Research article

How does the digital economy affect industrial eco-efficiency? Empirical evidence from China

  • Industry is a sector with large energy consumption and pollutant emissions. Improving industrial eco-efficiency is crucial to energy conservation and pollution reduction. The digital economy has developed rapidly in recent years. However, there is a lack of research on the specific relationship between the digital economy and industrial eco-efficiency. This study measured the industrial eco-efficiency of 30 provinces in China from 2010 to 2020, through a super-efficiency slack-based measure (SBM) considering desirable outputs. By constructing a two-way fixed effect model and a panel quantile model, this study explored the effects of the digital economy on industrial eco-efficiency on a national scale. Furthermore, this study conducted grouping regression and investigated the heterogeneous impacts of the digital economy on industrial eco-efficiency. Finally, this study built a spatial Durbin model to explore the spatial effects of digital economy on industrial eco-efficiency. According to the empirical results, this study yielded the following conclusions. First, the digital economy has a significantly positive effect on industrial eco-efficiency at the national scale, with diminishing marginal returns. Second, the effects of the digital economy on industrial eco-efficiency are significantly heterogeneous on a regional scale. For eastern regions, the effects of the digital economy on industrial eco-efficiency are significantly positive, while they are negative for western regions. Third, the spillover effect of the digital economy on industrial eco-efficiency is not significant in China, indicating that there is digital isolation.

    Citation: Lu Liu, Ming Liu. How does the digital economy affect industrial eco-efficiency? Empirical evidence from China[J]. Data Science in Finance and Economics, 2022, 2(4): 371-390. doi: 10.3934/DSFE.2022019

    Related Papers:

    [1] Thomas Torku, Abdul Khaliq, Fathalla Rihan . SEINN: A deep learning algorithm for the stochastic epidemic model. Mathematical Biosciences and Engineering, 2023, 20(9): 16330-16361. doi: 10.3934/mbe.2023729
    [2] Giorgos Minas, David A Rand . Parameter sensitivity analysis for biochemical reaction networks. Mathematical Biosciences and Engineering, 2019, 16(5): 3965-3987. doi: 10.3934/mbe.2019196
    [3] Tianfang Hou, Guijie Lan, Sanling Yuan, Tonghua Zhang . Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate. Mathematical Biosciences and Engineering, 2022, 19(4): 4217-4236. doi: 10.3934/mbe.2022195
    [4] Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445
    [5] Sheng-I Chen, Chia-Yuan Wu . A stochastic programming model of vaccine preparation and administration for seasonal influenza interventions. Mathematical Biosciences and Engineering, 2020, 17(4): 2984-2997. doi: 10.3934/mbe.2020169
    [6] Shengnan Zhao, Sanling Yuan . A coral reef benthic system with grazing intensity and immigrated macroalgae in deterministic and stochastic environments. Mathematical Biosciences and Engineering, 2022, 19(4): 3449-3471. doi: 10.3934/mbe.2022159
    [7] David F. Anderson, Tung D. Nguyen . Results on stochastic reaction networks with non-mass action kinetics. Mathematical Biosciences and Engineering, 2019, 16(4): 2118-2140. doi: 10.3934/mbe.2019103
    [8] Yangjun Ma, Maoxing Liu, Qiang Hou, Jinqing Zhao . Modelling seasonal HFMD with the recessive infection in Shandong, China. Mathematical Biosciences and Engineering, 2013, 10(4): 1159-1171. doi: 10.3934/mbe.2013.10.1159
    [9] Damilola Olabode, Jordan Culp, Allison Fisher, Angela Tower, Dylan Hull-Nye, Xueying Wang . Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China. Mathematical Biosciences and Engineering, 2021, 18(1): 950-967. doi: 10.3934/mbe.2021050
    [10] Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton . Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247
  • Industry is a sector with large energy consumption and pollutant emissions. Improving industrial eco-efficiency is crucial to energy conservation and pollution reduction. The digital economy has developed rapidly in recent years. However, there is a lack of research on the specific relationship between the digital economy and industrial eco-efficiency. This study measured the industrial eco-efficiency of 30 provinces in China from 2010 to 2020, through a super-efficiency slack-based measure (SBM) considering desirable outputs. By constructing a two-way fixed effect model and a panel quantile model, this study explored the effects of the digital economy on industrial eco-efficiency on a national scale. Furthermore, this study conducted grouping regression and investigated the heterogeneous impacts of the digital economy on industrial eco-efficiency. Finally, this study built a spatial Durbin model to explore the spatial effects of digital economy on industrial eco-efficiency. According to the empirical results, this study yielded the following conclusions. First, the digital economy has a significantly positive effect on industrial eco-efficiency at the national scale, with diminishing marginal returns. Second, the effects of the digital economy on industrial eco-efficiency are significantly heterogeneous on a regional scale. For eastern regions, the effects of the digital economy on industrial eco-efficiency are significantly positive, while they are negative for western regions. Third, the spillover effect of the digital economy on industrial eco-efficiency is not significant in China, indicating that there is digital isolation.





    [1] Anselin L, Gallo JL, Jayet H (2008) Spatial panel econometrics. In: The Econometrics of Panel Data: Fundamentals and Recent Developments in Theory and Practice, edited by Mátyás L and Sevestre P, Berlin, Heidelberg: Springer, 625–660. http://doi.org/10.1007/978-3-540-75892-1_19
    [2] Carlsson B (2004) The Digital Economy: what is new and what is not? Struct Chang Econ Dyn 15: 245–264. http://doi.org/10.1016/j.strueco.2004.02.001 doi: 10.1016/j.strueco.2004.02.001
    [3] Chen L, Cheng W, Ciuriak D, et al. (2019) The digital economy for economic development: Free flow of data and supporting policies. Policy Brief 4. SSRN Electron J https://ssrn.com/abstract=3413717
    [4] Chen P (2022) Is the digital economy driving clean energy development? -New evidence from 276 cities in China. J Clean Prod 372: 133783. http://doi.org/10.1016/j.jclepro.2022.133783 doi: 10.1016/j.jclepro.2022.133783
    [5] Cui J, Wang W, Chen Z, et al. (2022) How digitalization and financial development impact eco-efficiency? Evidence from China. Environ Sci Pollut Res, 1–15. http://doi.org/10.1007/s11356-022-22366-5 doi: 10.1007/s11356-022-22366-5
    [6] Dabbous A, Tarhini A (2021) Does sharing economy promote sustainable economic development and energy efficiency? Evidence from OECD countries. J Innov Knowl 6: 58–68. http://doi.org/10.1016/j.jik.2020.11.001 doi: 10.1016/j.jik.2020.11.001
    [7] Du J, Liang L, Zhu J (2010) A slacks-based measure of super-efficiency in data envelopment analysis: a comment. Eur J Oper Res 204: 694–697. http://doi.org/10.1016/j.ejor.2009.12.007 doi: 10.1016/j.ejor.2009.12.007
    [8] ElMassah S, Mohieldin M (2020) Digital transformation and localizing the sustainable development goals (SDGs). Ecol Econ 169: 106490. http://doi.org/10.1016/j.ecolecon.2019.106490 doi: 10.1016/j.ecolecon.2019.106490
    [9] Fujii H, Managi S (2013) Determinants of eco-efficiency in the Chinese industrial sector. J Environ Sci 25: S20–S26. http://doi.org/10.1016/s1001-0742(14)60619-7 doi: 10.1016/s1001-0742(14)60619-7
    [10] Han Y, Zhang F, Huang L, et al. (2021) Does industrial upgrading promote eco-efficiency? A panel space estimation based on Chinese evidence. Energy Policy 154: 112286. http://doi.org/10.1016/j.enpol.2021.112286 doi: 10.1016/j.enpol.2021.112286
    [11] Hickel J (2020) The sustainable development index: Measuring the ecological efficiency of human development in the anthropocene. Ecol Econ 167: 106331. http://doi.org/10.1016/j.ecolecon.2019.05.011 doi: 10.1016/j.ecolecon.2019.05.011
    [12] Kim B, Barua A, Whinston AB (2002) Virtual field experiments for a digital economy: a new research methodology for exploring an information economy. Decis Support Syst 32: 215–231. http://doi.org/10.1016/S0167-9236(01)00094-X doi: 10.1016/S0167-9236(01)00094-X
    [13] Koenker R, Bassett Jr G (1978) Regression quantiles. Econometrica 46: 33–50. http://doi.org/10.2307/1913643 doi: 10.2307/1913643
    [14] Krugman P (1991) Increasing returns and economic geography. J Polit Econ 99: 83–499. http://doi.org/10.1086/261763 doi: 10.1086/261763
    [15] Lee Lf, Yu J (2016) Identification of spatial Durbin panel models. J Appl Econ 31: 133–162. http://doi.org/10.1002/jae.2450 doi: 10.1002/jae.2450
    [16] LeSage J, Pace RK (2009) Introduction to spatial econometrics, Chapman and Hall/CRC. http://doi.org/10.1201/9781420064254
    [17] Li G (2019) Spatiotemporal Dynamics of Ecological Total-Factor Energy Efficiency and Their Drivers in China at the Prefecture Level. Int J Environ Res Public Health 16: 3480. http://doi.org/10.3390/ijerph16183480 doi: 10.3390/ijerph16183480
    [18] Li Y, Yang X, Ran Q, et al. (2021) Energy structure, digital economy, and carbon emissions: evidence from China. Environ Sci Pollut Res 28: 64606–64629. http://doi.org/10.1007/s11356-021-15304-4 doi: 10.1007/s11356-021-15304-4
    [19] Liu F, Zhang C, Zhang Y, et al. (2022a) A data-driven approach for the measurement and improvement of regional industrial ecological efficiency for carbon peaking and carbon neutralization. Environ Sci Pollut Res, 1–16. http://doi.org/10.1007/s11356-022-22699-1 doi: 10.1007/s11356-022-22699-1
    [20] Liu F, Zhou S, Yang Y, et al. (2022b) Research on Industrial Ecological Efficiency Evaluation and Improvement Countermeasures Based on Data-Driven Evaluations from 30 Provinces and Cities in China. Sustainability 14: 8665. http://doi.org/10.3390/su14148665 doi: 10.3390/su14148665
    [21] Luo K, Liu Y, Chen P-F, et al. (2022) Assessing the impact of digital economy on green development efficiency in the Yangtze River Economic Belt. Energy Econ 112: 106127. http://doi.org/10.1016/j.eneco.2022.106127 doi: 10.1016/j.eneco.2022.106127
    [22] Mardani A, Zavadskas EK, Streimikiene D, et al. (2017) A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew Sust Energ Rev 70: 1298–1322. http://doi.org/10.1016/j.rser.2016.12.030 doi: 10.1016/j.rser.2016.12.030
    [23] Mawson VJ, Hughes BR (2019) The development of modelling tools to improve energy efficiency in manufacturing processes and systems. J Manuf Syst 51: 95–105. http://doi.org/10.1016/j.jmsy.2019.04.008 doi: 10.1016/j.jmsy.2019.04.008
    [24] Moulton BR (2000) GDP and the Digital Economy: Keeping up with the Changes. In: Understanding the Digital Economy, edited by Erik B and Brian K, MIT Press, 34–48. Available from: http://196.43.179.6:8080/xmlui/bitstream/handle/123456789/429/Understanding-%20the-%20digital-%20economy%20-%20data-tools-%20and-%20research.pdf?sequence=1#page=41
    [25] Ng IC (2014) New business and economic models in the connected digital economy. J Revenue Pricing Manage 13: 149–155. http://doi.org/10.1057/rpm.2013.27 doi: 10.1057/rpm.2013.27
    [26] Panayotou T (1993) Empirical tests and policy analysis of environmental degradation at different stages of economic development. Available from http://www.ilo.org/public/libdoc/ilo/1993/93B09_31_engl.pdf
    [27] Park Y, Meng F, Baloch MA (2018) The effect of ICT, financial development, growth, and trade openness on CO2 emissions: an empirical analysis. Environ Sci Pollut Res 25: 30708–30719. http://doi.org/10.1007/s11356-018-3108-6 doi: 10.1007/s11356-018-3108-6
    [28] Raheem ID, Tiwari AK, Balsalobre-Lorente D (2020) The role of ICT and financial development in CO2 emissions and economic growth. Environ Sci Pollut Res 27: 1912–1922. http://doi.org/10.1007/s11356-019-06590-0 doi: 10.1007/s11356-019-06590-0
    [29] Reith CC, Guidry MJ (2003) Eco-efficiency analysis of an agricultural research complex. J Environ Manage 68: 219–229. http://doi.org/10.1016/S0301-4797(02)00161-5 doi: 10.1016/S0301-4797(02)00161-5
    [30] Ren XY, Yang SL (2013) An Empirical Research on the Relationship between Foreign Direct Investment and Carbon Dioxide Emission Intensity of China. AMR 807–809: 951–957. Available from: https://www.scientific.net/AMR.807-809.951
    [31] Schaltegger S, Sturm A (1990) Ökologische rationalität: ansatzpunkte zur ausgestaltung von ökologieorientierten managementinstrumenten. die Unternehmung 44: 273–290. Available from: https://www.jstor.org/stable/24180467
    [32] Shahnazi R, Dehghan Shabani Z (2019) The effects of spatial spillover information and communications technology on carbon dioxide emissions in Iran. Environ Sci Pollut Res 26: 24198–24212. http://doi.org/10.1007/s11356-019-05636-7 doi: 10.1007/s11356-019-05636-7
    [33] Shao L, Yu X, Feng C (2019) Evaluating the eco-efficiency of China's industrial sectors: A two-stage network data envelopment analysis. J Environ Manage 247: 551–560. http://doi.org/10.1016/j.jenvman.2019.06.099 doi: 10.1016/j.jenvman.2019.06.099
    [34] Sun H, Kporsu AK, Taghizadeh-Hesary F, et al. (2020) Estimating environmental efficiency and convergence: 1980 to 2016. Energy 208: 118224. http://doi.org/10.1016/j.energy.2020.118224 doi: 10.1016/j.energy.2020.118224
    [35] Swamy LN (2020) The Digital Economy: New Business Models and Key Features. Int J Res Eng Sci Manage 3: 118–122. Available from: http://journals.resaim.com/ijresm/article/view/33.
    [36] Tang C, Xue Y, Wu H, et al. (2022) How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China. Technol Soc 69: 101963. http://doi.org/10.1016/j.techsoc.2022.101963 doi: 10.1016/j.techsoc.2022.101963
    [37] Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46 (sup1): 234–240. Available from: https://www.urban-informatics.org/papers/tobler.pdf
    [38] Viet-Ngu H, Alauddin M (2012) Input-Orientated Data Envelopment Analysis Framework for Measuring and Decomposing Economic, Environmental and Ecological Efficiency: An Application to OECD Agriculture. Environ Resour Econ 51: 431–452. http://doi.org/10.1007/s10640-011-9506-6 doi: 10.1007/s10640-011-9506-6
    [39] Xu J, Huang D, He Z, et al. (2020) Research on the Structural Features and Influential Factors of the Spatial Network of China's Regional Ecological Efficiency Spillover. Sustainability 12: 3137. http://doi.org/10.3390/su12083137 doi: 10.3390/su12083137
    [40] Xu Y, Li T (2022) Measuring digital economy in China. Natl Account Rev 4: 251–272. http://doi.org/10.3934/nar.2022015 doi: 10.3934/nar.2022015
    [41] Xue Y, Tang C, Wu H, et al. (2022) The emerging driving force of energy consumption in China: Does digital economy development matter? Energy Policy 165: 112997. http://doi.org/10.1016/j.enpol.2022.112997 doi: 10.1016/j.enpol.2022.112997
    [42] Yi M, Liu Y, Sheng MS, et al. (2022) Effects of digital economy on carbon emission reduction: New evidence from China. Energy Policy 171: 113271. http://doi.org/10.1016/j.enpol.2022.113271 doi: 10.1016/j.enpol.2022.113271
    [43] Yuan B, Ren S, Chen X (2017) Can environmental regulation promote the coordinated development of economy and environment in China's manufacturing industry? –A panel data analysis of 28 sub-sectors. J Clean Prod 149: 11–24. http://doi.org/10.1016/j.jclepro.2017.02.065 doi: 10.1016/j.jclepro.2017.02.065
    [44] Zhang J, Lyu Y, Li Y, et al. (2022a) Digital economy: An innovation driving factor for low-carbon development. Environ Impact Assess Rev 96: 106821. http://doi.org/10.1016/j.eiar.2022.106821 doi: 10.1016/j.eiar.2022.106821
    [45] Zhang L, Mu R, Zhan Y, et al. (2022b) Digital economy, energy efficiency, and carbon emissions: Evidence from provincial panel data in China. Sci Total Environ 852: 158403. http://doi.org/10.1016/j.scitotenv.2022.158403 doi: 10.1016/j.scitotenv.2022.158403
    [46] Zhang N, Kong F, Yu Y (2015) Measuring ecological total-factor energy efficiency incorporating regional heterogeneities in China. Ecol Indic 51: 165–172. http://doi.org/10.1016/j.ecolind.2014.07.041 doi: 10.1016/j.ecolind.2014.07.041
    [47] Zhang RL, Liu XH (2021) Evaluating ecological efficiency of Chinese industrial enterprise. Renew Energy 178: 679–691. http://doi.org/10.1016/j.renene.2021.06.119 doi: 10.1016/j.renene.2021.06.119
  • This article has been cited by:

    1. Amy D. Hagerman, Bruce A. McCarl, Jianhong Mu, 2010, 9780471761303, 10.1002/9780470087923.hhs696
    2. Jose Faro, Bernardo von Haeften, Rui Gardner, Emilio Faro, A Sensitivity Analysis Comparison of Three Models for the Dynamics of Germinal Centers, 2019, 10, 1664-3224, 10.3389/fimmu.2019.02038
    3. S. Pant, B. Fabrèges, J-F. Gerbeau, I. E. Vignon-Clementel, A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis, 2014, 30, 20407939, 1614, 10.1002/cnm.2692
    4. H. T. Banks, Sava Dediu, Stacey L. Ernstberger, Franz Kappel, Generalized sensitivities and optimal experimental design, 2010, 18, 0928-0219, 10.1515/jiip.2010.002
    5. H.T. Banks, Kathleen Holm, Nathan C. Wanner, Ariel Cintrón-Arias, Grace M. Kepler, Jeffrey D. Wetherington, A mathematical model for the first-pass dynamics of antibiotics acting on the cardiovascular system, 2009, 50, 08957177, 959, 10.1016/j.mcm.2009.02.007
    6. H. T. Banks, S. Dediu, S. L. Ernstberger, Sensitivity functions and their uses in inverse problems, 2007, 15, 0928-0219, 10.1515/jiip.2007.038
    7. H.T. Banks, Jared Catenacci, Shuhua Hu, Stochastic vs. Deterministic Models for Systems with Delays, 2013, 46, 14746670, 61, 10.3182/20130925-3-FR-4043.00022
    8. H. Thomas Banks, Marie Davidian, John R. Samuels, Karyn L. Sutton, 2009, Chapter 11, 978-90-481-2312-4, 249, 10.1007/978-90-481-2313-1_11
    9. Chloe Audebert, Petru Bucur, Mohamed Bekheit, Eric Vibert, Irene E. Vignon-Clementel, Jean-Frédéric Gerbeau, Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling, 2017, 314, 00457825, 102, 10.1016/j.cma.2016.07.009
    10. Sanjay Pant, Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems, 2018, 15, 1742-5689, 20170871, 10.1098/rsif.2017.0871
    11. Chloe Audebert, Irene E. Vignon-Clementel, Model and methods to assess hepatic function from indocyanine green fluorescence dynamical measurements of liver tissue, 2018, 115, 09280987, 304, 10.1016/j.ejps.2018.01.008
    12. A comparison of computational efficiencies of stochastic algorithms in terms of two infection models, 2012, 9, 1551-0018, 487, 10.3934/mbe.2012.9.487
    13. H. T. Banks, M. Davidian, Shuhua Hu, Grace M. Kepler, E. S. Rosenberg, Modelling HIV immune response and validation with clinical data, 2008, 2, 1751-3758, 357, 10.1080/17513750701813184
    14. Tejas Ghadiyali, Kalpesh Lad, Jayesh Dhodiya, 2018, Chapter 6, 978-981-10-6601-6, 51, 10.1007/978-981-10-6602-3_6
    15. Multiple endemic states in age-structured SIR epidemic models, 2012, 9, 1551-0018, 577, 10.3934/mbe.2012.9.577
    16. H. T. Banks, Jared Catenacci, Shuhua Hu, A Comparison of Stochastic Systems with Different Types of Delays, 2013, 31, 0736-2994, 913, 10.1080/07362994.2013.806217
    17. Nonlinear stochastic Markov processes and modeling uncertainty in populations, 2012, 9, 1551-0018, 1, 10.3934/mbe.2012.9.1
    18. Mohammad Munir, Generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test, 2018, 300, 00255564, 14, 10.1016/j.mbs.2018.03.014
    19. Angelie Reandelar Ferrolino, Victoria May Paguio Mendoza, 2019, 2192, 0094-243X, 060008, 10.1063/1.5139154
    20. D. F. Yusupov, G. Abdullayeva, O. Aliev, S. Hamrayeva, 2021, 2402, 0094-243X, 050002, 10.1063/5.0071987
    21. José Faro, Emilio Faro, 2022, Chapter 10, 978-1-0716-1735-9, 111, 10.1007/978-1-0716-1736-6_10
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2353) PDF downloads(76) Cited by(17)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog