Processing math: 42%
Research article Special Issues

Voluntary carbon information disclosures, corporate-level environmental sustainability efforts, and market value

  • Received: 23 December 2021 Revised: 13 March 2022 Accepted: 06 April 2022 Published: 12 April 2022
  • JEL Codes: G30, M50, Q51, Q56

  • Based on global 500 companies, this study examines whether the market incorporates the corporations' voluntary carbon emissions disclosures as part of their environmental sustainability efforts, thus increasing their market value. Proxies used to measure the corporations' ecological sustainability efforts include the choice of voluntary carbon disclosures, carbon emissions amounts, carbon intensity, and carbon disclosure quality. During the study period, those companies that chose to disclose their carbon information to the Carbon Disclosure Project (CDP), saw the market value their efforts towards environmental sustainability by increasing their market value. This study also compared the market value of disclosing and non-disclosing firms and found that non-disclosing companies had higher market value than did disclosing firms. However, this relationship was statistically insignificant. This study uses the more extensive data set, extended period, and more robust econometric approach (Difference GMM) and extends the boundaries of accounting research to incorporate environmental-related disclosures. Therefore, this most recent study can provide new insights to researchers, investors, and policymakers in the present context of environmental sustainability and business sustainability.

    Citation: Jaspreet K. Sra, Annie L. Booth, Raymond A. K. Cox. Voluntary carbon information disclosures, corporate-level environmental sustainability efforts, and market value[J]. Green Finance, 2022, 4(2): 179-206. doi: 10.3934/GF.2022009

    Related Papers:

    [1] Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy b-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885
    [2] Samina Batul, Faisar Mehmood, Azhar Hussain, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer . Multivalued contraction maps on fuzzy b-metric spaces and an application. AIMS Mathematics, 2022, 7(4): 5925-5942. doi: 10.3934/math.2022330
    [3] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
    [4] Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović . A fixed point theorem in strictly convex b-fuzzy metric spaces. AIMS Mathematics, 2023, 8(9): 20989-21000. doi: 10.3934/math.20231068
    [5] Samina Batul, Faisar Mehmood, Azhar Hussain, Reny George, Muhammad Sohail Ashraf . Some results for multivalued mappings in extended fuzzy b-metric spaces. AIMS Mathematics, 2023, 8(3): 5338-5351. doi: 10.3934/math.2023268
    [6] Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Manuel De la Sen . Generalized common best proximity point results in fuzzy multiplicative metric spaces. AIMS Mathematics, 2023, 8(11): 25454-25476. doi: 10.3934/math.20231299
    [7] Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen . The Meir-Keeler type contractions in extended modular b-metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107
    [8] Müzeyyen Sangurlu Sezen . Interpolative best proximity point results via γ-contraction with applications. AIMS Mathematics, 2025, 10(1): 1350-1366. doi: 10.3934/math.2025062
    [9] Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad . Fixed point results in double controlled quasi metric type spaces. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112
    [10] Jerolina Fernandez, Hüseyin Işık, Neeraj Malviya, Fahd Jarad . Nb-fuzzy metric spaces with topological properties and applications. AIMS Mathematics, 2023, 8(3): 5879-5898. doi: 10.3934/math.2023296
  • Based on global 500 companies, this study examines whether the market incorporates the corporations' voluntary carbon emissions disclosures as part of their environmental sustainability efforts, thus increasing their market value. Proxies used to measure the corporations' ecological sustainability efforts include the choice of voluntary carbon disclosures, carbon emissions amounts, carbon intensity, and carbon disclosure quality. During the study period, those companies that chose to disclose their carbon information to the Carbon Disclosure Project (CDP), saw the market value their efforts towards environmental sustainability by increasing their market value. This study also compared the market value of disclosing and non-disclosing firms and found that non-disclosing companies had higher market value than did disclosing firms. However, this relationship was statistically insignificant. This study uses the more extensive data set, extended period, and more robust econometric approach (Difference GMM) and extends the boundaries of accounting research to incorporate environmental-related disclosures. Therefore, this most recent study can provide new insights to researchers, investors, and policymakers in the present context of environmental sustainability and business sustainability.



    Fixed point theory plays a fundamental role in mathematics and applied science, such as optimization, mathematical models and economic theories. Also, this theory has been applied to show the existence and uniqueness of the solutions of differential equations, integral equations and many other branches of mathematics, see [1,2]. A prominent result in fixed point theory is the Banach contraction principle [3]. Since the appearance of this principle, there has been a lot of activity in this area. Bakhtin [4] in 1989 introduced the notion of a b-metric space (Bms). Shoaib et. al [5] proved certain fixed point results in rectangular metric spaces. Multivalued mappings in various types of metric spaces have been extensively studied by many researchers to establish fixed point results and their applications, see for instance [6,7,8,9,10,11,12].

    In 1965, Zadeh [13] introduced the concept of a fuzzy set theory to deal with the unclear or inexplicit situations in daily life. Using this theory, Kramosil and Michálek [14] defined the concept of a fuzzy metric space (Fms). Grabiec [15] gave contractive mappings on a Fms and extended fixed point theorems of Banach and Edelstein in such a space. Successively, George and Veeramani [16] slightly modified the notion of a Fms introduced by Kramosil and Michálek [14] and then obtained a Hausdorff topology and a first countable topology on it. Many fixed point results have been established in a Fms. For instance, see [17,18,19,20,21,22,23,24,25] and the references therein. Recently, some coupled fuzzy fixed-point results on closed ball are established in fuzzy metric spaces [26]. The notion of generalized fuzzy metric spaces is studied in [27].

    The notion of a fuzzy b-metric space (Fbms) was defined in [28]. The notion of a Hausdorff Fms is introduced in [29]. Fixed point theory for multivalued mapping in fuzzy metric spaces has been extended in many directions. For a multivalued mapping (Mvp) in a complete Fms, some fixed point results are establish in [30]. Some fixed point results for a Mvp in a Hausdorff fuzzy b-metric space (Hfbms) are proved in [31]. In this article, we prove some fixed point results for a Mvp using Geraghty type contractions in a Hfbms. Results in [31,32] and [30] turn out to be special cases of our results.

    Throughout the article, refers to a non-empty set, N represents the set of natural numbers, R corresponds to the collection of real numbers, CB() and ˆC0() represent the collection of closed and bounded subsets and compact subsets of , respectively.

    Let us have a look at some core concepts that will be helpful for the proof of our main results.

    Definition 1.1. [33] For a real number b1, the triplet (,Θfb,) is called a Fbms on if for all ψ1,ψ2,ψ3 and γ>0, the following axioms hold, where is a continuous t-norm and Θfb is a fuzzy set on ××(0,):

    [Fb1:] Θfb(ψ1,ψ2,γ)>0;

    [Fb2:] Θfb(ψ1,ψ2,γ)=1 if and only if ψ1=ψ2;

    [Fb3:] Θfb(ψ1,ψ2,γ)=Θfb(ψ2,ψ1,γ);

    [Fb4:] Θfb(ψ1,ψ3,b(γ+β))Θfb(ψ1,ψ2,γ)Θfb(ψ2,ψ3,β) γ,β0;

    [Fb5:] Θfb(ψ1,ψ2,.):(0,)[0,1] is left continuous.

    The notion of a Fms in the sense of George and Veeramani [16] can be obtained by taking b=1 in the above definition.

    Example 1.1. For a Bms (,Θb,), define a mapping Θfb:××(0,)[0,1] by

    Θfb(ψ1,ψ2,γ)=γγ+db(ψ1,ψ1).

    Then (,Θfb,) is a Fbms.

    Following Grabiec [15], the notions of G-Cauchyness and completeness are defined as follows:

    Definition 1.2. [15]

    (i) If for a sequence {ψn} in a Fbms (,Θfb,), there is ψ such that

    limnΘfb(ψn,ψ,γ)=1,γ>0,

    then {ψn} is said to be convergent.

    (ii) If for a sequence {ψn} in a Fbms (,Θfb,), limnΘfb(ψn,ψn+q,γ)=1 then {ψn} is a G-Cauchy sequence for all γ>0 and positive integer q.

    (iii) A Fbms is G-complete if every G-Cauchy sequence is convergent.

    Definition 1.3. [30] Let B be any nonempty subset of a Fms (,Θfb,) and γ>0, then we define FΘfb(ϱ1,B,γ), the fuzzy distance between an element ϱ1 and the subset B, as follows:

    FΘfb(ϱ1,B,γ)=sup{Θf(ϱ1,ϱ2,γ):ϱ2B}.

    Note that FΘfb(ϱ1,B,γ)=FΘfb(B,ϱ1,α).

    Lemma 1.1. [31] Consider a Fbms (,Θfb,) and let CB() be the collection of closed bounded subsets of . If ACB() then ψA if and only if FΘfb(A,ψ,γ)=1γ>0.

    Definition 1.4. [31] Let (,Θfb,) be a Fbms. Define HFΘfb on ˆC0()׈C0()×(0,) by

    HFΘfb(A,B,γ)=min{ infψAFΘfb(ψ,B,γ),infϱBFΘfb(A,ϱ,γ)},

    for all A,B^C0() and γ>0.

    For Geraghty type contractions, follow [33] to define a class FΘb of all functions β:[0,)[0,1b) for b1, as

    FΘb={β:[0,)[0,1b)|limnβ(γn)=1blimnγn=0}. (1.1)

    Lemma 1.2. [31] Let (,Θfb,) be a G-complete Fbms. If ψ,ϱ and for a function βFΘfb

    Θfb(ψ,ϱ,β(Θfb(ψ,ϱ,γ))γ)Θfb(ψ,ϱ,γ),

    then ψ=ϱ.

    Lemma 1.3. [31] Let (^C0(),HFΘfb,) be a Hfbms where (Θfb,) is a Fbm on . If for all A,B^C0(), for each ψA and for γ>0 there exists ϱψB, satisfying FΘfb(ψ,B,γ)=Θfb(ψ,ϱψ,γ), then

    HFΘfb(A,B,γ)Θfb(ψ,ϱψ,γ).

    In this section, we develop some fixed point results by using the idea of a Hfbms. Furthermore, an example is also presented for a deeper understanding of our results.

    Recall that, given a multivalued mapping Ξ:ˆC0(), a point ψ is said to be a fixed point of Ξ if ψΞψ.

    Theorem 2.1. Let (,Θfb,) be a G-complete Fbms and (^C0(),HFΘfb,) be a Hfbms. Let Ξ:^C0() be a Mvp satisfying

    HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)Θfb(ψ,ϱ,γ), (2.1)

    for all ψ,ϱ, where βFΘfb as defined in (1.1). Then Ξ has a fixed point.

    Proof. Choose {ψn} for ψ0 as follows: Let ψ1 such that ψ1Ξψ0 by the application of Lemma 1.3, we can choose ψ2Ξψ1 such that for all γ>0,

    Θfb(ψ1,ψ2,γ)HFΘfb(Ξψ0,Ξψ1,γ).

    By induction, we have ψr+1Ξψr satisfying

    Θfb(ψr,ψr+1,γ)HFΘfb(Ξψr1,Ξψr,γ)rN.

    By the application of (2.1) and Lemma 1.3, we have

    Θfb(ψr,ψr+1,γ)HFΘfb(Ξψr1,Ξψr,γ)Θfb(ψr1,ψr,γβ(Θfb(ψr1,ψr,γ)))HFΘfb(Ξψr2,Ξψr1,γβ(Θfb(ψr1,ψr,γ)))Θfb(ψr2,ψr1,γβ(Θfb(ψr1,ψr,γ))β(Θfb(ψr2,ψr1,γ)))HFΘfb(Ξψ0,Ξψ1,γβ(Θfb(ψr1,ψr,γ))β(Θfb(ψr2,ψr1,γ))β(Θfb(ψ1,ψ2,γ)))Θfb(ψ0,ψ1,γβ(Θfb(ψr1,ψr,γ))β(Θfb(ψr2,ψr1,γ))β(Θfb(ψ0,ψ1,γ))). (2.2)

    For any qN, writing q(γq)=γq+γq++γq and using [Fb4] repeatedly,

    Θfb(ψr,ψr+q,γ)Θfb(ψr,ψr+1,γqb)Θfb(ψr+1,ψr+2,γqb2)Θfb(ψr+2,ψr+3,γqb3)Θfb(ψr+q1,ψr+q,γqbq).

    Using (2.2) and [Fb5], we get

    Θfb(ψr,ψr+q,γ)Θfb(ψ0,ψ1,γqbβ(Θfb(ψr1,ψr,γ))β(Θfb(ψr2,ψr1,γ))β(Θfb(ψ0,ψ1,γ)))Θfb(ψ0,ψ1,γqb2β(Θfb(ψr,ψr+1,γ))β(Θfb(ψr1,ψr,γ))β(Θfb(ψ0,ψ1,γ)))Θfb(ψ0,ψ1,γqb3β(Θfb(ψr+1,ψr+2,γ))β(Θfb(ψr,ψr+1,γ))β(Θfb(ψ0,ψ1,γ)))Θfb(ψ0,ψ1,γqbqβ(Θfb(ψr+q2,ψr+q1,γ))β(Θfb(ψr+q3,ψr+q2,γ))β(Θfb(ψ0,ψ1,γ))).

    That is,

    Θfb(ψr,ψr+q,γ)Θfb(ψ0,ψ1,br1γq)Θfb(ψ0,ψ1,br1γq)Θfb(ψ0,ψ1,br1γq)Θfb(ψ0,ψ1,br1γq).

    Taking limit as r, we get

    limnΘfb(ψr,ψr+q,γ)=111=1.

    Hence, {ψr} is G-Cauchy sequence. By the G-completeness of , there exists ϕ such that

    Θfb(ϕ,Ξϕ,γ)Θfb(ϕ,ψr+1,γ2b)Θfb(ψr+1,Ξϕ,γ2b)Θfb(ϕ,ψr+1,γ2b)HFΘfb(Ξψr,Ξϕ,γ2b)Θfb(ϕ,ψr+1,γ2b)Θfb(ψr,ϕ,γ2bβ(Θfb(ψr,ϕ,γ)))1asr.

    By Lemma 1.1, it follows that ϕΞϕ. That is, ϕ is a fixed point for Ξ.

    Remark 2.1.

    (1) If we take β(Θfb(ψ,ϱ,γ))=k with bk<1, we get Theorem 3.1 of [31].

    (2) By setting ^C0()= the mapping Ξ:^C0() becomes a single valued and we get Theorem 3.1 of [32]. Notice that when Ξ is a singlevalued map, Ξψ becomes a singleton set and the fact that HFΘfb(Ξψ,Ξϱ,γ)=Θfb(Ξψ,Ξϱ,γ) indicates that the fixed point will be unique as proved in [32].

    (3) Set b=1 and ^C0()= and let k(0,1) be such that β(Θfb(ψ,ϱ,γ))=k then we get the main result of [15].

    The next example illustrates Theorem 2.1.

    Example 2.1. Let =[0,1] and define a G-complete Fbms by

    Θfb(ψ,ϱ,γ)=γγ+(ψϱ)2,

    with b1. For βFb, define a mapping Ξ:^C0() by

    Ξψ={{0}if ψ=0,{0,β(Θfb(ψ,ϱ,γ))ψ2}otherwise.

    For \psi = \varrho ,

    \begin{align*} \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma) = 1 = & \Theta_{fb}(\psi, \varrho, \gamma). \end{align*}

    If \psi\neq \varrho , then following cases arise.

    For \psi = 0 and \varrho\in(0, 1] , we have

    \begin{align*} &\quad\mathcal{H}_{F_{\Theta_{fb}}}(\Xi0, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma) \\ & = \min \lbrace \ \inf\limits_{a \in \Xi0} F_{\Theta_{fb}}( a, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma), \inf\limits_{b \in \Xi\varrho} F_{\Theta_{fb}}( \Xi0, b, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma)) \rbrace\\ & = \min \Bigg\lbrace \inf\limits_{a \in \Xi0} F_{\Theta_{fb}}\left( a, \left\lbrace 0, \frac{\sqrt{\beta(\Theta_{fb}(\psi, \varrho, \gamma))}\varrho}{2}\right\rbrace , \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma\right), \inf\limits_{b \in \Xi\varrho} F_{\Theta_{fb}}\left( \left\lbrace 0\right\rbrace , b, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma\right) \Bigg\rbrace \\ & = \min \Biggl \lbrace \inf \left\lbrace F_{\Theta_{fb}}\left( 0, \lbrace0, \frac{\sqrt{\beta(\Theta_{fb}(\psi, \varrho, \gamma))}\varrho}{2} \rbrace , \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma\right) \right\rbrace, \\ &\quad\quad\quad\inf \left\lbrace F_{\Theta_{fb}}\left( \lbrace 0\rbrace , 0, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma\right), F_{\Theta_{fb}}\left( \lbrace 0\rbrace , \frac{\sqrt{\beta(\Theta_{fb}(\psi, \varrho, \gamma))}\varrho}{2}, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma\right) \right\rbrace \Biggr \rbrace \\ & = \min \Biggl \lbrace \inf \left\lbrace \sup \left\lbrace F_{\Theta_{fb}}( 0, 0, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma), F_{\Theta_{fb}}( 0, \frac{\sqrt{\beta(\Theta_{fb}(\psi, \varrho, \gamma))}\varrho}{2}, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma)\right\rbrace \right\rbrace, \\ &\quad\quad\quad \inf \left\lbrace F_{\Theta_{fb}}( 0, 0, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma), F_{\Theta_{fb}}( 0, \frac{\sqrt{\beta(\Theta_{fb}(\psi, \varrho, \gamma))}y}{2}, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma)\right\rbrace \Biggr\rbrace\\ & = \min \Biggl \lbrace \inf \left\lbrace \sup \left\lbrace 1, \dfrac{\gamma}{\gamma+\frac{\varrho^{2}}{4}}\right\rbrace \right\rbrace, \inf \left\lbrace 1, \dfrac{\gamma}{\gamma+\frac{\varrho^{2}}{4}}\right\rbrace \Biggr\rbrace\\ & = \min \Biggl \lbrace \inf \left\lbrace 1 \right\rbrace, \dfrac{\gamma}{\gamma+\frac{\varrho^{2}}{4}} \Biggr\rbrace = \min \left\lbrace 1, \dfrac{\gamma}{\gamma+\frac{\varrho^{2}}{4}} \right\rbrace = \dfrac{\gamma}{\gamma+\frac{\varrho^{2}}{4}}. \end{align*}

    It follows that

    \mathcal{H}_{F_{\Theta_{fb}}}(\Xi0, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma) > \Theta_{fb}(0, \varrho, \gamma) = \dfrac{\gamma}{\gamma+\varrho^{2}}.

    For \psi and \varrho\in(0, 1] , after simplification we have

    \begin{align*} \mathcal{H}_{F_{\Theta_{fb}}}(S(\psi), \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma)& = \min\left\lbrace \sup\left\lbrace \dfrac{\gamma}{\gamma+\frac{\psi^{2}}{4}}, \dfrac{\gamma}{\gamma+\frac{(\psi-\varrho)^{2}}{4}}\right\rbrace , \sup\left\lbrace \dfrac{\gamma}{\gamma+\frac{\varrho^{2}}{4}}, \dfrac{\gamma}{\gamma+\frac{(\psi-\varrho)^{2}}{4}}\right\rbrace\right\rbrace \\ & \geq\dfrac{\gamma}{\gamma+\frac{(\psi-\varrho)^{2}}{4}} > \dfrac{\gamma}{\gamma+(\psi-\varrho)^{2}} = \Theta_{fb}(\psi, \varrho, \gamma). \end{align*}

    Thus, for all cases, we have

    \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma) \geq \Theta_{fb}(\psi, \varrho, \gamma).

    Since all conditions of Theorem 2.1 are satisfied and 0 is a fixed point of \Xi .

    Theorem 2.2. Let (\mho, \Theta_{fb}, *) be a G -complete Fbms with b\geqslant 1 and (\hat{C_{0}} (\mho), \mathcal{H}_{F_{\Theta_{fb}}}, *) be a Hfbms. Let \Xi \colon \mho \rightarrow \hat{C_{0}} (\mho) be a Mvp satisfying

    \begin{equation} \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma) \geq \min \left\lbrace \dfrac{F_{\Theta_{fb}}( \varrho, \Xi\varrho, \gamma) \left[ 1+F_{\Theta_{fb}}( \psi, \Xi\psi, \gamma) \right] }{1+\Theta_{fb}( \psi, \varrho, \gamma) }, \Theta_{fb}( \psi, \varrho, \gamma) \right\rbrace, \end{equation} (2.3)

    for all \psi, \varrho \in \mho , where \beta\in \mathbb{F}_{\Theta_{fb}} as given in (1.1). Then \Xi has a fixed point.

    Proof. Choose \lbrace \psi_{n}\rbrace for \psi_{0} \in \mho as follows: Let \psi_{1} \in \mho such that \psi_{1} \in \Xi\psi_{0} . By the application of Lemma 1.3 we can choose \psi_{2} \in \Xi \psi_{1} such that

    \begin{equation*} \Theta_{fb}(\psi_{1}, \psi_{2}, \gamma)\geqslant\mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{0}, \Xi \psi_{1}, \gamma), \quad \forall\; \gamma > 0.\\ \end{equation*}

    By induction, we have \psi_{r+1} \in \Xi \psi_{r} satisfying

    \begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{r-1}, \Xi \psi_{r}, \gamma), \quad \forall\; r\; \in\mathbb{N}. \\ \end{equation*}

    By the application of (2.3) and Lemma 1.3 we have

    \begin{align*} &\quad\Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) \geq \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{r-1}, \Xi \psi_{r}, \gamma) \notag\\ &\geq \min \Biggl\lbrace \dfrac{F_{\Theta_{fb}}\left( \psi_{r}, \Xi \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right) \left[ 1+F_{\Theta_{fb}}\left( \psi_{r-1}, \Xi \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right) \right] }{1+\Theta_{fb}\left( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right)}, \notag\\ &\quad \quad\quad\Theta_{fb}\left( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right) \Biggr\rbrace \notag\\ &\geq \min \Biggl\lbrace \dfrac{\Theta_{fb}\left( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right) \left[ 1+\Theta_{fb}\left( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right) \right] }{1+\Theta_{fb}\left( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right) }, \notag\\ &\quad\quad\quad\quad \Theta_{fb}\left( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right) \Biggr\rbrace, \notag\\ &\Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) \geq \min \left\lbrace \Theta_{fb}\left( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right), \Theta_{fb}\left( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right)\right\rbrace. \end{align*} (2.4)

    If

    \begin{align*} &\quad \min \Bigg\lbrace \Theta_{fb}\left( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right), \Theta_{fb}\left( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right) \Bigg\rbrace\\ & = \Theta_{fb}\left( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\right), \end{align*}

    then (2.4) implies

    \begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) \geq \Theta_{fb}\Bigl( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr). \end{equation*}

    The result is obvious by Lemma 1.2.

    If

    \begin{align*} &\quad\min \Bigg\lbrace \Theta_{fb}\Bigl( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigr( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigg\rbrace \\ & = \Theta_{fb}\Bigr( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigl), \end{align*}

    then from (2.4) we have

    \begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)& \geq \Theta_{fb}\Big( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Big)\\ &\geq \Theta_{fb}\Big( \psi_{r-2}, \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))\beta(\Theta_{fb}(\psi_{r-2}, \psi_{r-1}, \gamma))}\Big) \\ & \vdots \\ &\geqslant \Theta_{fb}\Big( \psi_{0}, \psi_{1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))\beta(\Theta_{fb}(\psi_{r-2}, \psi_{r-1}, \gamma))\ldots \beta(\Theta_{fb}(\psi_{0}, \psi_{1}, \gamma)}\Big). \end{align*}

    The rest of the proof can be done by proceeding same as in Theorem 2.1.

    Remark 2.2.

    (1) If we take \beta(\Theta_{fb}(\psi, \varrho, \gamma)) = k with bk < 1 , we get Theorem 3.2 of [31].

    (2) By taking b = 1 and for some 0 < k < 1 setting \beta(\Theta_{fb}(\psi, \varrho, \gamma)) = k in Theorem 2.2, we get the main result of [30].

    Theorem 2.3. Let (\mho, \Theta_{fb}, *) be a G -complete Fbms with b\geqslant 1 and (\hat{C_{0}} (\mho), \mathcal{H}_{F_{\Theta_{fb}}}, *) be a Hfbms. Let \Xi \colon \mho \rightarrow \hat{C}_{0}(\mho) be a Mvp satisfying

    \begin{align} &\quad\mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma) \\ &\geq \min \left\lbrace \dfrac{F_{\Theta_{fb}}( \varrho, \Xi\varrho, \gamma) \left[ 1+F_{\Theta_{fb}}( \psi, \Xi\psi, \gamma)+F_{\Theta_{fb}}( \varrho, \Xi\psi, \gamma) \right] }{2+\Theta_{fb}( \psi, \varrho, \gamma) }, \Theta_{fb}( \psi, \varrho, \gamma) \right\rbrace \end{align} (2.5)

    for all \psi, \varrho \in \mho , where \beta\in \mathbb{F}_{\Theta_{fb}} , the class of functions defined in (1.1). Then \Xi has a fixed point.

    Proof. Choose \lbrace \psi_{n}\rbrace for \psi_{0} \in \mho as follows: Let \psi_{1} \in \mho such that \psi_{1} \in \Xi\psi_{0} . by the application of Lemma 1.3 we can choose \psi_{2} \in \Xi \psi_{1} such that

    \begin{equation*} \Theta_{fb}(\psi_{1}, \psi_{2}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{0}, \Xi \psi_{1}, \gamma), \quad \forall\; \gamma > 0.\\ \end{equation*}

    By induction, we have \psi_{r+1} \in \Xi \psi_{r} satisfying

    \begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{r-1}, \Xi \psi_{r}, \gamma), \quad \forall\; r\; \in\mathbb{N}. \\ \end{equation*}

    By the application of (2.5) and Lemma 1.3, we have

    \begin{align} &\quad\Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) \geq \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{r-1}, \Xi \psi_{r}, \gamma)\\ &\geq \min \Biggl\lbrace \dfrac{F_{\Theta_{fb}}( \psi_{r}, \Xi \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 1+F_{\Theta_{fb}}( \psi_{r-1}, \Xi \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})+F_{\Theta_{fb}}( \psi_{r}, \Xi \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{2+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ &\quad\quad\quad \Theta_{fb}\Bigl( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Biggr\rbrace \\ &\geq \min \Biggl\lbrace \dfrac{\Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 1+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})+\Theta_{fb}( \psi_{r}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{2+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ &\quad\quad\quad \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Biggr\rbrace \\ &\geq \min \left\lbrace \dfrac{\Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 1+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})+1 \right] }{2+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right\rbrace \\ &\geq \min \left\lbrace \dfrac{\Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 2+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{2+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right\rbrace \\ &\geq \min \left\lbrace \Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right\rbrace. \end{align} (2.6)

    If

    \begin{align*} &\quad\min \Bigg\lbrace \Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Bigg\rbrace\\ & = \Theta_{fb}\Bigg( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigg), \end{align*}

    then (2.6) implies

    \begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) \geq \Theta_{fb}\Bigl( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{equation*}

    and the proof follows by Lemma 1.2.

    If

    \begin{align*} &\quad\min \left\lbrace \Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right\rbrace\\ & = \Theta_{fb}\Bigl( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr).\nonumber \end{align*}

    Then from (2.6) we have

    \begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) &\geq \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})\\ &\geqslant \ldots \geqslant \Theta_{fb}\Biggl( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))\beta(\Theta_{fb}(\psi_{r-2}, \psi_{r-1}, \gamma))\ldots \beta(\Theta_{fb}(\psi_{0}, \psi_{1}, \gamma))}\Biggr). \end{align*}

    The rest of the proof is same as in Theorem 2.1.

    Remark 2.3. Theorem 3.3 of [31] becomes a special csae of the above theorem by setting \beta(\Theta_{fb}(\psi, \varrho, \gamma)) = k where k is chosen such that bk < 1 .

    Theorem 2.4. Let (\mho, \Theta_{fb}, *) be a G -complete Fbms with b\geqslant 1 and (\hat{C_{0}} (\mho), \mathcal{H}_{F_{\Theta_{fb}}}, *) be a Hfbms. Let \Xi \colon \mho \rightarrow \hat{C}_{0}(\mho) be a multivalued mapping satisfying

    \begin{align} &\quad\mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma) \\ &\geq \min \Biggl\lbrace \dfrac{F_{\Theta_{fb}}( \psi, \Xi\psi, \gamma) \left[ 1+F_{\Theta_{fb}}( \varrho, \Xi\varrho, \gamma) \right] }{1+F_{\Theta_{fb}}( \Xi\psi, \Xi\varrho, \gamma) }, \dfrac{F_{\Theta_{fb}}( \psi, \Xi\varrho, \gamma) \left[ 1+F_{\Theta_{fb}}( \psi, \Xi\psi, \gamma) \right] }{1+\Theta_{fb}( \psi, \varrho, \gamma) }, \\ &\quad\quad\quad \dfrac{F_{\Theta_{fb}}( \psi, \Xi\psi, \gamma) \left[ 2+F_{\Theta_{fb}}( \psi, \Xi\varrho, \gamma) \right] }{1+\Theta_{fb}( \psi, \Xi\varrho, \gamma)+F_{\Theta_{fb}}( \varrho, \Xi\psi, \gamma) }, \Theta_{fb}( \psi, \varrho, \gamma) \Biggr \rbrace, \end{align} (2.7)

    for all \psi, \varrho \in \mho , where \beta \in \mathbb{F}_{fb} , the class of functions defined in (1.1). Then \Xi has a fixed point.

    Proof. In the same way as Theorem 2.1, we have

    \begin{equation*} \Theta_{fb}(\psi_{1}, \psi_{2}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{0}, \Xi \psi_{1}, \gamma), \quad \forall\; \gamma > 0. \end{equation*}

    By induction, we obtain \psi_{r+1} \in \Xi \psi_{r} satisfying

    \begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{r-1}, \Xi \psi_{r}, \gamma), \quad \forall\; n\; \in\mathbb{N}. \end{equation*}

    Now, by (2.7) together with Lemma 1.3, we have

    \begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)& \geq \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{r-1}, \Xi \psi_{r}, \gamma) \\ &\geq \min \Biggl\lbrace \dfrac{F_{\Theta_{fb}}( \psi_{r-1}, \Xi \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 1+F_{\Theta_{fb}}( \psi_{r}, S_{\psi_{r}}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{1+F_{\Theta_{fb}}( \Xi \psi_{r-1}, \Xi \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ &\quad \quad \dfrac{F_{\Theta_{fb}}( \psi_{r}, \Xi \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 1+F_{\Theta_{fb}}( \psi_{r-1}, \Xi \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{1+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ &\quad \quad\dfrac{F_{\Theta_{fb}}( \psi_{r-1}, \Xi \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 2+F_{\Theta_{fb}}( \psi_{r-1}, \Xi \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{1+F_{\Theta_{fb}}( \psi_{r-1}, \Xi \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})+F_{\Theta_{fb}}( \psi_{r}, \Xi \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ &\quad \quad \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Biggr\rbrace\\ &\geq \min \Biggl\lbrace \dfrac{\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 1+\Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{1+\Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ &\quad \quad \dfrac{\Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 1+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{1+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ & \quad \quad \dfrac{\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 2+\Theta_{fb}( \psi_{r-1}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{1+\Theta_{fb}( \psi_{r-1}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})+\Theta_{fb}( \psi_{r}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ & \quad\quad \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Biggr\rbrace, \\ \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geq & \min \left\lbrace \Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right\rbrace.\end{align*} (2.8)

    If

    \begin{align*} &\quad\min \Bigg\lbrace \Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Bigg\rbrace \\ & = \Theta_{fb}\Bigr( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigl), \end{align*}

    then (2.8) implies

    \begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) \geq \Theta_{fb}\Bigl( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr). \end{equation*}

    Then the proof follows by Lemma 1.2.

    If

    \begin{align*} &\quad\min \Bigg\lbrace \Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Bigg\rbrace \\ & = \Theta_{fb}\Bigl( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{align*}

    then from (2.6) we have

    \begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) &\geq \Theta_{fb}\Bigl( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & \vdots\\ & \geqslant \Theta_{fb}\bigl( \psi_{0}, \psi_{1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))\beta(\Theta_{fb}(\psi_{r-2}, \psi_{r-1}, \gamma))\ldots \beta(\Theta_{fb}(\psi_{0}, \psi_{1}, \gamma))}\Bigr). \end{align*}

    The rest of the proof is similar as in Theorem 2.1.

    Remark 2.4. Again by taking \beta(\Theta_{fb}(\psi, \varrho, \gamma)) = k with kb < 1 , we get Theorem 3.4 of [31].

    Theorem 2.5. Let (\mho, \Theta_{fb}, *) be a G -complete Fbms with b\geqslant 1 and (\hat{C_{0}} (\mho), \mathcal{H}_{F_{\Theta_{fb}}}, *) be a Hfbms. Let \Xi \colon \mho \rightarrow \hat{C}_{0}(\mho) be a Mvp satisfying

    \begin{align} &\quad\mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma)\\ &\geq \dfrac{ \min \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \gamma). \Theta_{fb}(\psi, \varrho, \gamma) , \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\psi, \gamma). \mathcal{H}_{F_{\Theta_{fb}}}(\varrho, \Xi\varrho, \gamma) \rbrace )}{ \max \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\psi, \gamma), \mathcal{H}_{F_{\Theta_{fb}}}(\varrho, \Xi\varrho, \gamma)\rbrace}, \end{align} (2.9)

    for all \psi, \varrho \in \mho , where \beta \in \mathbb{F}_{fb}. Then \Xi has a fixed point.

    Proof. In the same way as Theorem 2.1, we have

    \begin{equation*} \Theta_{fb}(\psi_{1}, \psi_{2}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{0}, \Xi \psi_{1}, \gamma), \quad \forall\; \gamma > 0. \end{equation*}

    By induction we have \psi_{r+1} \in \Xi \psi_{r} satisfying

    \begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{r-1}, \Xi \psi_{r}, \gamma), \quad \forall\; n\; \in\mathbb{N}. \\ \end{equation*}

    Now by (2.7) together with Lemma 1.3 and some obvious simplification step, we have

    \begin{align} &\quad\Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) \geq \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{r-1}, \Xi \psi_{r}, \gamma) \\ &\geq \dfrac{\min \Biggl\lbrace \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}).\Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}). \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})\Biggr \rbrace}{\max \lbrace \Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}), \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \rbrace}\\ &\geq \dfrac{\Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}). \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})}{\max \lbrace \Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}), \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \rbrace} \end{align} (2.10)

    If

    \begin{align*} &\quad\max \lbrace \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \rbrace \\ & = \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{align*}

    then (2.10) implies

    \Theta_{fb}(\psi_{r}, \psi_{r+1}, t)\geq \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)

    Then the proof follows by Lemma 1.2.

    If

    \begin{align*} &\quad\max \lbrace \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \rbrace\\ & = \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{align*}

    then from (2.10) we have

    \begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) &\geq \Theta_{fb}\Bigr( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & \vdots\\ & \geqslant \Theta_{fb}\Bigl( \psi_{0}, \psi_{1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))\beta(\Theta_{fb}(\psi_{r-2}, \psi_{r-1}, \gamma))\ldots \beta(\Theta_{fb}(\psi_{0}, \psi_{1}, \gamma))}\Bigr). \end{align*}

    The remaining proof follows in the same way as in Theorem 2.1.

    Theorem 2.6. Let (\mho, \Theta_{fb}, *) be a G -complete Fbms with b\geqslant 1 and (\hat{C_{0}} (\mho), \mathcal{H}_{F_{\Theta_{fb}}}, *) be a Hfbms. Let \Xi \colon \mho \rightarrow \hat{C}_{0}(\mho) be a Mvp satisfying

    \begin{equation} \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma)\geq \Gamma_{1}(\psi, \varrho, \gamma)* \Gamma_{2}(\psi, \varrho, \gamma), \end{equation} (2.11)

    where,

    \begin{align} \left. \begin{cases} \Gamma_{1}(\psi, \varrho, \gamma)& = \min \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \gamma) , \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\psi, \gamma), \mathcal{H}_{F_{\Theta_{fb}}}(\varrho, \Xi\varrho, \gamma), \Theta_{fb}(\psi, \varrho, \gamma) \rbrace\\ \Gamma_{2}(\psi, \varrho, \gamma)& = \max \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\varrho, \gamma) , \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \varrho, \gamma) \rbrace \end{cases} \right\}, \end{align} (2.12)

    for all \psi, \varrho \in \mho , and \beta \in \mathbb{F}_{fb}. Then \Xi has a fixed point.

    Proof. In the same way as Theorem 2.1, we have

    \begin{equation*} \Theta_{fb}(\psi_{1}, \psi_{2}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{0}, \Xi \psi_{1}, \gamma), \quad \forall\; \gamma > 0.\\ \end{equation*}

    By induction we have \psi_{r+1} \in \Xi \psi_{r} satisfying

    \begin{align} \mathcal{H}_{F_{\Theta_{fb}}}(\psi_{r}, \psi_{r+1}, \gamma)& = F_{\theta}(\Xi\psi_{r-1}, \Xi\psi_{r}, \gamma)\\ &\geq \Gamma_{1}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)* \Gamma_{2}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \end{align} (2.13)

    Now,

    \begin{align} &\quad\Gamma_{1}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & = \min \Biggl \lbrace \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\Xi\psi_{r-1}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r-1}, \Xi\psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \\ &\quad\quad\quad \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\Biggr \rbrace \\ & = \min \Biggl \lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \\ & \quad\quad\quad \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\Biggr \rbrace. \\&\quad\Gamma_{1}(\psi_{r-1}, \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \\ & = \min \Biggl\lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \biggr\rbrace. \end{align} (2.14)
    \begin{align} &\quad\Gamma_{2}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigl) \\ & = \max \Bigl\lbrace \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r-1}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\Xi\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\Bigr\rbrace\\ & = \max \Bigl\lbrace \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \Theta_{fb}\Bigl(\psi_{r}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigr\rbrace \\ & = \max \Bigl\lbrace \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , 1 \Bigr\rbrace. \notag \\ \\ & \ \ \ \ \ \ \ \ \ \Gamma_{2}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) = 1. \end{align} (2.15)

    Using (2.14) and (2.15) in (2.13) we have

    \begin{align} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)&\geq \min \Bigl\lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigr\rbrace *1, \\ \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)&\geq \min \Bigl\lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigr\rbrace. \end{align} (2.16)

    If

    \begin{align*} &\min \Bigg\lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigg\rbrace \\ & = \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigl), \end{align*}

    then (2.16) implies

    \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geq \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigl)

    Then the proof follows by Lemma 1.2

    If

    \begin{align*} &\quad\min \Bigl\lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigr\rbrace\\ & = \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{align*}

    then from (2.16), we have

    \begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) &\geq \Theta_{fb}\Bigl( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & \vdots \\ &\geqslant \Theta_{fb}\Bigl( \psi_{0}, \psi_{1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))\beta(\Theta_{fb}(\psi_{r-2}, \psi_{r-1}, \gamma))\ldots \beta(\Theta_{fb}(\psi_{0}, \psi_{1}, \gamma))}\Big). \end{align*}

    The remaining proof is similar as in Theorem 2.1.

    Remark 2.5. If we set \hat{C_{0}} (\mho) = \mho the map \Xi becomes a singlevalued and we get Theorem 3.11 of [32]. Again as stated in Remark 2.1, the corresponding fixed point will be unique.

    Theorem 2.7. Let (\mho, \Theta_{fb}, *) be a G -complete Fbms with b\geqslant 1 and (\hat{C_{0}} (\mho), \mathcal{H}_{F_{\Theta_{fb}}}, *) be a Hfbms. Let \Xi \colon \mho \rightarrow \hat{C}_{0}(\mho) be a Mvp satisfying

    \begin{align} \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma)\geq \dfrac{\Gamma_{1}(\psi, \varrho, \gamma)* \Gamma_{2}(\psi, \varrho, \gamma)}{\Gamma_{3}(\psi, \varrho, \gamma)}, \end{align} (2.17)

    where

    \begin{align} \left. \begin{cases} \Gamma_{1}(\psi, \varrho, \gamma)& = \min \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \gamma). \Theta_{fb}(\psi, \varrho, \gamma) , \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\psi, \gamma). \mathcal{H}_{F_{\Theta_{fb}}}(\varrho, \Xi\varrho, \gamma) \rbrace\\ \Gamma_{2}(\psi, \varrho, \gamma)& = \max \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\psi, \gamma). \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\varrho, \gamma) , \mathcal{H}_{F_{\Theta_{fb}}}(\varrho, \Xi\psi, \gamma))^{2}\rbrace\\ \Gamma_{3}(\psi, \varrho, \gamma)& = \max \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\psi, \gamma), \mathcal{H}_{F_{\Theta_{fb}}}(\varrho, \Xi\varrho, \gamma)\rbrace \end{cases} \right\}, \end{align} (2.18)

    for all \psi, \varrho \in \mho , and \beta \in \mathbb{F}_{fb}. Then \Xi has a fixed point.

    Proof. In the same way as Theorem 2.1, we have

    \begin{equation*} \Theta_{fb}(\psi_{1}, \psi_{2}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{0}, \Xi \psi_{1}, \gamma), \quad \forall\; \gamma > 0. \end{equation*}

    By induction we have \psi_{r+1} \in \Xi \psi_{r} satisfying

    \begin{align} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)& = \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi_{r-1}, \Xi\psi_{r}, \gamma)\\ &\geq \dfrac{\Gamma_{1}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})* \Gamma_{2}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})}{\Gamma_{3}(\psi, \varrho, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})}. \end{align} (2.19)
    \begin{align} &\quad\Gamma_{1}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \\ & = \min \Biggl \lbrace \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\Xi\psi_{r-1}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr).F_{\theta}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \\ &\quad\quad\quad \mathcal{H}_{F_{\Theta_{fb}}}(\psi_{r-1}, \Xi\psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}). \mathcal{H}_{F_{\Theta_{fb}}}(\psi_{r}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Biggr \rbrace \\ & = \min \Biggl \lbrace \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}).\Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \\ &\quad\quad\quad\Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr). \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Biggr \rbrace \\ & = \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr).\Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr). \end{align} (2.20)

    Similarly,

    \begin{align} &\quad\Gamma_{2}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & = \max \Biggl \lbrace \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r-1}, \Xi\psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r-1}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \\ &\quad\quad\quad \Bigl(\mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r}, \Xi\psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\Bigr)^{2} \Biggr \rbrace\\ & = \max \Biggl \lbrace \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \\ &\quad\quad\quad \Bigl(\Theta_{fb}\Bigl(\psi_{r}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\Bigr)^{2} \Biggr \rbrace\\ & = \max \Biggl\lbrace \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , 1 \Biggr\rbrace. \end{align}

    It follows that

    \begin{equation} \Gamma_{2}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) = 1. \end{equation} (2.21)
    \begin{align} &\quad\Gamma_{3}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & = \max\Big\lbrace \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r-1}, \Xi\psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Big), \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Big\rbrace \\ & = \max \Big\lbrace \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Big) \Big\rbrace. \end{align} (2.22)

    Using (2.20), (2.21) and (2.22) in (2.19), we have

    \begin{align} \Theta_{fb}(\psi_{r}, \psi_{r+1}, t)\geq \dfrac{ \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}).\Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})}{\max \lbrace \Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}), \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \rbrace}. \end{align} (2.23)

    If

    \begin{align*} &\quad\max \Bigg \lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigg\rbrace \\ & = \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{align*}

    then (2.23) implies

    \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geq \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr).

    It is obvious by Lemma 1.2.

    If

    \begin{align*} &\quad\max \Bigg\lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigg\rbrace \\ & = \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{align*}

    then from (2.23), we have

    \begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geq \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr). \end{equation*}

    Continuing in this way, we will get

    \begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, t)&\geq \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(F_{\theta}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & \vdots\\ & \geq \Theta_{fb}\Bigl(\psi_{0}, \psi_{1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma)).\beta(\Theta_{fb}(\psi_{n-2}, \psi_{r-1}, \gamma))\ldots\beta(\Theta_{fb}(\psi_{0}, \psi_{1}, \gamma))}\Bigr). \end{align*}

    The rest of the proof follows in the same way as in Theorem 2.1.

    Remark 2.6. By setting \hat{C_{_0}} (\mho) = \mho , the mapping \Xi \colon \mho \rightarrow \hat{C_{_0}} (\mho) becomes a self (singlevalued) mapping and we get Theorem 3.13 of [32].

    An application of Theorem 2.1 is presented here. Recall that the space of all continuous realvalued functions on [0, 1] is denoted by C([0, 1], \mathbb{R}) . Now set \mho = C([0, 1], \mathbb{R}) and define the G -complete Fbm on \mho by

    \Theta_{fb} (\psi, \varrho, \gamma) = e^{-\dfrac{ {\sup\limits_{u \in[0, 1]}}\vert \psi(u)-\varrho(u) \vert^{2}} {\gamma}}, \quad \forall \;\; \gamma > 0 \;\; \text{and} \; \; \psi, \varrho \in \mho.

    Consider

    \begin{equation} \psi(u)\in \int_0^u G(u, v, \psi(v))dv + h(u) \quad \text{for all} \;\; u, v \in[0, 1], \quad \text{whereas}\quad h, \psi\in C([0, 1], \mathbb{R}). \end{equation} (3.1)

    Here G \colon [0, 1]\times[0, 1] \times \mathbb{R}\rightarrow P_{cv}(\mathbb{R}) is multivalued function and P_{cv}(\mathbb{R}) represents the collections of convex and compact subsets of \mathbb{R} . Moreover, for each \psi in C([0, 1], \mathbb{R}) the operator G(\cdot, \cdot, \psi) is lower semi-continuous.

    For the integral inclusion given in (3.1), define a multivalued operator S: \mho\rightarrow \hat{C_{0}} (\mho) by

    S\psi(u) = \Biggl\lbrace w \in \mho : w \in \int_0^u G(u, v, \psi(v))dv + h(u), \quad u \in [0, 1]\Biggr\rbrace.

    Now for arbitrary \psi \in (C([0, 1], \mathbb{R}) , denote G_\psi(u, v) = G(u, v, \psi(v)) where u, v\in [0, 1] . For the multivalued map G_\psi : [0, 1]\times [0, 1]\rightarrow P_{cv}(\mathbb{R}) , by Michael selection theorem [34], there exists a continuous selection g_\psi :[0, 1] \times [0, 1]\rightarrow \mathbb{R} such that g_\psi(u, v)\in G_\psi(u, v) for each u, v\in [0, 1] . It follows that

    \int_0^u g_\psi(u, v)dv + h(u) \in S\psi(u).

    Since g_\psi is continuous on [0, 1]\times [0, 1] and h is continuous on [0, 1] , therefore both g_\psi and h are bounded realvalued functions. It follows that, the operator S\psi is nonempty and S\psi \in \hat{C_{0}} (\mho) .

    With the above setting, the upcoming outcome shows the existence of a solution of the integral inclusion (3.1).

    Theorem 3.1. Let \mho = C([0, 1], \mathbb{R}) and define the multivalued operator S: \mho \rightarrow \hat{C_{0}} (\mho) by

    S\psi(u) = \Biggl\lbrace w \in \mho : w \in \int_0^u G(u, v, \psi(v))dv + h(u), \quad u \in [0, 1]\Biggr\rbrace,

    where h:[0, 1]\rightarrow \mathbb{R} is continuous and the map G:[0, 1]\times [0, 1]\times \mathbb{R}\rightarrow P_{cv}(\mathbb{R}) is defined in such a way that for every \psi\in C([0, 1], \mathbb{R}) , the operator G(\cdot, \cdot, \psi) is lower semi-continuous. Assume further that the given terms are satisfied:

    (i) There exists a continuous mapping f \colon [0, 1]\times [0, 1]\rightarrow [0, \infty) such that

    \mathcal{H}_{F_{\Theta_{fb}}}( G(u, v, \psi(v))-G(u, v, \varrho(v))\leq f^{2}(u, v)\vert \psi(v)-\varrho(v)\vert^{2},

    for each \psi, \varrho \in \mho and u, v\in [0, 1] .

    (ii) There exists \beta \in \mathbb{F}_{\Theta 2} , such that

    { \sup\limits_{u \in[0, 1]}}\int_0^u f^{2}(u, v)dv \leq \beta({\Theta_{fb}}(\psi, \varrho, \gamma)) .

    Then (3.1) has a solution in \mho .

    Proof. We will show that the operator S satisfies the conditions of Theorem 2.1. In particular we prove (2.1) as follows:

    Let \psi, \varrho \in \mho be such that q\in S\psi . As stated earlier, by selection theorem there is g_\psi(u, v)\in G_\psi(u, v) = G(u, v, \psi(v)) for u, v \in [0, 1] such that

    q(u) = \int_0^u g_\psi(u, v)dv+h(u), \quad u\in [0, 1].

    Further, the condition (ⅰ) ensures that there is some g(u, v)\in G_\varrho(u, v) such that

    \vert g_\psi(u, v)-g(u, v)\le f^{2}(u, v)\vert \psi(v)-\varrho(v)\vert^{2}, \quad\forall\, u, v\in [0, 1].

    Now consider the multivalued operator T defined as follows:

    T(u, v) = G_\varrho(u, v)\cap \left\lbrace w\in \mathbb{R} : \left\vert g_\psi(u, v)-w\right\vert\le f^{2}(u, v)\vert \psi(v)-\varrho(v)\vert^{2}\right\rbrace.

    Since, by construction, T is lower semi-continuous, it follows again by the selection theorem that there is continuous function g_\varrho(u, v):[0, 1]\times [0, 1]\rightarrow \mathbb{R} such that for each u, v \in [0, 1] , g_\varrho(u, v) \in T(u, v) .

    Thus, we have

    r(u) = \int_0^u g_\varrho(u, v)dv+h(u)\, \in \int_0^u G(u, v, \varrho(v))dv+h(u), \quad u\in [0, 1].

    Therefore, for each u\in [0, 1] we get

    \begin{align*} e^{-\dfrac{ {\sup\limits_{t \in[0, 1]}}\vert q(u)- r(u)) \vert^{2}}{\beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma}}& \geq e^{-\dfrac{ {\sup\limits_{u \in[0, 1]}}\int_0^u \vert g_{\psi}(u, v)-g_{\varrho}(u, v) \vert^{2} dv}{\beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma}}\\ & \geq e^{-\dfrac{ {\sup\limits_{u \in[0, 1]}}\int_0^u f^{2}(u, v) \vert \psi(v)-\varrho(v) \vert^{2} dv}{\beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma}}\\ & \geq e^{-\dfrac{\vert \psi(v)-\varrho(v) \vert^{2} {\sup\limits_{u \in[0, 1]}}\int_0^u f^{2}(u, v) dv}{\beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma}}\\ & \geq e^{-\dfrac{\beta({\Theta_{fb}}(\psi, \varrho, \gamma))\vert \psi(v)-\varrho(v) \vert^{2}}{\beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma}}\\ & = e^{-\dfrac{\vert \psi(v)-\varrho(v) \vert^{2}}{\gamma}}\\ & \geq e^{-\dfrac{ {\sup\limits_{v \in[0, 1]}}\vert \psi(v)-\varrho(v) \vert^{2}}{\gamma}}\\ & = \Theta_{fb}(\psi, \varrho, \gamma). \end{align*}

    This implies that,

    \Theta_{fb}(q, r, \beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma)\geq \Theta_{fb}(\psi, \varrho, \gamma).

    Interchanging the roles of \psi and \varrho , we get

    \mathcal{H}_{F_{\Theta_{fb}}}(S\psi, S\varrho, \beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma) \geq \Theta_{fb}( \psi, \varrho, \gamma).

    Hence, by Theorem 2.1, the operator S has a fixed point which in turn proves the existence of a solution of integral inclusion (3.1).

    In the present work, in the setting of a Hausdorff Fbms, some fixed fixed point results for multivalued mappings are established. The main result, that is, Theorem 2.1 shows that a multivalued mapping satisfying Geraghty type contractions on G -complete Hfbms has a fixed point. Example 2.1 illustrates the main result. Some other interesting fixed point theorems are also proved for the multivalued mappings satisfying certain contraction condition on G -complete Hfbms. The results proved in [30,31,32] turn out to be special cases of the results established in this work. For the significance of our results, an application is presented to prove the existence of solution of an integral inclusion.

    The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work grant code: 22UQU4331214DSR02

    The authors declare that they have no conflict of interest.



    [1] Akbas H, Canikli S (2019) Determinants of voluntary greenhouse gas emission disclosure: An empirical investigation on Turkish firms. Sustainability 11: 1–24. https://doi.org/10.3390/su11010107 doi: 10.3390/su11010107
    [2] Arellano M, Bond S (1991) Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev Econ Stud 58: 277–297. https://doi.org/10.2307/2297968 doi: 10.2307/2297968
    [3] Assidi S (2020) The effect of voluntary disclosures and corporate governance on firm value: A study of listed firms in France. Intl J Discl Governance 17: 168–179. https://doi.org/10.1057/s41310-020-00090-1 doi: 10.1057/s41310-020-00090-1
    [4] Barth M, McNichols M (1994) Estimation and market valuation of environmental liabilities relating to superfund sites. J Acc Res 32: 177–209. https://doi.org/10.2307/2491446 doi: 10.2307/2491446
    [5] Barth M, Beaver W, Landsman W (2001) The relevance of the value relevance literature for financial accounting standard-setting: Another view. J Acc Econ 31: 77–104. https://doi.org/10.1016/S0165-4101(01)00019-2 doi: 10.1016/S0165-4101(01)00019-2
    [6] Bebbington J, Larrinaga-Gonza'lez C (2008) Carbon trading: Accounting and reporting issues. Eur Acc Rev 17: 697–717. https://doi.org/10.1080/09638180802489162 doi: 10.1080/09638180802489162
    [7] Ben-Amar W, Chang M, McIlkenny P (2017) Board gender diversity and corporate response to sustainability initiatives: Evidence from the carbon disclosure Project. J Bus Eth 142: 369–383. https://doi.org/10.1007/s10551-015-2759-1 doi: 10.1007/s10551-015-2759-1
    [8] Bond S, Hoeffler A, Temple J (2001) GMM estimation of empirical growth models. Avaiable from: https://econpapers.repec.org/paper/nufeconwp/0121.htm.
    [9] Brouwers R, Schoubben, F, Van Hulle C (2018) The influence of carbon cost pass through on the link between carbon emission and corporate financial performance in the context of the European Union Emission Trading Scheme. Bus Strat Env 27: 1422–1436. https://doi.org/10.1002/bse.2193 doi: 10.1002/bse.2193
    [10] Campbell C, Sefcik S, Soderstrom N (2003) Disclosure of private information and reduction of uncertainty: Environmental liabilities in the chemical industry. Rev Quant Fin Acc 21: 349–278. https://doi.org/10.1023/B:REQU.0000004783.24513.ea doi: 10.1023/B:REQU.0000004783.24513.ea
    [11] CDP (2018) An introduction to 2018 scoring. Available from: https://www.cdp.net/en/guidance#1.
    [12] Chapple L, Clarkson P, Gold D (2013) The cost of carbon: Capital markets effects of the proposed emission trading scheme. J Acc Fin Bus Stud 49: 1–33. https://doi.org/10.1111/abac.12006 doi: 10.1111/abac.12006
    [13] Cheema-Fox A, Laperla R, Serafeim G, et al. (2021) Decarbonizing everything. Financ Anal J 77: 93–108. https://doi.org/10.1080/0015198X.2021.1909943 doi: 10.1080/0015198X.2021.1909943
    [14] Clarkson P, Li Y, Pinnuck M, et al. (2015) The valuation relevance of greenhouse gas emissions under the European Carbon Emissions Trading Scheme. Eur Acc Rev 24: 551–580. https://doi.org/10.1080/09638180.2014.927782 doi: 10.1080/09638180.2014.927782
    [15] Cotter J, Najah M (2011) Institutional investor influence on global climate change disclosure practices. Aust J Manage 37: 169–187. https://doi.org/10.1177/0312896211423945 doi: 10.1177/0312896211423945
    [16] Defra (2014) Measuring and reporting environmental impacts: Guidance for businesses. Available from: https://www.gov.uk/guidance/measuring-and-reporting-environmental-impacts-guidance-for-businesses.
    [17] Dhaliwal D, Li O, Tsang A, et al. (2011) Voluntary nonfinancial disclosure and the cost of equity capital: The initiation of corporate social responsibility reporting. Acc Rev 86: 59–100. https://doi.org/10.2308/accr.00000005 doi: 10.2308/accr.00000005
    [18] Dhar B, Sarkar S, Ayittey F (2020) Impact of social responsibility disclosure between implementation of green accounting and sustainable development: A study on heavily polluting companies in Bangladesh. Corporate Social Responsibility Env Manage 29: 71–78. https://doi.org/10.1002/csr.2174 doi: 10.1002/csr.2174
    [19] Elsayih J, Tang Q, Lan Y (2018) Corporate governance and carbon transparency: Australian experience. Acc Res J 31: 405–422. https://doi.org/10.1108/ARJ-12-2015-0153 doi: 10.1108/ARJ-12-2015-0153
    [20] Ganda F, Milondzo K (2018) The impact of carbon emissions on corporate financial performance: Evidence from the South African firms. Sustainability 10: 1–22. https://doi.org/10.3390/su10072398 doi: 10.3390/su10072398
    [21] Giannarakis G, Zafeiriou E, Sariannidis N, et al. (2016) Determinants of dissemination of environmental information: An empirical survey. J Bus Econ Manage 17: 749–764. https://doi.org/10.3846/16111699.2016.1195771 doi: 10.3846/16111699.2016.1195771
    [22] Griffin P (2017) The Carbon Majors Database: CDP Carbon Majors Report 2017. Available from: http://www.truevaluemetrics.org/DBpdfs/Carbon/CDP/CDP-Carbon-Majors-Report-2017.pdf.
    [23] Griffin P, Lont D, Sun E (2017) The relevance of greenhouse gas emission disclosures. Contemp Acc Res 34: 1265–1297. https://doi.org/10.1111/1911-3846.12298 doi: 10.1111/1911-3846.12298
    [24] Hahn R, Lülfs R (2014) Legitimizing negative aspects in GRI-oriented sustainability reporting: A qualitative analysis of corporate disclosure strategies. J Bus Eth 123: 401–420. https://doi.org/10.1007/s10551-013-1801-4 doi: 10.1007/s10551-013-1801-4
    [25] Hahn R, Reimsbach D, Schiemann F (2015) Organizations, climate change, and transparency: Reviewing the literature on carbon disclosure. Organ Env 28: 80–102. https://doi.org/10.1177/1086026615575542 doi: 10.1177/1086026615575542
    [26] Healy P, Palepu K (2001) Information asymmetry, corporate disclosure, and the capital markets: A review of the empirical disclosure literature. J Acc Econ 31: 405–440. https://doi.org/10.1016/S0165-4101(01)00018-0 doi: 10.1016/S0165-4101(01)00018-0
    [27] Hughes S, Anderson A, Golden S (2001) Corporate environmental disclosures: Are they useful in determining environmental performance? J Acc Public Policy 20: 217–240. https://doi.org/10.1016/S0278-4254(01)00031-X doi: 10.1016/S0278-4254(01)00031-X
    [28] Jaggi B, Allini A, Macchioni R, et al. (2018) Do investors find carbon information useful? Evidence from Italian firms. Rev Quant Financ Acc 50: 1031–1056. https://doi.org/10.1007/s11156-017-0653-x doi: 10.1007/s11156-017-0653-x
    [29] Johnston D, Sefcick E, Soderstrom N (2008) The value relevance of greenhouse gas emissions allowances: An exploratory study in the related United States SO2 Market. Eur Acc Rev 17: 747–764. https://doi.org/10.1080/09638180802481615 doi: 10.1080/09638180802481615
    [30] Kanwal M, Khan H (2021) Does carbon asset add value to clean energy market? Evidence from EU. Green Financ 3: 495–507. https://doi.org/10.3934/GF.2021023 doi: 10.3934/GF.2021023
    [31] Kim E, Lyon T (2011) When does institutional investor activism increase shareholder value?: The Carbon Disclosure Project. J Econ Anal Policy 11: 1–29. https://doi.org/10.2202/1935-1682.2676 doi: 10.2202/1935-1682.2676
    [32] Kim YB, An HT, Kim JD (2015) The effect of carbon risk on the cost of equity capital. J Clean Prod 93: 279–287. https://doi.org/10.1016/j.jclepro.2015.01.006 doi: 10.1016/j.jclepro.2015.01.006
    [33] Konar S, Cohen M (2001) Does the market value environmental performance? Rev Econ Stat 83: 281–289. https://doi.org/10.1162/00346530151143815 doi: 10.1162/00346530151143815
    [34] Krishnamurti C, Velayutham E (2018) The influence of board committee structures on voluntary disclosure of greenhouse gas emissions: Australian evidence. Pacific Basin Financ J 50: 65–81. https://doi.org/10.1016/j.pacfin.2017.09.003 doi: 10.1016/j.pacfin.2017.09.003
    [35] Lee S, Park Y, Klassen R (2015) Market responses to firms' voluntary climate change information disclosure and carbon communication. Corporate Social Resp Env Manage 22: 1–12. https://doi.org/10.1002/csr.1321 doi: 10.1002/csr.1321
    [36] Leszcensky L, Wolbring T (2019) How to deal with reverse causality using panel data? Recommendations for researchers based on a simulation study. Sociol Methods Res. https://doi.org/10.1177/0049124119882473 doi: 10.1177/0049124119882473
    [37] Li D, Huang M, Ren S, et al. (2018) Environmental legitimacy, green innovation, and corporate carbon disclosure: Evidence from CDP China 100. J Bus Eth 150: 1089–1104. https://doi.org/10.1007/s10551-016-3187-6 doi: 10.1007/s10551-016-3187-6
    [38] Li. Z, Liao G, Albitar K (2020) Does corporate environmental responsibility engagement affect firm value? The mediating role of corporate innovation. Bus Strat Env 29: 1045–1055. https://doi.org/10.1002/bse.2416 doi: 10.1002/bse.2416
    [39] Luo L, Tang Q (2014) Does voluntary carbon disclosure reflect underlying carbon performance? J Contemp Acc Econ 10: 191–205. https://doi.org/10.1016/j.jcae.2014.08.003 doi: 10.1016/j.jcae.2014.08.003
    [40] Luo L, Lan Y, Tang Q (2012) Corporate incentives to disclose carbon information: Evidence from the CDP global report. Int Financial Manage Acc 23: 93–120. https://doi.org/10.1111/j.1467-646X.2012.01055.x doi: 10.1111/j.1467-646X.2012.01055.x
    [41] Matisof D, Noonan D, O'Brian J (2013) Convergence in environmental reporting: Assessing Carbon Disclosure Project. Bus Strat Env 22: 285–305. https://doi.org/10.1002/bse.1741 doi: 10.1002/bse.1741
    [42] Matsumura E, Prakash R, Vera-Muñoz S (2014) Firm-Value effects of carbon emissions and carbon disclosures. Acc Rev 89: 695–724. https://doi.org/10.2308/accr-50629 doi: 10.2308/accr-50629
    [43] Roodman D (2009) How to do Xtabond?: An introduction to difference and system GMM in Stata. Stat J 9: 86–136. https://journals.sagepub.com/doi/pdf/10.1177/1536867X0900900106
    [44] Qian W, Schaltegger S (2017) Revisiting carbon disclosure and performance: Legitimacy and management views. British Acc Rev 49: 365–379. https://doi.org/10.1016/j.bar.2017.05.005 doi: 10.1016/j.bar.2017.05.005
    [45] Utomo M, Rahayu S, Kaujan K, et al. (2020) Environmental performance, environmental disclosure, and firm value: Empirical study of non-financial companies at Indonesia Stock Exchange. Green Financ 2: 100–113. https://doi.org/10.3934/GF.2020006 doi: 10.3934/GF.2020006
    [46] Velte P, Martin S, Lueg R (2020) Carbon performance and disclosure: A systematic review of governance-related determinants and financial consequences. J Cleaner Prod 254. https://doi.org/10.1016/j.jclepro.2020.120063 doi: 10.1016/j.jclepro.2020.120063
    [47] Wegener M, Elayan F, Felton S, et al. (2013) Factors influencing corporate environmental disclosures. Acc Persp 12: 53–73. https://doi.org/10.1111/1911-3838.12007 doi: 10.1111/1911-3838.12007
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4135) PDF downloads(530) Cited by(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog