Citation: Jens Høyrup. When is the algorithm concept pertinent – and when not? Thoughts about algorithms and paradigmatic examples, and about algorithmic and non-algorithmic mathematical cultures1[J]. AIMS Mathematics, 2018, 3(1): 211-232. doi: 10.3934/Math.2018.1.211
[1] | Ahmad Mohammed Alghamdi, Sadek Gala, Maria Alessandra Ragusa . A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics, 2017, 2(3): 451-457. doi: 10.3934/Math.2017.2.451 |
[2] | Wei Zhang . A priori estimates for the free boundary problem of incompressible inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion. AIMS Mathematics, 2023, 8(3): 6074-6094. doi: 10.3934/math.2023307 |
[3] | Zhaoyang Shang . Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3(1): 1-11. doi: 10.3934/Math.2018.1.1 |
[4] | Sadek Gala, Maria Alessandra Ragusa . A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2017, 2(1): 16-23. doi: 10.3934/Math.2017.1.16 |
[5] | Xinli Wang, Haiyang Yu, Tianfeng Wu . Global well-posedness and optimal decay rates for the n-D incompressible Boussinesq equations with fractional dissipation and thermal diffusion. AIMS Mathematics, 2024, 9(12): 34863-34885. doi: 10.3934/math.20241660 |
[6] | Feng Cheng . On the dissipative solutions for the inviscid Boussinesq equations. AIMS Mathematics, 2020, 5(4): 2869-2876. doi: 10.3934/math.2020184 |
[7] | Ahmad Mohammad Alghamdi, Sadek Gala, Jae-Myoung Kim, Maria Alessandra Ragusa . The anisotropic integrability logarithmic regularity criterion to the 3D micropolar fluid equations. AIMS Mathematics, 2020, 5(1): 359-375. doi: 10.3934/math.2020024 |
[8] | Xuemin Xue, Xiangtuan Xiong, Yuanxiang Zhang . Two fractional regularization methods for identifying the radiogenic source of the Helium production-diffusion equation. AIMS Mathematics, 2021, 6(10): 11425-11448. doi: 10.3934/math.2021662 |
[9] | Oussama Melkemi, Mohammed S. Abdo, Wafa Shammakh, Hadeel Z. Alzumi . Yudovich type solution for the two dimensional Euler-Boussinesq system with critical dissipation and general source term. AIMS Mathematics, 2023, 8(8): 18566-18580. doi: 10.3934/math.2023944 |
[10] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
This paper is concerned with the regularity criterion of the 3D Boussinesq equations with the incompressibility condition :
{∂tu+u⋅∇u−Δu+∇π=θe3,∂tθ+u⋅∇θ−Δθ=0,∇⋅u=0,(u,θ)(x,0)=(u0,θ0)(x),x∈R3, | (1.1) |
where u=u(x,t) and θ=θ(x,t) denote the unknown velocity vector field and the scalar function temperature, while u0, θ0 with ∇⋅u0=0 in the sense of distribution are given initial data. e3=(0,0,1)T. π=π(x,t) the pressure of fluid at the point (x,t)∈R3×(0,∞). The Boussinesq equation is one of important subjects for researches in nonlinear sciences [14]. There are a huge literatures on the incompressible Boussinesq equations such as [1,2,3,4,6,8,9,10,17,19,20,21,22] and the references therein.
When θ=0, (1.1) reduces to the well-known incompressible Navier-Stokes equations and many results are available. Besides their physical applications, the Navier-Stokes equations are also mathematically significant. From that time on, much effort has been devoted to establish the global existence and uniqueness of smooth solutions to the Navier-Stokes equations.
However, similar to the classic Navier-Stokes equations, the question of global regularity of the weak solutions of the 3D Boussinesq equations still remains a big open problem and the system (1.1) has received many studies. Based on some analysis technique, some regularity criteria via the velocity of weak solutions in the Lebesgue spaces, multiplier spaces and Besov spaces have been obtained in [5,17,19,20,22,23].
More recently, the authors of the present paper [7] showed that the weak solution becomes regular if
∫T0‖u(⋅,t)‖21−r.B−r∞,∞+‖θ(⋅,t)‖21−r.B−r∞,∞1+log(e+‖u(⋅,t)‖Hs+‖θ(⋅,t)‖Hs)dt<∞ for some 0≤r<1 and s≥12, | (1.2) |
where .B−r∞,∞ denotes the homogeneous Besov space. Definitions and basic properties of the Sobolev spaces and the Besov spaces can be find in [18]. For concision, we omit them here.
The purpose of this paper is to improve the regularity criterion (1.2) in the following form.
Theorem 1.1. Let (u,θ) be a smooth solution to (1.1) in [0,T) with the initial data (u0,θ0)∈H3(R3)×H3(R3) with divu0=0 in R3. Suppose that the solution (u,θ) satisfies
∫T0‖u(⋅,t)‖21−r.B−r∞,∞log(e+‖u(⋅,t)‖.B−r∞,∞)dt<∞ for some r with 0≤r<1. | (1.3) |
Then it holds
sup0≤t≤T(‖u(⋅,t)‖2H3+‖θ(⋅,t)‖2H3)<∞. |
That is, the solution (u,θ) can be smoothly extended after time t=T. In other word, if T∗ is the maximal time existence of the solution, then
∫T∗0‖u(⋅,t)‖21−r.B−r∞,∞log(e+‖u(⋅,t)‖.B−r∞,∞)dt<∞. |
Then the solution can be smoothly extended after t=T.
Remark 1.1. The condition (1.3) can be regarded as a logarithmically improved version of the assumption
∫T0‖u(⋅,t)‖21−r.B−r∞,∞dt<∞ for some r with 0≤r<1. |
For the case r=1, we have the following result.
Theorem 1.2. Let (u,θ) be a smooth solution to (1.1) in [0,T) with the initial data (u0,θ0)∈H3(R3)×H3(R3) with divu0=0 in R3. Suppose that there exists a small positive constant η such that
‖u(⋅,t)‖L∞(0,T;.B−1∞,∞(R3))≤η, | (1.4) |
then solution (u,θ) can be smoothly extended after time t=T.
Remark 1.2. Theorem 1.2 can be regarded as improvements and limiting cases of those in [7]. It is worth to point out all conditions are valid for the usual Navier-Stokes equations. We refer to a recent work [7] and references therein.
Remark 1.3. For the case r=0, see [23].
In this section, we will prove Theorem 1.1 by the standard energy method.
Let T>0 be a given fixed time. The existence and uniqueness of local smooth solutions can be obtained as in the case of the Navier-Stokes equations. Hence, for all T>0 we assume that (u,θ) is a smooth solution to (1.1) on [0,T) and we will establish a priori bounds that will allow us to extend (u,θ) beyond time T under the condition (1.3).
Owing to (1.3) holds, one can deduce that for any small ϵ>0, there exists T0=T0(ϵ)<T such that
∫TT0‖u(⋅,t)‖21−r.B−r∞,∞log(e+‖u(⋅,t)‖.B−r∞,∞) dt≤ϵ<<1. | (2.1) |
Thanks to the divergence-free condition ∇⋅u=0, from (1.1)2, we get immediately the global a priori bound for θ in any Lebesgue space
‖θ(⋅,t)‖Lq≤C‖θ0‖Lq for all q∈[2,∞] and all t∈[0,T]. |
Now, multiplying (1.1)2 by θ and using integration by parts, we get
12ddt‖θ‖2L2+‖∇θ‖2L2=0. |
Hence, we obtain
θ∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)). | (2.2) |
Next, multiplying (1.1)1 by u, we have after integration by part,
12ddt‖u‖2L2+‖∇u‖2L2=∫R3(θe3)⋅udx≤‖θ‖L2‖u‖L2≤C‖u‖L2, |
which yields
u∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)), | (2.3) |
where we used (2.2) and
∫R3(u⋅∇u)⋅udx=12∫R3(u⋅∇)u2dx=−12∫R3(∇⋅u)u2dx=0 |
by incompressibility of u, that is, ∇⋅u=0.
Now, apply ∇ operator to the equation of (1.1)1 and (1.1)2, then taking the inner product with ∇u and ∇θ, respectively and using integration by parts, we get
12ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖Δu‖2L2+‖Δθ‖2L2=−∫R3∇(u⋅∇)u⋅∇udx+∫R3∇(θe3)⋅∇udx−∫R3∇(u⋅∇)θ⋅∇θdx=I1+I2+I3. | (2.4) |
Employing the Hölder and Young inequalities, we derive the estimation of the first term I1 as
I1=∫R3(u⋅∇)u⋅Δudx≤‖∇⋅(u⊗u)‖L2‖Δu‖L2≤C‖u‖.B−r∞,∞‖∇u‖⋅Hr‖Δu‖L2≤C‖u‖.B−r∞,∞‖∇u‖1−rL2‖Δu‖1+rL2≤12‖Δu‖2L2+C‖u‖21−r.B−r∞,∞‖∇u‖2L2≤12‖Δu‖2L2+C‖u‖21−r.B−r∞,∞(‖∇u‖2L2+‖∇θ‖2L2), |
where we have used the inequality due to [16] :
‖u⊗u‖⋅H1≤C‖u‖.B−r∞,∞‖∇u‖⋅Hr |
and the interpolation inequality
‖w‖.Hs=‖|ξ|sˆw‖L2≤‖w‖1−sL2‖∇w‖sL2 for all 0≤s≤1. |
The term I3 can be estimated as
I3≤C‖∇u‖L2‖∇θ‖2L4≤C‖∇u‖L2‖∇θ‖.B−1∞,∞‖Δθ‖L2≤C‖∇u‖L2‖θ‖.B0∞,∞‖Δθ‖L2≤12‖Δθ‖2L2+C‖θ‖2L∞‖∇u‖2L2≤12‖Δθ‖2L2+C‖θ‖2L∞(‖∇u‖2L2+‖∇θ‖2L2), |
where we have used
‖∇θ‖.B−1∞,∞≤C‖θ‖.B0∞,∞≤C‖θ‖L∞. |
The term I2 can be estimated as
I2≤‖∇u‖L2‖∇θ‖L2≤12(‖∇u‖2L2+‖∇θ‖2L2). |
Plugging all the estimates into (2.4) yields that
ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖Δu‖2L2+‖Δθ‖2L2≤C(12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞)(‖∇u‖2L2+‖∇θ‖2L2). |
Hence, we obtain
ddt(‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2)+‖Δu‖2L2+‖Δθ‖2L2≤C[12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞log(e+‖u‖.B−r∞,∞)](‖∇u‖2L2+‖∇θ‖2L2)log(e+‖u‖.B−r∞,∞)≤C[12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞log(e+‖u‖.B−r∞,∞)](‖∇u‖2L2+‖∇θ‖2L2)log(e+‖u‖H3+‖θ‖H3)≤C[12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞log(e+‖u‖.B−r∞,∞)](‖∇u‖2L2+‖∇θ‖2L2)log(e+κ(t)) |
where κ(t) is defined by
κ(t)=supT0≤τ≤t(‖u(⋅,τ)‖H3+‖θ(⋅,τ)‖H3)forallT0<t<T. |
It should be noted that the function κ(t) is nondecreasing. Moreover, we have used the following fact :
‖u‖.B−r∞,∞≤C‖u‖H3. |
Integrating the above inequality over [T0,t] and applying Gronwall's inequality, we have
‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2+∫tT∗‖Δu(⋅,τ)‖2L2+‖Δθ(⋅,τ)‖2L2dτ≤(‖∇u(⋅,T0)‖2L2+‖∇θ(⋅,T0)‖2L2)×exp(C∫tT0‖u‖21−r.B−r∞,∞log(e+‖u(⋅,τ)‖.B−r∞,∞)log(e+κ(τ))dτ)≤(‖∇u(⋅,T0)‖2L2+‖∇θ(⋅,T0)‖2L2)×exp(Clog(e+κ(t))∫tT0‖u‖21−r.B−r∞,∞log(e+‖u(⋅,τ)‖.B−r∞,∞)dτ)≤˜Cexp(Cϵlog(e+κ(t)))=˜C(e+κ(t))Cϵ | (2.5) |
where ˜C is a positive constant depending on ‖∇u(⋅,T0)‖2L2, ‖∇θ(⋅,T0)‖2L2, T0, T and θ0.
H3−norm. Next, we start to obtain the H3−estimates under the above estimate (2.5). Applying Λ3=(−Δ)32 to (1.1)1, then taking L2 inner product of the resulting equation with Λ3u, and using integration by parts, we obtain
12ddt‖Λ3u(⋅,t)‖2L2+‖Λ4u(⋅,t)‖2L2=−∫R3Λ3(u⋅∇u)⋅Λ3udx+∫R3Λ3(θe3)⋅Λ3udx | (2.6) |
Similarly, applying Λ3=(−Δ)32 to (1.1)2, then taking L2 inner product of the resulting equation with Λ3θ, and using integration by parts, we obtain
12ddt‖Λ3θ(⋅,t)‖2L2+‖Λ4θ(⋅,t)‖2L2=−∫R3Λ3(u⋅∇θ)⋅Λ3θdx, | (2.7) |
Using ∇⋅u=0, we deduce that
12ddt(‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2)+‖Λ4u(⋅,t)‖2L2+‖Λ4θ(⋅,t)‖2L2=−∫R3[Λ3(u⋅∇u)−u⋅Λ3∇u]⋅Λ3udx+∫R3Λ3(θe3)⋅Λ3udx−∫3R3[Λ3(u⋅∇θ)−u⋅Λ3∇θ]⋅Λ3θdx=Π1+Π2+Π3. | (2.8) |
To bound Π1, we recall the following commutator estimate due to [12]:
‖Λα(fg)−fΛαg‖Lp≤C(‖Λα−1g‖Lq1‖∇f‖Lp1+‖Λαf‖Lp2‖g‖Lq2), | (2.9) |
for α>1, and 1p=1p1+1q1=1p2+1q2. Hence Π1 can be estimated as
Π1≤C‖∇u‖L3‖Λ3u‖2L3≤C‖∇u‖34L2‖Λ3u‖14L2‖∇u‖13L2‖Λ4u‖53L2≤16‖Λ4u‖2L2+C‖∇u‖132L2‖Λ3u‖32L2, | (2.10) |
where we used (2.9) with α=3,p=32, p1=q1=p2=q2=3, and the following Gagliardo-Nirenberg inequalities
{‖∇u‖L3≤C‖∇u‖34L2‖Λ3u‖14L2,‖Λ3u‖L3≤C‖∇u‖16L2‖Λ4u‖56L2. | (2.11) |
If we use the existing estimate (2.1) for T0≤t<T, (2.10) reduces to
Π1≤12‖Λ4u‖2L2+˜C(e+κ(t))32+132Cϵ. | (2.12) |
Using (2.11) again, we get
Π3≤C(‖∇u‖L3‖Λ3θ‖L3+‖∇θ‖L3‖Λ3u‖L3)‖Λ3θ‖L3≤C(‖∇u‖L3+‖∇θ‖L3)(‖Λ3u‖2L3+‖Λ3θ‖2L3)≤16(‖Λ4u‖2L2+‖Λ4θ‖2L2)+˜C(e+κ(t))32+132Cϵ. |
For Π2, we have
Π2≤12(‖Λ3u‖2L2+‖Λ3θ‖2L2)≤˜C(e+κ(t))2. |
Inserting all the inequalities into (2.8) and absorbing the dissipative terms, one finds
ddt(‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2)≤˜C(e+κ(t))32+132Cϵ+˜C(e+κ(t))2, | (2.13) |
with together with the basic energy (2.2)-([2.3]) yields
ddt(‖u(⋅,t)‖2H3+‖θ(⋅,t)‖2H3)≤˜C(e+κ(t))32+132Cϵ+˜C(e+κ(t))2, | (2.14) |
Choosing ϵ sufficiently small provided that 132Cϵ<12 and applying the Gronwall inequality to (2.14), we derive that
supT0≤τ≤t(‖u(⋅,τ)‖2H3+‖θ(⋅,τ)‖2H3)≤˜C<∞, | (2.15) |
where ˜C depends on ‖∇u(⋅,T0)‖2L2 and ‖∇θ(⋅,T0)‖2L2.
Noting that the right-hand side of (2.15) is independent of t for , we know that (u(⋅,T),θ(⋅,T))∈H3(R3)×H3(R3). Consequently, (u,θ) can be extended smoothly beyond t=T. This completes the proof of Theorem 1.1.
In order to prove Theorem 1.2, we first recall the following local existence theorem of the three-dimensional Boussinesq equations.
Lemma 3.1. Suppose (u,θ)∈Lα(R3), for some α≥3 and ∇⋅u=0. Then, there exists T0>0 and a unique solution of (1.1) on [0,T0) such that
(u,θ)∈BC([0,T0);Lα(R3))∩Ls([0,T0);Lr(R3)),t1su∈BC([0,T0);Lα(R3)) | (3.1) |
Moreover, let (0,T∗) be the maximal interval such that (u,θ) solves (1.1) in C((0,T∗);Lα(R3)), α>3. Then for any t∈(0,T∗)
‖u(⋅,t)‖Lα≥C(T∗−t)α−32α and ‖θ(⋅,t)‖Lα≥C(T∗−t)α−32α, |
with the constant C independent of T∗ and α.
Let (u,θ) be a strong solution satisfying
(u,θ)∈Lα((0,T);Lβ(R3)) for 2α+3β=1 and β>3. |
Then (u,θ) belongs to C∞(R3×(0,T)).
Proof. For all T>0, we assume that (u,θ) is a smooth solution to (1.1) on [0,T) and we will establish a priori bounds that will allow us to extend (u,θ) beyond time T under the condition (1.4).
Similar to the proof of Theorem 1.1, we can show that
(u,θ)∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)). | (3.2) |
The proof of Theorem 1.2 is divided into steps.
Step Ⅰ. H1−estimation. In order to get the H1−estimates, we apply ∇ operator to the equation of (1.1)1 and (1.1)2, multiply by ∇u and ∇θ, respectively to obtain
12ddt(‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2)+‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2=−∫R3∇(u⋅∇)u⋅∇udx+∫R3∇(θe3)⋅∇udx−∫R3∇(u⋅∇)θ⋅∇θdx=I1+I2+I3. | (3.3) |
Next we estimate I1,I2 and I3 in another way. Hence,
I1≤‖∇u‖3L3≤C‖∇u‖.B−2∞,∞‖Δu‖2L2≤C‖u‖.B−1∞,∞‖Δu‖2L2, |
where we have used the following interpolation inequality due to [16] :
‖w‖L3≤C‖∇w‖23L2‖w‖13.B−2∞,∞. |
By means of the Hölder and Young inequalities, the term I3 can be estimated as
I3≤C‖∇u‖L2‖∇θ‖2L4≤C‖∇u‖L2‖∇θ‖.B−1∞,∞‖Δθ‖L2≤C‖θ‖2.B0∞,∞‖Δθ‖2L2+C‖∇u‖2L2≤C‖θ‖2L∞‖Δθ‖2L2+C‖∇u‖2L2, |
where we have used the following interpolation inequality due to [16] :
‖∇θ‖2L4≤C‖∇θ‖.B−1∞,∞‖Δθ‖L2. |
The term I2 can be estimated as
I2≤‖∇u‖L2‖∇θ‖L2≤12(‖∇u‖2L2+‖∇θ‖2L2). |
Plugging all the estimates into (3.3) yields that
12ddt(‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2)+‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2≤C‖u‖.B−1∞,∞‖Δu‖2L2+C‖θ‖2L∞‖Δθ‖2L2+C(‖∇u‖2L2+‖∇θ‖2L2). |
Under the assumption (1.4), we choose η small enough so that
C‖u‖.B−1∞,∞≤12 . |
Hence, we find that
ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖Δu‖2L2+‖Δθ‖2L2≤C(‖∇u‖2L2+‖∇θ‖2L2). |
Integrating in time and applying the Gronwall inequality, we infer that
‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2+∫T0(‖Δu(⋅,τ)‖2L2+‖Δθ(⋅,τ)‖2L2)dτ≤C. | (3.4) |
Step Ⅱ. H2−estimation. Next, we start to obtain the H2−estimates under the above estimate (3.4). Applying Δ to (1.1)1, then taking L2 inner product of the resulting equation with Δu, and using integration by parts, we obtain
12ddt‖Δu(⋅,t)‖2L2+‖Λ3u(⋅,t)‖2L2=−∫R3Δ(u⋅∇u)⋅Δudx+∫R3Δ(θe3)⋅Δudx | (3.5) |
Similarly, applying Δ to (1.1)2, then taking L2 inner product of the resulting equation with Δθ, and using integration by parts, we obtain
12ddt‖Δθ(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2=−∫R3Δ(u⋅∇θ)⋅Δθdx. | (3.6) |
Adding (3.5) and (3.6), we deduce that
12ddt(‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2)+‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2=−∫R3Δ(u⋅∇u)⋅Δudx+∫R3Δ(θe3)⋅Δudx−∫R3Δ(u⋅∇θ)⋅Δθdx=K1+K2+K3. | (3.7) |
Using Hölder's inequality and Young's inequality, K1 can be estimated as
K1=∫R3Δ(u⊗u)⋅Δ∇udx≤‖Δ(u⊗u)‖L2‖Δ∇u‖L2≤C‖u‖L∞‖Δu‖L2‖Λ3u‖L2≤12‖Λ3u‖2L2+C‖u‖2L∞‖Δu‖2L2. |
Here we have used the bilinear estimates due to Kato-Ponce [12] and Kenig-Ponce-Vega [13]:
‖Λα(fg)‖Lp≤C(‖Λαg‖Lq1‖f‖Lp1+‖Λαf‖Lp2‖g‖Lq2), |
for α>0, and 1p=1p1+1q1=1+1q2.
From the incompressibility condition, Hölder's inequality and Young's inequality, one has
K3=∫R3Δ(uθ)⋅Δ∇θdx≤‖Δ(uθ)‖L2‖Δ∇θ‖L2≤C(‖u‖L∞‖Δθ‖L2+‖θ‖L∞‖Δu‖L2)‖Λ3θ‖L2≤12‖Λ3θ‖2L2+C(‖u‖2L∞+‖θ‖2L∞)(‖Δu‖2L2+‖Δθ‖2L2). |
For K2, we have
K2≤12(‖Δu‖2L2+‖Δθ‖2L2) |
Inserting all the inequalities into (3.7) and absorbing the dissipative terms, one finds
ddt(‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2)+‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2≤C(‖u‖2L∞+‖θ‖2L∞)(‖Δu‖2L2+‖Δθ‖2L2). | (3.8) |
Using the following interpolation inequality
‖f‖L∞≤C‖f‖14L2‖Δf‖34L2, |
together with the key estimate (3.4) yield that
∫T0(‖u(⋅,τ)‖2L∞+‖θ(⋅,τ)‖2L∞)dτ≤C<∞. |
Applying the Gronwall inequality to (3.8), we derive that
‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2+∫T0(‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2)dt≤C. | (3.9) |
By estimates (3.4) and (3.9) as well as the following Gagliardo-Nirenberg's inequality
‖f‖L6≤C‖f‖12L2‖Δf‖12L2, |
it is easy to see that
(u,θ)∈L4(0,T;L6(R3)), |
from which and Lemma 3.1 the smoothness of (u,θ) follows immediately. This completes the proof of Theorem 1.2.
Part of the work was carried out while the first author was long term visitor at University of Catania. The hospitality and support of Catania University are graciously acknowledged.
All authors would like to thank Professor Bo-Qing Dong for helpful discussion and constant encouragement. They also would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.
All authors declare no conflicts of interest in this paper.
[1] | Acerbi, Fabio, & Bernard Vitrac (ed., trans. ), 2014. Héron d'Alexandrie, Metrica. Pisa & Roma: Fabrizio Serra. |
[2] | Aydin, Nuh, & Lakhdar Hammoudi, 2015. Root Extraction by Al-Kashi and Stevin. Arch Hist Exact Sci 69,291-310. |
[3] | Barrow, Isaac, 1659. Euclidis Elementorum libri XV. Canterbury: William Nealand. |
[4] | Boncompagni, Baldassare (ed. ), 1857. Scritti di Leonardo Pisano matematico del secolo decimoterzo. Ⅰ. Il Liber abbaci di Leonardo Pisano. Roma: Tipografia delle Scienze Matematiche e Fisiche. |
[5] | Brack-Bernsen, Lis, & Hermann Hunger, 2008. BM 42484+42294 and the Goal-Year method. SCIAMUS 9, 3-23. |
[6] | Bullynck, Maarten, 2016.[Essay Review of Jean-Luc Chabert et al (eds), Histories of algorithms: Past, present and future. Histoire d'algorithmes. Du caillou à la puce. Second edition. Paris: Belin, 2010]. Hist Math 43,332-341. |
[7] | Cantor, Moritz, 1880. Vorlesungen über Geschichte der Mathematik. Erster Band, von den ältesten Zeiten bis zum Jahre 1200 n. Chr. Leipzig: Teubner. |
[8] | Chemla, Karine, 1987. Should They Read Fortran As If It Were English? Bulletin of Chinese Studies 1,301-316. |
[9] | Chemla, Karine, 1991. Theoretical Aspects of the Chinese Algorithmic Tradition (First to Third Centuries). Historia Scientiarum 42, 75-98. |
[10] | Chemla, Karine, & Guo Shuchun (eds), 2004. Les neuf chapitres. Le Classique mathématique de la Chine ancienne et ses commentaires. Paris: Dunod. |
[11] | Colebrooke, H. T. (ed., trans. ), 1817. Algebra, with Arithmetic and Mensuration from the Sanscrit of Brahmagupta and Bhascara. London: John Murray. |
[12] | Cormen, Thomas, et al, 2009. Introduction to Algorithms. Third Edition. Cambridge, Mass., & London: MIT Press. |
[13] | Curtze, Maximilian (ed. ), 1897. Petri Philomeni de Dacia in Algorismum vulgarem Johannis de Sacrobosco Commentarius, una cum algorismo ipso. København: Høst og Søn. |
[14] | Eisenlohr, A., 1877. Ein mathematisches Handbuch der alten Ägypter (Papyrus Rhind des British Museum) übersetzt und erklärt. Ⅰ. Kommentar. Ⅱ. Tafeln. Leipzig: J. C. Hinrichs. |
[15] | Friberg, Jöran, 1997. "Seed and Reeds Continued". Another Metro-Mathematical Topic Text from Late Babylonian Uruk. Baghdader Mitteilungen 28,251-365, pl. 45-46. |
[16] | Friberg, Jöran, Hermann Hunger & Farouk N. H. al-Rawi, 1990. "Seed and Reeds": A Metro-Mathematical Topic Text from Late Babylonian Uruk. Baghdader Mitteilungen 21,483-557, Tafel 46-48. |
[17] | Fried, Michael N., & Sabetai Unguru, 2001. Apollonius of Perga's Conica. Text, Context, Subtext. Leiden etc. : Brill. |
[18] | Gohlman, William E. (ed., trans. ), 1974. The Life of ibn Sina. Albany: State University of New York Press. |
[19] | Hayashi, Takao, 1995. The Bakhshālī Manuscript: An Ancient Indian Mathematical Treatise. Groningen: Egbert Forsten. |
[20] | Høyrup, Jens, 2001. On a Collection of Geometrical Riddles and Their Role in the Shaping of Four to Six "Algebras". Sci Context 14, 85-131. |
[21] | Høyrup, Jens, 2002a. Lengths, Widths, Surfaces: A Portrait of Old Babylonian Algebra and Its Kin. New York: Springer. |
[22] | Høyrup, Jens, 2002b. A Note on Old Babylonian Computational Techniques. Hist Math 29,193-198. |
[23] | Høyrup, Jens, 2006. Artificial Language in Ancient Mesopotamia -a Dubious and a Less Dubious Case. Journal of Indian Philosophy 34, 57-88. |
[24] | Høyrup, Jens, 2007. Jacopo da Firenze's Tractatus Algorismi and Early Italian Abbacus Culture. Basel etc. : Birkhäuser. |
[25] | Høyrup, Jens, 2012a. A Hypothetical History of Old Babylonian Mathematics: Places, Passages, Stages, Development. Gaṇita Bhāratī 34, 1-23. |
[26] | Høyrup, Jens, 2012b. Sanskrit-Prakrit Interaction in Elementary Mathematics As Reflected in Arabic and Italian Formulations of the Rule of Three -and Something More on the Rule Elsewhere. Gaṇita Bhāratī 34,144-172. |
[27] | Høyrup, Jens, 2017. What Is "Geometric Algebra", and What Has It Been in Historiography? AIMS Mathematics 2,128-160. |
[28] | Høyrup, Jens, forthcoming. In Which Way Can We Speak of Algebra when Describing Babylonian Sources? To be published in a volume edited by Karine Chemla and Tian Miao. |
[29] | Hudecek, Jiri, 2012. Ancient Chinese Mathematics in Action: Wu Wen-Tsun's Nationalist Historicism after the Cultural Revolution. East Asian Science, Technology and Society 6, 41-64. |
[30] | Hudecek, Jiri, 2014. Reviving Ancient Chinese Mathematics: Mathematics, History and Politics in the Work of Wu Wen-Tsun. London & New York: Routledge. |
[31] | Hughes, Barnabas B. (ed.), 1986. Gerard of Cremona's Translation of al-Khwārizmī's Al-Jabr: A Critical Edition. Mediaeval Studies 48,211-263. |
[32] | Hughes, Barnabas B. (ed. ), 1989. Robert of Chester's Latin translation of al-Khwārizmī's Al-jabr. A New Critical Edition. Wiesbaden: Franz Steiner. |
[33] | Hughes, Barnabas B. (ed.), 2001. A Treatise on Problem Solving from Early Medieval Latin Europe. Mediaeval Studies 63,107-141. |
[34] | Imhausen, Annette, 2003. Ägyptische Algorithmen. Eine Untersuchung zu den mittelägyptischen mathematischen Aufgabentexten. Wiesbaden: Harrassowitz. |
[35] | Imhausen, Annette, 2016. Mathematics in Ancient Egypt: A Contextual History. Princeton and Oxford: Princeton University Press. |
[36] | Keller, Agathe, 2006. Expounding the Mathematical Seed. A Translation of Bhāskara I on the Mathematical Chapter of the āryabhaṭīya. 2 vols. Basel etc. : Birkhäuser. |
[37] | Kline, Morris, 1972. Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press. |
[38] | Knuth, Donald E., 1972. Ancient Babylonian Algorithms. Communications of the Association of Computing Machinery 15,671-677, with correction of an erratum in 19 (1976), 108. |
[39] | Libri, Guillaume, 1838. Histoire des mathématiques en Italie. 4 vols. Paris: Jules Renouard, 1838-1841. |
[40] | Littré, émile, 1873. Dictionnaire de la langue française. 4 vols. + suppl. Paris: Hachette, 1873-1877. |
[41] | Mahoney, Michael S., 1971. Babylonian Algebra: Form vs. Content.[Essay Review of the 1969 reprint edition of O. Neugebauer 1934]. Stud Hist Philos Sci 1,369-380. |
[42] | Maresca, Paolo, 2003. Introduction to the Fundamentals of Algorithms, pp. 1-16 in Shi-Kuo Chang, Data Structures and Algorithms. New Jersey etc. : World Scientific. |
[43] | MKT: O. Neugebauer, Mathematische Keilschrift-Texte. 3 vols. Berlin: Julius Springer, 1935,1935,1937. |
[44] | Neugebauer, Otto, 1932. Studien zur Geschichte der antiken Algebra Ⅰ. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien 2 (1932-33), 1-27. |
[45] | Neugebauer, Otto, 1934. Vorlesungen über Geschichte der antiken mathematischen Wissenschaften. Ⅰ: Vorgriechische Mathematik. Berlin: Julius Springer. |
[46] | Neugebauer, O., 1936. Zur geometrischen Algebra (Studien zur Geschichte der antiken Algebra Ⅲ). Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien 3 (1934-36), 245-259. |
[47] | Proust, Christine. 2012. Interpretation of Reverse Algorithms in Several Mesopotamian Texts, pp. 384-412 in Karine Chemla (ed. ), History of Mathematical Proof in Ancient Traditions. Cambridge: Cambridge University Press. |
[48] | Raṇgācārya, M. (ed., trans. ), 1912. The Gaṇita-sāra-sangraha of Mahāvīrācārya with English Translation and Notes. Madras: Government Press. |
[49] | Rashed, Roshdi (ed., trans. ), 2007. Al-Khwārizmī, Le Commencement de l'algèbre. Paris: Blanchard. |
[50] | Reichenbach, Hans, 1939. Experience and Prediction: An Analysis of the Foundations and the Structure of Knowledge. Chicago: University of Chicago Press. |
[51] | Ritter, Jim, 2004. Reading Strasbourg 368: A Thrice-Told Tale, pp. 177-200 in Karine Chemla (ed. ), History of Science, History of Text. Dordrecht: Kluwer. |
[52] | Rodet, Léon, 1881. Les prétendus problèmes d'algèbre du manuel du calculateur égyptien (Papyrus Rhind). Journal asiatique, septième série 18,184-232,390-559. |
[53] | Sachs, Abraham J., 1947. Babylonian Mathematical Texts. Ⅰ: Reciprocals of Regular Sexagesimal Numbers. Journal of Cuneiform Studies 1,219-240. |
[54] | Sapori, Armando, 1955. Studi di storia economica: (secoli XⅢ-XIV-XV). 3 vols. Firenze: Sansoni, 1955-67. |
[55] | Sarma, Sreeramula Rajeswara, 2010. Mathematical Literature in the Regional Languages of India, pp. 201-211 in B. S. Yadav (ed. ), Ancient Indian Leaps in the Advent of mathematics. Basel: Birkhäuser. |
[56] | Siu, Man-Keung, & Alexeï Volkov, 1999. Official Curriculum in Traditional Chinese Mathematics: How Did Candidates Pass the Examinations? Historia Scientiarum 9, 85-99. |
[57] | Szabó, árpád, 1969. Anfänge der griechischen Mathematik. München & Wien: R. Oldenbourg/ Budapest: Akadémiai Kiadó. |
[58] | Tannery, Paul, 1882. De la solution géométrique des problemes du second degré avant Euclide. Mémoires de la Société des sciences physiques et naturelles de Bordeaux, 2e Série, 4,395-416. Consulted via the reprint in Tannery 1912. |
[59] | Tannery, Paul, 1887. La géométrie grecque. Comment son histoire nous est parvenue et ce que nous en savons. Essai critique. Première partie, Histoire générale de la géométrie élémentaire. Paris: Gauthiers-Villars. |
[60] | Tannery, Paul, 1912. Mémoires scientifiques. Ⅰ. Sciences exactes dans l'Antiquité, 1876-1884. Toulouse: édouard Privat / Paris: Gauthier-Villars. |
[61] | Tropfke, Johannes, 1902. Geschichte der Elementar-Mathematik in systematischer Darstellung. 2 vols. Leipzig: von Veit, 1902-1903. |
[62] | Zeuthen, Hieronimus Georg, 1886. Die Lehre von den Kegelschnitten im Altertum. København: Höst & Sohn. |
[63] | Zeuthen, Hans Georg, 1896. Geschichte der Mathematik im Altertum und im Mittelalter. Vorlesungen. København: Höst & Sön. |
1. | Sadek Gala, Maria Alessandra Ragusa, A Regularity Criterion of Weak Solutions to the 3D Boussinesq Equations, 2020, 51, 1678-7544, 513, 10.1007/s00574-019-00162-z | |
2. | Zhouyu Li, Wenjuan Liu, Qi Zhou, Conditional Regularity for the 3D Damped Boussinesq Equations with Zero Thermal Diffusion, 2024, 55, 1678-7544, 10.1007/s00574-024-00411-w |