the model we use a straightforward extension to the problem at hand of the numerical method for the prototype biofilm model that is described in detail in [14,36]. For space discretisation this uses a Finite Volume method on a uniform grid, which uses Finite Difference approximations for the diffusive fluxes across grid cell edges. We extended this method to account for the new dependent variables
In the numerical experiments, we investigate the model behaviour under different boundary conditions reflecting biofilms or microbial flocs with particular emphasis on the internal structure of the colonies. We define the following output parameters:
• Relative variation: This is the standard deviation of the sessile biomass density from its mean in the biofilm,
R(t):=[∫Ω2(M(t,x)−∫Ω2M(t,y)dy)2dx]12 | (45) |
• Relative biofilm (floc) size: This is the size of the biofilm relative to the domain size,
ω(t):=1|Ω|∫Ω2(t)dx | (46) |
• Sessile biomass in the biofilm:
Mtot(t):=∫ΩM(t,x)dx | (47) |
• Dispersed cells:
Ntot(t):=∫ΩN(t,x)dx | (48) |
• Average signal molecule concentration in the biofilm:
Aave(t):=∫Ω2(t)A(t,x)dx∫Ω2(t)dx. | (49) |
In these definitions,
In the first simulation experiments, we consider a biofilm without substratum i.e. a microbial floc. We restrict ourselves to a two-dimensional setting with rectangular computational domain
Initially, no signal molecule
For the visualization presented in Figure 2, we used an autoinducer production rate
The 2-D structural representation of the biofilm shown in Figure 2 reveals that the bacterial cells leave from the inner core of the microfloc, but it does not illustrate the extent of the dispersal effect on the biofilm structure. Hence, we present a 1-D spatial representation of a typical biofilm dispersal event in Figure 3 whereby the biofilm is cut vertically to reveal the dispersal taking place in the inner core of the biofilm. The sessile biomass density and the concentration of the quorum sensing molecule are shown at selected times
Figures 2 and 3 illustrate that cell dispersal occurs from the inner core of the microfloc thereby creating hollowing structures, as reported in experimental studies, e.g. [9,22]. Furthermore, we will investigate the general extent of the hollow effect over a longer period of time through the lumped quantities
The temporal plots are shown in Figure 4 where the autoinducer production rate is varied as
The relative variation of the biomass density defined in equation (45) is the standard deviation of the sessile biomass density from its mean in the microfloc. This is evaluated and plotted in Figure 4d. So far, we established that cell dispersal occurs in the inner core of the biofilm, it creates voids (hollows) whose depth increases over time when viewed from the top and the floc size does not shrink as a result of dispersal. The importance of the variable
So far, we presented simulation experiments for a microfloc. We will compare this situation with a biofilm. Besides, we will investigate the effect of quorum sensing induced dispersal on merged colonies which has not been done in the previous study [18]. More specifically, we will analyze the behaviour of merging colonies in terms of biomass growth, cell dispersal and hollow structures.
The simulated biofilm community consists of bacterial cells accumulating on a surface (substratum) surrounded by an aquatic region. The substratum is inoculated by two colonies of small pockets of sessile cells with biomass density
The substratum forms the bottom boundary of the domain
Initially, no dispersed cells and no autoinducers are in the system, and the concentration of nutrients is at bulk level, i.e.
To investigate the effect of quorum sensing triggered dispersal on the spatial structure of the biofilm colony, we visualize the development, growth and cell dispersal of the biofilm in Figure 5. We used the autoinducer production rate
After the simulation starts, the biomass
At the next shown time instance
At the next snapshot
Furthermore, we investigate the behaviour of the biofilm if cell dispersal occurs before merging of the colonies. The simulation setup here is the same as in Figure 5 except that the autoinducer production rate is set to
The extent of the hollow effect in the quorum sensing induced biofilm dispersal is investigated through the lumped quantities
In the simulations discussed above, we prescribed homogeneous Dirichlet boundary conditions for the autoinducer
In order to describe dispersal of cells from a biofilm colony into the aqueous environment, simple prototype biofilm growth models must be extended to include both the dispersing cells as well as the trigger that causes such detachment. In the case of quorum sensing induced dispersal these are autoinducer molecules that are produced in the biofilm colony. In total, this introduces two new dependent variables. The existence and uniqueness proofs for the underlying prototype model must be adapted and extended to account for this new complexity. Our particular model is based on a biofilm growth model that consists of a density-dependent diffusion-reaction equation for sessile biomass that is coupled with a semi-linear diffusion-reaction equation for nutrient, which are consumed in the biofilm. The extension of the model introduces additional semi-linear diffusion-reaction equations that describe quantities that are produced in the biofilm. Since the associated reaction terms have opposite signs than the nutrient terms, the approach to obtain estimates for the nutrient concentration does not carry over to the two new dependent variables and alternative arguments were developed. We formulated the analysis for the case of Dirichlet boundary conditions, but the results can be generalized to other situations with the same ideas that were used for the underlying prototype biofilm growth model. In numerical simulations we focus on the effect of quorum sensing controlled dispersal on the colony. The simulations suggest: (ⅰ) Depending on parameters, microflocs and biofilms do not shrink as a result of dispersal but hollow out, with lower biomass densities in the inner layers of the colonies. (ⅱ) After a rapid dispersal event the number of cells remaining in the colony drops which also leads to a drop in the amount of autoinducer molecules produced; if sufficient nutrients are available cells grow inside the colonies after the dispersal event, leading to increasing biomass there, i.e. a shrinkage of the inner hollow regions, until the next dispersal event. Thus, (ⅲ) quorum sensing induced hollowing of biofilm colonies is a dynamic feature, changing in size and depth over time.
We thank the referees for their careful reading of the manuscript and their helpful comments and remarks that greatly improved the writing of the paper. BOE acknowledges financial support received from the Ontario Ministry for Agriculture, Food and Rural Affairs through the HQP Scholarship program; HJE acknowledges financial support received from the Natural Science and Engineering Research Council of Canada through the Discovery Grant program.
[1] |
Albitar K, Hussainey K (2023) Sustainability, Environmental Responsibility and Innovation. Green Financ 5: 85–88. https://doi.org/10.3934/gf.2023004 doi: 10.3934/gf.2023004
![]() |
[2] |
Amirul SR, Pazim KH, Amirul SM, et al. (2022) Developing and validating the qualitative labour productivity measurement in service industry. Qual Quant 56: 2853–2874. https://doi.org/10.1007/s11135-021-01220-9 doi: 10.1007/s11135-021-01220-9
![]() |
[3] |
Carlsson B, Taymaz E (1993) Technological capabilities and international competitiveness in the engineering industries. Rev Ind Organ 8: 293–313. https://doi.org/10.1007/BF01024236 doi: 10.1007/BF01024236
![]() |
[4] |
Chen B, Lin JY (2021) Development strategy, resource misallocation and economic performance. Struct Change Econ Dyn 59: 612–634. https://doi.org/10.1016/j.strueco.2021.10.003 doi: 10.1016/j.strueco.2021.10.003
![]() |
[5] |
Cruz M, Ahmed SA (2018) On the impact of demographic change on economic growth and poverty. World Dev 105: 95–106. https://doi.org/10.1016/j.worlddev.2017.12.018 doi: 10.1016/j.worlddev.2017.12.018
![]() |
[6] |
Duan J, Liu T, Yang X, et al. (2023) Financial asset allocation and green innovation. Green Financ 5: 512–537. https://doi.org/10.3934/gf.2023020 doi: 10.3934/gf.2023020
![]() |
[7] |
Fang C (2018) Population dividend and economic growth in China, 1978–2018. China Econ J 11: 243–258. https://doi.org/10.1080/17538963.2018.1509529 doi: 10.1080/17538963.2018.1509529
![]() |
[8] |
Gholami S, Zarafshan E, Sheikh R, et al. (2023) Using deep learning to enhance business intelligence in organizational management. Data Sci Financ Econ 3: 337–353. https://doi.org/10.3934/dsfe.2023020 doi: 10.3934/dsfe.2023020
![]() |
[9] |
Guan J, Xu H, Huo D, et al. (2021) Economic policy uncertainty and corporate innovation: Evidence from China. Pac-Basin Financ J 67: 101542. https://doi.org/10.1016/j.pacfin.2021.101542 doi: 10.1016/j.pacfin.2021.101542
![]() |
[10] |
Guinot J, Barghouti Z, Beltran-Martin I, et al. (2023) Corporate social responsibility toward employees and green innovation: Exploring the link in the tourism sector. Green Finan 5: 298–320. https://doi.org/10.3934/gf.2023012 doi: 10.3934/gf.2023012
![]() |
[11] |
Han JY, He M, Xie HL, et al. (2022) The Impact of Scientific and Technological Innovation on High-Quality Economic Development in the Yangtze River Delta Region. Sustainability 14:14346. https://doi.org/10.3390/su142114346 doi: 10.3390/su142114346
![]() |
[12] |
Huang Z, Liao G, Li Z (2019) Loaning scale and government subsidy for promoting green innovation. Technol Forecast Soc Chang 144: 148–156. https://doi.org/10.1016/j.techfore.2019.04.023 doi: 10.1016/j.techfore.2019.04.023
![]() |
[13] |
Idowu A, Ohikhuare OM, Chowdhury MA (2023) Does industrialization trigger carbon emissions through energy consumption? Evidence from OPEC countries and high industrialised countries. Quant Financ Econ 7: 165–186. https://doi.org/10.3934/qfe.2023009 doi: 10.3934/qfe.2023009
![]() |
[14] | Jayasuriya S (2012) Demographic Dividends, Dependencies, and Economic Growth in China and India Comments. Asian Econ Pap 11: 27–29. |
[15] |
Krasnoselskaya D, Timiryanova V (2023) Exploring the impact of ecological dimension on municipal investment: empirical evidence from Russia. Natl Account Rev 5: 227–244. https://doi.org/10.3934/nar.2023014 doi: 10.3934/nar.2023014
![]() |
[16] |
Li L, Rao M (2023) The impact of government intervention on innovation efficiency of green technology-a threshold effect analysis based on environmental taxation and government subsidies. Front Energy Res 11: 1197158. https://doi.org/10.3389/fenrg.2023.1197158 doi: 10.3389/fenrg.2023.1197158
![]() |
[17] |
Li Z, Chen H, Mo B (2023) Can digital finance promote urban innovation? Evidence from China. Borsa Istanb Rev 23: 285–296. https://doi.org/10.1016/j.bir.2022.10.006 doi: 10.1016/j.bir.2022.10.006
![]() |
[18] |
Li Z, Huang Z, Dong H (2019) The Influential Factors on Outward Foreign Direct Investment: Evidence from the "The Belt and Road". Emerg Mark Financ Trade 55: 3211–3226. https://doi.org/10.1080/1540496x.2019.1569512 doi: 10.1080/1540496x.2019.1569512
![]() |
[19] |
Liu G, Yi H, Liang H (2023) Measuring provincial digital finance development efficiency based on stochastic frontier model. Quant Financ Econ 7: 420–439. https://doi.org/10.3934/qfe.2023021 doi: 10.3934/qfe.2023021
![]() |
[20] |
Liu X, Liu W, Xie Y, et al. (2023) The role of government in the innovation ecology of high-tech industries: a case study of China's new energy vehicle industry. Int J Tech Policy Manage 23: 123–147. https://doi.org/10.1504/IJTPM.2023.131372 doi: 10.1504/IJTPM.2023.131372
![]() |
[21] |
Liu Z, Qi H, Liu S (2022) Labor Shrinkage and its Driving Forces in China from 1990 to 2015: A Geographical Analysis. Appl Spat Anal Policy 15: 339–364. https://doi.org/10.1007/s12061-021-09414-2 doi: 10.1007/s12061-021-09414-2
![]() |
[22] | Luis-Alberto A, Christian BV, Paulo-Guilherme C (2013) The impact of government support on firm R & D investments: a meta-analysis. World Bank Group. Available from: http://documents.worldbank.org/curated/en/158151468164363390/The-impact-of-government-support-on-firm-R-D-investments-a-meta-analysis. |
[23] |
Luo F, Chen F, Yang D, et al. (2023) Assessing the total factor productivity growth decomposition: the transformation of economic growth momentum and policy choice in China. Environ Sci Pollut Res 30: 34503–34517. https://doi.org/10.1007/s11356-022-24282-0 doi: 10.1007/s11356-022-24282-0
![]() |
[24] |
Papamichail G, Rosiello A, Wield D (2023) Addressing Public Policy Implementation Challenges in Lagging Regions Through the Analytical Lens of Smart Specialisation. J Knowl Econ 14: 356–381. https://doi.org/10.1007/s13132-021-00874-y doi: 10.1007/s13132-021-00874-y
![]() |
[25] |
Peng W, Xu J, He Z (2023) The impact of human capital on green economic efficiency: evidence from 280 prefectural cities in China. Environ Sci Pollut Res 30: 72415–72429. https://doi.org/10.1007/s11356-023-27014-0 doi: 10.1007/s11356-023-27014-0
![]() |
[26] |
Sager F, Gofen A (2022) The polity of implementation: Organizational and institutional arrangements in policy implementation. Governance 35: 347–364. https://doi.org/10.1111/gove.12677 doi: 10.1111/gove.12677
![]() |
[27] |
Shvets S (2024) Public investment as a growth driver for a commodity-exporting economy: Sizing up the fiscal-monetary involvement. Natl Account Rev 6: 95–115. https://doi.org/10.3934/NAR.2024005 doi: 10.3934/NAR.2024005
![]() |
[28] |
Singh R (2015) Forces of economic growth in China, India, and other Asian countries. Asian-Pac Econ Lit 29: 62–81. https://doi.org/10.1111/apel.12090 doi: 10.1111/apel.12090
![]() |
[29] |
Taketoshi K (2020) How and to what extent has the demographic dividend affected China's economic growth?. Int J Econ Policy Stud 14: 337–350. https://doi.org/10.1007/s42495-020-00040-3 doi: 10.1007/s42495-020-00040-3
![]() |
[30] |
Wen Y, Xu Y (2023) Statistical monitoring of economic growth momentum transformation: empirical study of Chinese provinces. AIMS Math 8: 24825–24847. https://doi.org/10.3934/math.20231266 doi: 10.3934/math.20231266
![]() |
[31] |
Wu W, Lin B (2020) Reducing Overcapacity in China's Coal Industry: A Real Option Approach. Comput Econ 55: 1073–1093. https://doi.org/10.1007/s10614-018-9872-z doi: 10.1007/s10614-018-9872-z
![]() |
[32] |
Xia L, Baghaie S, Sajadi SM (2024) The digital economy: Challenges and opportunities in the new era of technology and electronic communications. Ain Shams Eng J 15: 102411. https://doi.org/10.1016/j.asej.2023.102411 doi: 10.1016/j.asej.2023.102411
![]() |
[33] |
Xu J, Haris M, Haris I (2023) Assessing intellectual capital performance of banks during COVID-19: Evidence from China and Pakistan. Quant Financ Econ 7: 356370. https://doi.org/10.3934/qfe.2023017 doi: 10.3934/qfe.2023017
![]() |
[34] |
Xu Y, Li T (2023) Measurement and spatiotemporal patterns of China's digital economy efficiency. Aims Math 8: 29307–29331. https://doi.org/10.3934/math.20231500 doi: 10.3934/math.20231500
![]() |
[35] |
Xu Y, Li T (2022) Measuring digital economy in China. Natl Account Rev 4: 251–272. https://doi.org/10.3934/NAR.2022015 doi: 10.3934/NAR.2022015
![]() |
[36] |
Yang C (2023) Digital economy drives regional industrial structure upgrading: Empirical evidence from China's comprehensive big data pilot zone policy. Plos One 18: e0295609. https://doi.org/10.1371/journal.pone.0295609 doi: 10.1371/journal.pone.0295609
![]() |
[37] |
Ye J, Chen Z, Peng B (2021) Is the demographic dividend diminishing in China? Evidence from population aging and economic growth during 1990-2015. Rev Dev Econ 25: 2255–2274. https://doi.org/10.1111/rode.12794 doi: 10.1111/rode.12794
![]() |
[38] |
Zhou X, Cai Z, Tan KH, et al. (2021) Technological innovation and structural change for economic development in China as an emerging market. Technol Forecast Soc Chang 167: 120671. https://doi.org/10.1016/j.techfore.2021.120671 doi: 10.1016/j.techfore.2021.120671
![]() |
[39] |
Zou T (2024) Technological innovation promotes industrial upgrading: An analytical framework. Struct Change Econ Dyn 70: 150–167. https://doi.org/10.1016/j.strueco.2024.01.012 doi: 10.1016/j.strueco.2024.01.012
![]() |
1. | Qasem Abu Al-Haija, Manar Alohaly, Ammar Odeh, A Lightweight Double-Stage Scheme to Identify Malicious DNS over HTTPS Traffic Using a Hybrid Learning Approach, 2023, 23, 1424-8220, 3489, 10.3390/s23073489 | |
2. | Faeiz Alserhani, Alaa Aljared, Evaluating Ensemble Learning Mechanisms for Predicting Advanced Cyber Attacks, 2023, 13, 2076-3417, 13310, 10.3390/app132413310 | |
3. | Yazeed Alotaibi, Mohammad Ilyas, Ensemble-Learning Framework for Intrusion Detection to Enhance Internet of Things’ Devices Security, 2023, 23, 1424-8220, 5568, 10.3390/s23125568 | |
4. | Noor Wali Khan, Mohammed S. Alshehri, Muazzam A Khan, Sultan Almakdi, Naghmeh Moradpoor, Abdulwahab Alazeb, Safi Ullah, Naila Naz, Jawad Ahmad, A hybrid deep learning-based intrusion detection system for IoT networks, 2023, 20, 1551-0018, 13491, 10.3934/mbe.2023602 | |
5. | Salah El Hajla, El Mahfoud Ennaji, Yassine Maleh, Soufyane Mounir, 2024, Enhancing Internet of Things Network Security Through an Ensemble-Learning Approach, 9798400709296, 1, 10.1145/3659677.3659835 | |
6. | Zouhir Doumal, Hakim El Fadili, Saad Bennani Dosse, 2023, A Review of recent IDS proposals based on Ensemble Learning in IoT Networks, 978-1-6654-6133-7, 187, 10.1109/CiSt56084.2023.10409870 | |
7. | Muhammad Hassan Jamal, Muazzam A Khan, Safi Ullah, Mohammed S. Alshehri, Sultan Almakdi, Umer Rashid, Abdulwahab Alazeb, Jawad Ahmad, Multi-step attack detection in industrial networks using a hybrid deep learning architecture, 2023, 20, 1551-0018, 13824, 10.3934/mbe.2023615 | |
8. | Yazeed Alotaibi, Mohammad Ilyas, 2023, Enhancing IoT Attack Detection Through Ensemble-Based Multiclass Attacks Classification, 979-8-3503-3111-0, 1, 10.1109/HONET59747.2023.10374636 | |
9. | Narayana Swamy Ramaiah, S. Kevin Andrews, A. Shenbagharaman, M. S. Gowtham, Bandi Bhaskar, Mohit Tiwari, 2023, Enhancing IoT Security Through AI-Based Anomaly Detection and Intrusion Prevention, 979-8-3503-0448-0, 1786, 10.1109/IC3I59117.2023.10398024 | |
10. | Safi Ullah, Jawad Ahmad, Muazzam A. Khan, Mohammed S. Alshehri, Wadii Boulila, Anis Koubaa, Sana Ullah Jan, M Munawwar Iqbal Ch, TNN-IDS: Transformer neural network-based intrusion detection system for MQTT-enabled IoT Networks, 2023, 237, 13891286, 110072, 10.1016/j.comnet.2023.110072 | |
11. | Safi Ullah, Wadii Boulila, Anis Koubaa, Jawad Ahmad, Attention-Based Hybrid Deep Learning Model for Intrusion Detection in IIoT Networks, 2024, 246, 18770509, 3323, 10.1016/j.procs.2024.09.307 | |
12. | Sumedh Gangadhar Dhengre, Shabnam Farook Sayyad, 2025, Chapter 33, 978-981-97-8421-9, 405, 10.1007/978-981-97-8422-6_33 |
Parameter | Description | Value | Source |
half saturation concentration (growth) | | [44] | |
| lysis rate | | assumed |
nutrient consumption rate | | [19] | |
| maximum dispersal rate | varied | [18] |
| quorum sensing abiotic decay rate | | [39] |
constitutive autoinducer production rate | varied | - | |
| induced autoinducer production rate | | [19] |
| degree of polymerization | | [19] |
| constant diffusion coefficients for | | assumed |
| constant diffusion coefficients for | | [15] |
| constant diffusion coefficients for | | [15] |
| biomass motility coefficient | | [13] |
| biofilm diffusion exponent | | [13] |
| biofilm diffusion exponent | | [13] |
| system length | | [15] |
| system height | | assumed |
Parameter | Description | Value | Source |
half saturation concentration (growth) | | [44] | |
| lysis rate | | assumed |
nutrient consumption rate | | [19] | |
| maximum dispersal rate | varied | [18] |
| quorum sensing abiotic decay rate | | [39] |
constitutive autoinducer production rate | varied | - | |
| induced autoinducer production rate | | [19] |
| degree of polymerization | | [19] |
| constant diffusion coefficients for | | assumed |
| constant diffusion coefficients for | | [15] |
| constant diffusion coefficients for | | [15] |
| biomass motility coefficient | | [13] |
| biofilm diffusion exponent | | [13] |
| biofilm diffusion exponent | | [13] |
| system length | | [15] |
| system height | | assumed |