
Citation: Jane Law. Exploring the Specifications of Spatial Adjacencies and Weights in Bayesian Spatial Modeling with Intrinsic Conditional Autoregressive Priors in a Small-area Study of Fall Injuries[J]. AIMS Public Health, 2016, 3(1): 65-82. doi: 10.3934/publichealth.2016.1.65
[1] | Baojun Song, Wen Du, Jie Lou . Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1651-1668. doi: 10.3934/mbe.2013.10.1651 |
[2] | Jiaxin Nan, Wanbiao Ma . Stability and persistence analysis of a microorganism flocculation model with infinite delay. Mathematical Biosciences and Engineering, 2023, 20(6): 10815-10827. doi: 10.3934/mbe.2023480 |
[3] | Longxing Qi, Shoujing Tian, Jing-an Cui, Tianping Wang . Multiple infection leads to backward bifurcation for a schistosomiasis model. Mathematical Biosciences and Engineering, 2019, 16(2): 701-712. doi: 10.3934/mbe.2019033 |
[4] | Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024 |
[5] | Guangming Qiu, Zhizhong Yang, Bo Deng . Backward bifurcation of a plant virus dynamics model with nonlinear continuous and impulsive control. Mathematical Biosciences and Engineering, 2024, 21(3): 4056-4084. doi: 10.3934/mbe.2024179 |
[6] | Zehan Liu, Daoxin Qiu, Shengqiang Liu . A two-group epidemic model with heterogeneity in cognitive effects. Mathematical Biosciences and Engineering, 2025, 22(5): 1109-1139. doi: 10.3934/mbe.2025040 |
[7] | Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś . Gompertz model with delays and treatment: Mathematical analysis. Mathematical Biosciences and Engineering, 2013, 10(3): 551-563. doi: 10.3934/mbe.2013.10.551 |
[8] | Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong . Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337 |
[9] | Ya-Dong Zhang, Hai-Feng Huo, Hong Xiang . Dynamics of tuberculosis with fast and slow progression and media coverage. Mathematical Biosciences and Engineering, 2019, 16(3): 1150-1170. doi: 10.3934/mbe.2019055 |
[10] | Haifeng Zhang, Jinzhi Lei . Optimal treatment strategy of cancers with intratumor heterogeneity. Mathematical Biosciences and Engineering, 2022, 19(12): 13337-13373. doi: 10.3934/mbe.2022625 |
The harmful use of alcohol causes a large disease, social and economic burden in societies. In 2012, about 3.3 million deaths, or $ 5.9\% $ of all global deaths, were attributable to alcohol consumption. Alcohol consumption can have an impact not only on the incidence of diseases, injuries and other health conditions, but also on the course of disorders and their outcomes in individuals [1]. According to a research report by the Shanghai Institute of Environmental Economics, the number of patients due to alcoholism has increased by 28.5 times, and the number of deaths has increased by 30.6 times in the past seven years [2]. Thus, it is very important to study drinking behavior.
Recently, many authors have studied mathematical models of drinking [3,4,5,6,7,8,9]. Bani et al. [3] studied the influence of environmental factors on college alcohol drinking patterns. Mulone et al. [4] developed a two-stage (four compartments) model for youths with serious drinking problems and their treatment, and the stability of all the equilibria was obtained. Mushayabasa et al. [5] formulated a deterministic model for evaluating the impact of heavy alcohol drinking on the reemerging gonorrhea epidemic. Lee et al. [6] studied the optimal control intervention strategies in low- and high-risk problem drinking populations. Mubayi et al. [7] studied the impact of relative residence times on the distribution of heavy drinkers in highly distinct environments and found that alcohol consumption is a function of social dynamics, environmental contexts, individuals' preferences and family history. Huo, Chen and Xiang [8] introduced a more realistic binge drinking model with time delay, in which time delay is used to represent the time lag of the immunity against drinking. Xiang, Liu and Huo [9] proposed a new SAIRS alcoholism model with birth and death on complex heterogeneous networks.
Media coverage is one of the effective ways to control alcoholism or infectious diseases, many authors have studied alcoholism or epidemic models with media coverage [10,11,12,13,14]. Cui et al. [10] developed a three dimensional compartmental model to investigate the impact of media coverage to the spread and control of infectious diseases. Pawelek et al. [11] studied the impact of twitter on influenza epidemics. Huo and Zhang [12] introduced a more realistic mathematical influenza model including dynamics of Twitter, which might reduce and increase the spread of influenza. Huo and Zhang [13] formulated a novel alcoholism model which involved impact of Twitter and investigated the occurrence of backward, forward bifurcation and Hopf bifurcation. Huo and Yang [14] introduced a novel SEIS epidemic model with the impact of media. Above results show that media coverage can regard as a good indicator in controlling the emergence and spread of the epidemic disease or alcoholism. Many scholars have done a lot of researches on drinking or infectious diseases with or without media coverage [15,16,17,18,19,20,21,22].
Alcoholism can be defined as a pattern of alcohol use that compromises the health and safety of oneself and others. There are a variety of treatment methods currently available, such as behavioral treatments, medications and mutual-support Groups [23]. The goal of a person pursuing treatment is to abstain from alcohol or to cut back on drinking. Many people have studied the epidemic or alcoholism models with treatment [24,25,26].
Motivated by the above [13,14], we set up a new alcoholism model with treatment and effect of Twitter in this paper. We derive the basic reproductive number of the model and study the stability of our model. Furthermore, we investigate the occurrence of backward and forward bifurcation.
The organization of this paper is as follows: In Section 2, we present a new alcoholism model with treatment and effect of Twitter. In Section 3, we derive the basic reproductive number and study the stability of all equilibria. We also study the occurrence of backward and forward bifurcation. In Section 4, we perform some numerical simulations to illustrate and extend our main results. Sensitivity analysis and some discussion are given in last section.
The total population in this model is divided into four compartments: $ S(t) $, $ L(t) $, $ H(t) $, $ R(t) $. $ S(t) $ represents the number of moderate drinkers, that is, the people who do not drink or drink within daily and weekly limits [13]. $ L(t) $ represents the number of light problem drinkers, that is, the drinkers who drink beyond daily or weekly ceiling [13]. $ H(t) $ represents the number of heavy problem drinkers, that is, the drinkers who drink far more than daily and weekly limits [13]. $ R(t) $ represents the number of quitting drinkers, that is, the people who quit problem drinking by treatment permanently. $ T(t) $ represents the number of messages that Twitter provide about alcoholism at time t. The total number of population at time t is given by
$ N(t) = S(t)+L(t)+H(t)+R(t). $ |
The population flowing among those compartments is shown in the following diagram (Figure 1).
The diagram leads to the following system of ordinary differential equations:
$ {dSdt=Λ+qH−βSHe−αT−α1S,dLdt=βSHe−αT−ρL−α1L,dHdt=ρL−γH−qH−(α1+α2)H,dRdt=γH−α1R,dTdt=μ1S+μ2L+μ3H+μ4R−τT. $ | (2.1) |
Where all the parameters are positive constants and $ \Lambda $ is the recruitment rate of the population. $ \alpha_{1} $ is the natural death rate. $ \alpha_{2} $ is the alcoholism-related death rate. $ \beta $ is the rate of transmission between moderate drinkers and heavy problem drinkers, and it is reduced by a factor $ e^{-\alpha T} $ due to the behavior change of the public after reading information about alcoholism. $ \alpha $ is the coefficient that determines how effective the drinking information can reduce the transmission rate. $ \tau $ is outdated-rate of tweets. $ \rho $ is the transmission rate from the light problem drinkers to the heavy problem drinkers. After treatment, the transfer rate of the heavy problem drinkers to the moderate drinkers is $ q $, the transfer rate of the heavy problem drinkers to the quitting drinkers is $ \gamma $. $ \mu_{i}(i = 1, 2, 3, 4 $) are the rates that moderate drinkers, light problem drinkers, heavy problem drinkers and quitting drinkers may tweet about alcoholism during an alcoholism occasion, respectively.
Adding the first four equations of system (2.1), we have
$ \frac{\mbox{d}N}{\mbox{d}t} = \frac{\mbox{d}S}{\mbox{d}t}+\frac{\mbox{d}L}{\mbox{d}t}+\frac{\mbox{d}H}{\mbox{d}t}+\frac{\mbox{d}R}{\mbox{d}t} = \Lambda-\alpha_{1}N-\alpha_{2}H\leq \Lambda-\alpha_{1}N. $ |
Then it follows that $ \underset{t\rightarrow\infty}{\lim} \sup N(t)\leq\frac{\Lambda}{\alpha_{1}} $.
According to the fifth equation of system (2.1), we obtain
$ \frac{\mbox{d}T}{\mbox{d}t} = \mu_{1}S+\mu_{2}L+\mu_{3}H+\mu_{4}R-\tau T\leq \frac{\Lambda (\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4})}{\alpha_{1}}-\tau T, $ |
then it follows that $ \underset{t\rightarrow\infty}{\lim}\sup T(t)\leq\frac{\Lambda (\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4})}{\alpha_{1}\tau} $, so the set is
$ Ω={(S,L,H,R,T)∈R5+:0≤S,L,H,R≤N≤Λα1,0≤T≤Λ(μ1+μ2+μ3+μ4)α1τ}. $ | (2.2) |
Therefore, we will consider the global stability of system (2.1) on the set $ \Omega $.
It is easy to see that system (2.1) always has a alcohol free equilibrium $ P_{0} = (S_{0}, L_{0}, H_{0}, R_{0}, T_{0}) $, where
$ S_{0} = \frac{\Lambda}{\alpha_{1}}, L_{0} = 0 , H_{0} = 0 , R_{0} = 0, T_{0} = \frac{\Lambda \mu_{1}}{\alpha_{1}\tau}. $ |
By applying the method of the next generation matrix in [27], we obtain the basic reproduction number $ R_{0} $. System (2.1) can be written as
$ \frac{\mbox{d}x}{\mbox{d}t} = F(x)-V(x), $ |
where $ x = (L, S, H, R, T)^{T} $,
$ F(x)=(βSHe−αT0000),and V(x)=(ρL+α1L−Λ−qH+βSHe−αT+α1S−ρL+qH+γH+(α1+α2)H−γH+α1R−μ1S−μ2L−μ3H−μ4R+τT). $ |
The Jacobian matrices of $ F(x) $ and $ V(x) $ at the alcohol free equilibrium $ P_{0} $ are
$ DF(P0)=(00Λβα1e−αμ1Λα1τ0000000000000000000000), $ |
and
$ DV(P0)=(ρ+α100000α1Λβα1e−αμ1Λα1τ−q00−ρ0α1+α2+q+γ0000−γα10−μ2−μ1−μ3−μ4τ). $ |
Therefore, the basic reproduction number $ R_{0} $ is
$ R0=Λβρe−αμ1Λα1τα1(α1+ρ)(α1+α2+q+γ). $ | (3.1) |
Theorem 1. When $ R_{0} < 1 $ and $ T(t)\geq\frac{\Lambda \mu_{1}}{\alpha_{1}\tau} $, the alcohol free equilibrium $ P_{0} $ of system (2.1) is globally asymptotically stable; When $ R_{0} < 1 $ and $ T(t) < \frac{\Lambda \mu_{1}}{\alpha_{1}\tau} $, the alcohol free equilibrium $ P_{0} $ of system (2.1) is locally asymptotically stable; When $ R_{0} > 1 $, the alcohol free equilibrium $ P_{0} $ of system (2.1) is unstable.
Proof. The characteristic equation of the system (2.1) at the alcohol free equilibrium $ P_{0} $ is
$ |λ+α10Λβα1e−αμ1Λα1τ−q000λ+(α1+ρ)−Λβα1e−αμ1Λα1τ000−ρλ+(α1+α2+q+γ)0000−γλ+α10−μ1−μ2−μ3−μ4λ+τ|=0. $ | (3.2) |
Therefore, Eq.(3.2) can be written as
$ (λ+τ)(λ+α1)2[(λ+(α1+ρ))(λ+(α1+α2+q+γ))−Λβρα1e−αμ1Λα1τ]=0. $ | (3.3) |
Therefore, the three eigenvalues of the Eq.(3.2) are $ \lambda_{1} = -\tau $, $ \lambda_{2} = -\alpha_{1} $, $ \lambda_{3} = -\alpha_{1} $, and the other eigenvalues are determined by the equation
$ (λ+(α1+ρ))(λ+(α1+α2+q+γ))−Λβρα1e−αμ1Λα1τ=0. $ | (3.4) |
Therefore, the Eq.(3.4) can be written as
$ λ2+λ(2α1+α2+q+γ+ρ)+(α1+ρ)(α1+α2+q+γ)(1−R0)=0. $ | (3.5) |
By Viete theorem, we have
$ \lambda_{4}+\lambda_{5} = -(2\alpha_{1}+\alpha_{2}+q+\gamma+\rho) \lt 0, $ |
and
$ \lambda_{4}\lambda_{5} = (\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)(1-R_{0}). $ |
Thus, when $ R_{0} < 1 $, the alcohol free equilibrium $ P_{0} $ is locally asymptotically stable; when $ R_{0} > 1 $, the alcohol free equilibrium $ P_{0} $ is unstable.
Define the Lyapunov function
$ M(S,L,H,R,T)=ρL(t)+(α1+ρ)H(t). $ |
It is clear that $ M(t)\geq0 $ and the equality holds if and only if $ L(t) = H(t) = 0 $. Differentiating $ M(S, L, H, R, T) $ and from the Eq.(2.2), we obtain $ S(t)\leq \frac{\Lambda}{\alpha_{1}} $. Therefore, when $ T(t)\geq \frac{\Lambda \mu_{1}}{\alpha_{1}\tau} $, we have
$ dM(S,L,H,R,T)dt=ρdL(t)dt+(α1+ρ)dH(t)dt=ρ(βSHe−αT−(α1+ρ)L)+(α1+ρ)(ρL−(α1+α2+γ+q)H)=[ρβSe−αT−(α1+ρ)(α1+α2+γ+q)]H≤[Λβρα1e−αμ1Λα1τ−(α1+ρ)(α1+α2+γ+q)]H=(α1+ρ)(α1+α2+γ+q)H[Λβρe−αμ1Λα1τα1(α1+ρ)(α1+α2+γ+q)−1]=(α1+ρ)(α1+α2+γ+q)H[R0−1]. $ | (3.6) |
It follows that $ M(S, L, H, R, T) $ is bounded and non-increasing. Thus, $ \underset{t\rightarrow \infty}{\lim}M(S, L, H, R, T) $ exists. Note that $ R_{0} < 1 $ guarantees that $ \frac{\mbox{d}M(S, L, H, R, T)}{\mbox{d}t}\leq 0 $ for all $ t\geq 0 $. Consequently, for system (2.1) there holds
$ \underset{t\rightarrow \infty}{\lim}L(t) = 0, \;\; \underset{t\rightarrow \infty}{\lim}H(t) = 0. $ |
Hence, by LaSalle's Invariance Principle [28], the alcohol free equilibrium is globally attractive. We show that the alcohol free equilibrium $ P_{0} $ is globally asymptotic stability when $ R_{0} < 1 $.
Theorem 2. (Ⅰ) When $ \theta = 0 $ and $ R_{0} > 1 $, the system (2.1) has a unique positive alcoholism equilibrium $ P_{0}^{*} $;
(Ⅱ)When $ \theta \neq 0 $ and $ R_{0} > \max \{R_{01}, 1\} $, the system (2.1) has a unique positive alcoholism equilibrium $ P_{1}^{*} $;
(Ⅲ)When $ R_{02} = R_{0} < \min \{R_{01}, 1\} $, the system (2.1) has a unique positive alcoholism equilibrium $ P_{2}^{*} $;
(Ⅳ)When $ R_{02} < R_{0} < \min \{R_{01}, 1\} $, the system (2.1) has two different positive alcoholism equilibria $ P_{3}^{*} $ and $ P_{4}^{*} $.
Proof. Assuming the right-hand sides of system (2.1) is $ 0 $, we have
$ {Λ+qH−βSHe−αT−α1S=0,βSHe−αT−ρL−α1L=0,ρL−γH−qH−(α1+α2)H=0,γH−α1R=0,μ1S+μ2L+μ3H+μ4R−τT=0. $ | (3.7) |
Let $ (S, L, H, R, T) = (S^{*}, L^{*}, H^{*}, R^{*}, T^{*}) $ be the solution of Eq.(3.7), we have
$ {Λ+qH∗−βS∗H∗e−αT∗−α1S∗=0,βS∗H∗e−αT∗−ρL∗−α1L∗=0,ρL∗−γH∗−qH∗−(α1+α2)H∗=0,γH∗−α1R∗=0,μ1S∗+μ2L∗+μ3H∗+μ4R∗−τT∗=0. $ | (3.8) |
By Eq.(3.8), we obtain
$ S∗=Λα1+[ρq−(α1+ρ)(α1+α2+γ+q)]H∗α1ρ, $ | (3.9) |
$ L∗=(α1+α2+γ+q)H∗ρ, $ | (3.10) |
$ R∗=γH∗α1, $ | (3.11) |
$ T∗=Λμ1α1τ+H∗α1ρτ[μ1qρ−μ1(α1+ρ)(α1+α2+q+γ)+α1μ2(α1+α2+q+γ)+α1μ3ρ+γμ4ρ]. $ | (3.12) |
Combine the above Eqs.(3.9)-(3.12) and the first equation of Eq.(3.8), we have
$ [1−θH∗R01]R0=e−θH∗, $ | (3.13) |
where
$ R01=Λρθ(α1+ρ)(α1+α2+q+γ)−ρq, $ | (3.14) |
and
$ θ=−α[μ1qρ−μ1(α1+ρ)(α1+α2+q+γ)+α1μ2(α1+α2+q+γ)+α1μ3ρ+γμ4ρ]α1ρτ. $ | (3.15) |
For the sake of simplicity, we define
$ R02=R01e1−R01. $ | (3.16) |
In what follows, we assume
$ F(H∗)=R0−R0R01θH∗−e−θH∗. $ | (3.17) |
Thus
$ F′(H∗)=θe−θH∗−R0R01θ, $ | (3.18) |
$ F″(H∗)=−θ2e−θH∗. $ | (3.19) |
The following work is to discuss the properties of Eq.(3.17).
(Ⅰ) When $ \theta = 0 $ and $ R_{0} > 1 $, the existence of the unique alcoholism equilibrium $ P^{*}_{0} $ of system (2.1) can be obtained by Eq.(3.13), as shown in line $ L_{4} $ of Figure 2, where
$ H∗0=Λρ(α1+ρ)(α1+α2+q+γ)−ρq(1−1R0),S∗0=Λα1−Λα1(1−1R0),L∗0=Λ(α1+α2+q+γ)(α1+ρ)(α1+α2+q+γ)−ρq(1−1R0),R∗0=Λγρα1[(α1+ρ)(α1+α2+q+γ)−ρq](1−1R0),T∗0=Λμ1α1τ+Λα1τ[(α1+ρ)(α1+α2+q+γ)−ρq][μ1qρ+α1μ3ρ+γμ4ρ+α1μ2(α1+α2+q+γ)−μ1(α1+ρ)(α1+α2+q+γ)](1−1R0). $ |
(Ⅱ) When $ \theta \neq0 $ and $ R_{0} > 1 $, we have $ F(0) = R_{0}-1 > 0 $ and $ F(\infty) = -\infty < 0 $. Assume that $ F^{'}(H^{*}) < \theta (1-\frac{R_{0}}{R_{01}}) $. Thus, when $ \theta > 0 $ and $ R_{0} > R_{01} $ or $ \theta < 0 $, we obtain $ F^{'}(H^{*}) < 0 $. Therefore, there is a unique positive solution for Eq.(3.17). Thus, the alcoholism equilibrium $ P^{*}_{1} = (S^{*}_{1}, L^{*}_{1}, H^{*}_{1}, R^{*}_{1}, T^{*}_{1}) $ can be obtained, as shown in regions $ \Omega_{A} $ and $ \Omega_{B} $ of Figure 2.
(Ⅲ) When $ \theta > 0 $ and $ R_{0} < 1 $, we have $ F(0) = R_{0}-1 < 0 $, $ F(\infty) = -\infty < 0 $ and $ F^{''}(H^{*}) < 0 $. Assume that $ F^{'}(H^{*}) = \theta e^{-\theta H^{*}}-\frac{R_{0}}{R_{01}}\theta = \theta (e^{-\theta H^{*}}-\frac{R_{0}}{R_{01}}) $. If $ F^{'}(H^{*}) = 0 $, Eq.(3.17) has the unique positive solution $ H^{*}_{2} = \frac{1}{\theta}\ln(\frac{R_{01}}{R_{0}}) $ when $ R_{0} < R_{01} $. Meanwhile, we also have
$ F(H_{2}^{*}) = R_{0}-\frac{R_{0}}{R_{01}}\theta H_{2}^{*}-e^{-\theta H_{2}^{*}} = 0. $ |
Therefore, we obtain $ R_{0} = R_{02} = R_{01} e^{(1-R_{01})} $. Thus, the alcoholism equilibrium $ P^{*}_{2} = (S^{*}_{2}, L^{*}_{2}, H^{*}_{2}, R^{*}_{2}, T^{*}_{2}) $ can be obtained, as shown in line $ L_{2} $ of Figure 2.
(Ⅳ) When $ R_{02} < R_{0} < 1 $, we have $ F(H_{2}^{*}) > 0 $. Eq.(3.17) has two different positive solutions $ H^{*}_{3} $ and $ H^{*}_{4} $, where $ H^{*}_{3} $ and $ H^{*}_{4} $ satisfy the following condition $ H^{*}_{3} < H^{*}_{2} < H^{*}_{4} $. Thus, the alcoholism equilibria $ P^{*}_{3} = (S^{*}_{3}, L^{*}_{3}, H^{*}_{3}, R^{*}_{3}, T^{*}_{3}) $ and $ P^{*}_{4} = (S^{*}_{4}, L^{*}_{4}, H^{*}_{4}, R^{*}_{4}, T^{*}_{4}) $ can be obtained, as shown in region $ \Omega_{E} $ of Figure 2.
Remark 1. For simplicity, the six curves $ (L_{i}, i = 1, 2, 3, 4, 5, 6) $ divide the space in which $ R_{0} $ and $ \theta $ are located into seven regions as shown in Figure 2.
$ L1:R0=R01(θ),withR0>1,L2:R0=R01(θ)e1−R01(θ),withR0<min{R01(θ),1},L3:θ=0,withR0<1,L4:θ=0,withR0>1,L5:R0=R01(θ)e1−R01(θ),withR01(θ)<R0<1,L6:R0=1. $ |
In this section, we study the local stability of the alcoholism equilibria $ P_{i}^{*}(i = 0, 1, 2, 3, 4) $. First we obtain the characteristic matrix of system (2.1) at the alcoholism equilibria $ P_{i}^{*}(i = 0, 1, 2, 3, 4) $, as follows
$ |λ+βH∗ie−αT∗i+α10βS∗ie−αT∗i−q0−αβS∗iH∗ie−αT∗i−βH∗ie−αT∗iλ+(α1+ρ)−βS∗ie−αT∗i0αβS∗iH∗ie−αT∗i0−ρλ+(α1+α2+q+γ)0000−γλ+α10−μ1−μ2−μ3−μ4λ+τ|=0. $ | (3.20) |
In order to simplify Eq.(3.20), we have
$ Φ=βe−αT∗i=α1(α1+ρ)(α1+α2+γ+q)e−αT∗iΛρe−Λαμ1α1τR0=α1(α1+ρ)(α1+α2+γ+q)eθH∗iΛρR0, $ |
$ ΦS∗i=(α1+ρ)(α1+α2+γ+q)ρ=ΛθR01+q. $ |
Then the characteristic equation can be rewritten as:
$ (λ+α1)G(λ)=0, $ | (3.21) |
$ G(λ)=λ4+a1(H∗i)λ3+a2(H∗i)λ2+a3(H∗i)λ+a4(H∗i)=0, $ | (3.22) |
where
$ a1(H∗i)=3α1+α2+q+γ+ρ+τ+H∗iΦ, $ | (3.23) |
$ a2(H∗i)=(2α1+α2+q+γ+ρ+τ)(α1+H∗iΦ)+(2α1+α2+q+γ+ρ)τ+αH∗i(ΛθR01+q)(μ2−μ1), $ | (3.24) |
$ a3(H∗i)=(2α1+α2+q+γ+ρ)(α1+H∗iΦ)τ+(α1+α2+q+γ)α1H∗iΦ+(α1+α2+γ)ρH∗iΦ+αH∗i(ΛθR01+q)[(2α1+α2+q+γ)(μ2−μ1)+ρ(μ3−μ1)], $ | (3.25) |
$ a4(H∗i)=τ(α1+ρ)(α1+α2+q+γ)[(α1+H∗iΦ)−α1(1+H∗iθ)]. $ | (3.26) |
Theorem 3. For system (2.1), we assume that $ \mu_{1} = \mu_{2} = \mu_{3} = \mu_{4} $.
(Ⅰ) When $ \theta = 0, \alpha_{2} = 0 $ and $ R_{0} > 1 $$ (i.e., L_{4}) $, the alcoholism equilibrium $ P_{0}^{*} $ is locally asymptotically stable;
(Ⅱ)When $ \theta \neq 0 $, $ R_{0} > \max\{1, R_{01}\} $$ (i.e., \Omega_{A} $, and $ \Omega_{B}) $, $ \Phi > \alpha_{1}\theta $ and $ \tau > \rho $, the alcoholism equilibrium $ P_{1}^{*} $ is locally asymptotically stable;
(Ⅲ)When $ R_{02} = R_{0} < \min\{1, R_{01}\} $$ (i.e., L_{2}) $, the alcoholism equilibrium $ P_{2}^{*} $ may be locally stable or not;
(Ⅳ)(ⅰ)When $ R_{02} < R_{0} < \min\{1, R_{01}\} $$ (i.e., \Omega_{E}) $, the alcoholism equilibrium $ P_{3}^{*} $ is unstable,
(ⅱ)When $ R_{02} < R_{0} < \min\{1, R_{01}\} $$ (i.e., \Omega_{E}) $ and $ \tau > \rho $, the alcoholism equilibrium $ P_{4}^{*} $ is locally asymptotically stable.
Proof. (Ⅰ)When $ \theta = 0 $, applying to the proof of (Ⅰ) of Theorem 2. We linearize the system (2.1) and evaluate the characteristic equation at the alcoholism equilibrium $ P_{0}^{*} $, and get
$ |λ+βH∗0e−αT∗0+α10βS∗0e−αT∗0−q0−αβS∗0H∗0e−αT∗0−βH∗0e−αT∗0λ+(α1+ρ)−βS∗0e−αT∗00αβS∗0H∗0e−αT∗00−ρλ+(α1+q+γ)0000−γλ+α10−μ1−μ1−μ1−μ1λ+τ|=0. $ |
Thus, the characteristic equation can be rewritten as:
$ (λ+α1)(λ+τ)G1(λ)=0, $ |
$ G1(λ)=λ3+b1λ2+b2λ+b3=0, $ |
where
$ b1=3α1+q+γ+ρ+H∗0Φ,b2=(2α1+q+γ+ρ)(α1+H∗0Φ),b3=[(α1+ρ)(α1+γ)+α1q]H∗0Φ. $ |
It is clear that $ b_{1} > 0 $, $ b_{2} > 0 $ and $ b_{3} > 0 $. Applying Routh$ - $Hurwitz [13], by assuming that $ B = b_{1}b_{2}-b_{3} $. Then, we obtain
$ B=(2α1+q+γ+ρ)(H∗0Φ)2+(7α12+5α1q+5α1γ+5α1ρ+q2+2qγ+2qρ+γ2+γρ+ρ2)(H∗0Φ)+6α13+5α12q+5α12γ+5α12ρ+α1q2+2α1qγ+2α1qρ+α1γ2+2α1γρ+α1ρ2>0 $ |
Hence, the alcoholism equilibrium $ P_{0}^{*} $ is locally asymptotically stable.
(Ⅱ)When $ \mu_{1} = \mu_{2} = \mu_{3} = \mu_{4} $ and $ \Phi > \alpha_{1}\theta $, by Eqs.(3.23)-(3.26), we have
$ a1(H∗1)=3α1+α2+q+γ+ρ+τ+H∗1Φ>0,a2(H∗1)=(2α1+α2+q+γ+ρ+τ)(α1+H∗1Φ)+(2α1+α2+q+γ+ρ)τ>0,a3(H∗1)=(2α1+α2+q+γ+ρ)(α1+H∗1Φ)τ+(α1+α2+q+γ)α1H∗1Φ+(α1+α2+γ)ρH∗1Φ>0,a4(H∗1)=τ(α1+ρ)(α1+α2+q+γ)[(α1+H∗1Φ)−α1(1+H∗1θ)]>0. $ |
Applying Routh$ - $Hurwitz [13], let $ C = a_{1}a_{2}-a_{3} $. Then, we obtain
$ C = c_{1}{H_{1}^{*}}^2+c_{2}H_{1}^{*}+c_{3} \gt 0, $ |
where
$ c1=2Φ2α1+Φ2α2+Φ2γ+Φ2q+Φ2ρ+Φ2τ>0,c2=7Φα12+Φα22+Φγ2+Φq2+Φρ2+Φτ2+5Φα1α2+5Φα1γ+2Φα2γ+5Φα1q+2Φα2q+5Φα1ρ+Φα2ρ+6Φα1τ+2Φqρ+2Φqτ+2Φρτ+Φγρ+2Φγq+2Φα2τ+2Φγτ>0,c3=α1α22+5α12α2+α1γ2+5α12γ+α1q2+5α12q+α1ρ2+5α12ρ+9α12τ+α2τ2+α22τ+γτ2+γ2τ+qτ2+q2τ+ρτ2+ρ2τ+2α1α2q+2α1α2ρ+6α1α2τ+2α1γq+2α1γρ+6α1γτ+6α1qτ+2α2qτ+6α1ρτ+2α2ρτ+2γqτ+2γρτ+2qρτ+2α1qρ+3α1τ2+6α13+2α1α2γ+2α2γτ>0. $ |
Then, let $ D = a_{3}[a_{1}a_{2}-a_{3}]-a_{1}^{2}a_{4} $, and get
$ D = d_{1}{H_{1}^{*}}^2+d_{2}H_{1}^{*}+d_{3}, $ |
It is clear that $ D > 0 $ and $ d_{i} > 0 $($ i = 1, 2, 3 $), when $ \tau > \rho $. Because the expression of $ d_{i} $($ i = 1, 2, 3 $) are too long, we list them in Appendix. Hence, the alcoholism equilibrium $ P_{1}^{*} $ is locally asymptotically stable.
(Ⅲ)Applying to the proof of (Ⅲ) of Theorem 2, when $ H^{*}_{2} = \frac{1}{\theta}\ln(\frac{R_{01}}{R_{0}}) $, we obtain $ \Phi = \alpha_{1}\theta $. Thus, by Eq.(3.26), we have
$ a_{4}(H_{2}^{*}) = \tau(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)\big[(\alpha_{1}+H_{2}^{*}\Phi)-\alpha_{1}(1+H_{2}^{*}\theta)\big] = 0, $ |
and by Eq.(3.23), we have
$ a_{1}(H_{2}^{*}) = 3\alpha_{1}+\alpha_{2}+q+\gamma +\rho +\tau +H_{2}^{*}\Phi \gt 0. $ |
Thus, we know that Eq.(3.21) has negative and zero eigenvalues. Therefore, the alcoholism equilibrium $ P_{2}^{*} $ may be locally stable or not.
(Ⅳ)(ⅰ)Applying to the proof of (Ⅳ) of Theorem 2, when $ H^{*}_{3} < H^{*}_{2} = \frac{1}{\theta}\ln(\frac{R_{01}}{R_{0}}) $, we obtain $ \Phi < \alpha_{1}\theta $. Thus, by Eq.(3.26), we have
$ a_{4}(H_{3}^{*}) = \tau(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)\big[(\alpha_{1}+H_{3}^{*}\Phi)-\alpha_{1}(1+H_{3}^{*}\theta)\big] \lt 0, $ |
and by Eq.(3.23), we have
$ a_{1}(H_{3}^{*}) = 3\alpha_{1}+\alpha_{2}+q+\gamma +\rho +\tau +H_{3}^{*}\Phi \gt 0. $ |
Assuming $ g_{1}(H_{3}^{*}), g_{2}(H_{3}^{*}), g_{3}(H_{3}^{*}), g_{4}(H_{3}^{*}) $ is the root of Eq.(3.22), and we assume that the real parts satisfying $ Re(g_{1}(H_{3}^{*}))\leq Re(g_{2}(H_{3}^{*}))\leq Re(g_{3}(H_{3}^{*}))\leq Re(g_{4}(H_{3}^{*})) $, so we obtain
$ g_{1}(H_{3}^{*})+g_{2}(H_{3}^{*})+g_{3}(H_{3}^{*})+g_{4}(H_{3}^{*}) = -a_{1}(H_{3}^{*}) \lt 0, $ |
and
$ g_{1}(H_{3}^{*})g_{2}(H_{3}^{*})g_{3}(H_{3}^{*})g_{4}(H_{3}^{*}) = a_{4}(H_{3}^{*}) \lt 0. $ |
There are $ Re(g_{1}(H_{3}^{*})) < 0 $ and $ Re(g_{4}(H_{3}^{*})) > 0 $, thus, the alcoholism equilibrium $ P_{3}^{*} $ is unstable.
(ⅱ) When $ H^{*}_{4} > H^{*}_{2} = \frac{1}{\theta}\ln(\frac{R_{01}}{R_{0}}) $, we obtain $ \Phi > \alpha_{1}\theta $. Thus, by Eq.(3.26), we have
$ a_{4}(H_{4}^{*}) = \tau(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)\big[(\alpha_{1}+H_{4}^{*}\Phi)-\alpha_{1}(1+H_{4}^{*}\theta)\big] \gt 0. $ |
By $ \mu_{1} = \mu_{2} = \mu_{3} = \mu_{4} $, we have
$ a1(H∗4)=3α1+α2+q+γ+ρ+τ+H∗4Φ>0,a2(H∗4)=(2α1+α2+q+γ+ρ+τ)(α1+H∗4Φ)+(2α1+α2+q+γ+ρ)τ>0,a3(H∗4)=(2α1+α2+q+γ+ρ)(α1+H∗4Φ)τ+(α1+α2+q+γ)α1H∗4Φ+(α1+α2+γ)ρH∗4Φ>0. $ |
Applying Routh$ - $Hurwitz [13], by assuming that $ E = a_{1}a_{2}-a_{3} $. Then, we obtain
$ E = e_{1}{H_{4}^{*}}^2+e_{2}H_{4}^{*}+e_{3} \gt 0, $ |
where
$ e1=2Φ2α1+Φ2α2+Φ2γ+Φ2q+Φ2ρ+Φ2τ>0,e2=7Φα12+Φα22+Φγ2+Φq2+Φρ2+Φτ2+5Φα1α2+5Φα1γ+2Φγq+Φγρ+5Φα1q+2Φα2γ+5Φα1ρ+2Φα2q+Φα2ρ+6Φα1τ+2Φα2τ+2Φγτ+2Φqρ+2Φqτ+2Φρτ>0,e3=5α12α2+α1α22+α1γ2+5α12γ+α1q2+5α12q+α1ρ2+5α12ρ+3α1τ2+9α12τ+α2τ2+α22τ+γτ2+γ2τ+qτ2+q2τ+ρτ2+ρ2τ+6α13+2α1α2γ+2α1α2q+2α1α2ρ+6α1α2τ+2α1γq+2α1γρ+6α1γτ+2α2γτ+2α1qρ+2α2qτ+6α1qτ+6α1ρτ+2α2ρτ+2γρτ+2γqτ+2qρτ>0. $ |
Then, by assuming that $ F = a_{3}[a_{1}a_{2}-a_{3}]-a_{1}^{2}a_{4} $, and get
$ F = f_{1}{H_{4}^{*}}^2+f_{2}H_{4}^{*}+f_{3}, $ |
It is clear that $ D > 0 $, when $ f_{i} > 0 $($ i = 1, 2, 3 $) and $ \tau > \rho $. Because the expression of $ f_{i} $($ i = 1, 2, 3 $) are too long, we do not list it here, and it is placed in Appendix. Hence, the alcoholism equilibrium $ P_{4}^{*} $ is locally asymptotically stable.
In this section, we study the change of the parameter $ \beta $ causing a forward or a backward bifurcation to occur.
Theorem 4. (Ⅰ) If $ R_{01} > 1 $, when $ R_{0} = 1 $, the system (2.1) appears a backward bifurcation.
(Ⅱ) If $ R_{01} < 1 $, when $ R_{0} = 1 $, the system (2.1) appears a forward bifurcation.
Proof. Using the central manifold theory described in [29]. Introducing $ x_{1} = S $, $ x_{2} = L $, $ x_{3} = H $, $ x_{4} = R $, $ x_{5} = T $, the system (2.1) becomes
$ {dx1dt=Λ+qx3−βx1x3e−αx5−α1x1:=f1,dx2dt=βx1x3e−αx5−ρx2−α1x2:=f2,dx3dt=ρx2−γx3−qx3−(α1+α2)x3:=f3,dx4dt=γx3−α1x4:=f4,dx5dt=μ1x1+μ2x2+μ3x3+μ4x4−τx5:=f5. $ | (3.27) |
Thus, the alcohol free equilibrium $ P_{0} $ is
$ P_{0} = X_{0} = (\frac{\Lambda}{\alpha_{1}}, 0, 0, 0, \frac{\Lambda \mu_{1}}{\alpha_{1}\tau}), $ |
In view of Theorem 4.1 [29], the Jacobian matrix $ J(P_{0}) $ of the system (3.27) in the alcohol free equilibrium is
$ J(X0)=(−α10q−Λβα1e−αμ1Λα1τ000−(α1+ρ)Λβα1e−αμ1Λα1τ000ρ−(α1+α2+q+γ)0000γ−α10μ1μ2μ3μ4−τ). $ |
We establish the local stability of alcohol free equilibrium taking $ \beta $ as bifurcation parameter, when $ R_{0} = 1 $ corresponding to $ \beta = \beta^{*} = \frac{\alpha_{1}(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)e^{\frac{\Lambda \alpha \mu_{1}}{\alpha_{1}\tau}}}{\Lambda \rho} $, thus, we obtain
$ J(X0)=(−α10q−α1(α1+ρ)(α1+α2+q+γ)ρ000−(α1+ρ)α1(α1+ρ)(α1+α2+q+γ)ρ000ρ−(α1+α2+q+γ)0000γ−α10μ1μ2μ3μ4−τ). $ |
It is clear that $ 0 $ is a simple eigenvalue of $ J(P_{0}) $. Therefore, there is a right eigenvector associated with 0 eigenvalues that is $ R = (r_{1}, r_{2}, r_{3}, r_{4}, r_{5})^{T} $, there is a left eigenvector associated with 0 eigenvalues is $ L = (l_{1}, l_{2}, l_{3}, l_{4}, l_{5}) $, and it is required to satisfy $ LR = 1 $.
Therefore, the right eigenvector is
$ R=(−α1(α1+α2+q+γ)−ρ(α1+α2+γ)α1ρα1+α2+q+γρ1γα1−(μ1−μ2)(α1+α2+q+γ)ρτ−(α1μ1−α1μ3+α2μ1+γμ1−γμ4)α1τ), $ |
the left eigenvector is
$ L=(0,ρ2α1+α2+q+γ+ρ,α1+ρ2α1+α2+q+γ+ρ,0,0). $ |
In view of Theorem 4.1 [29], we know that
$ a=5∑k,i,j=1lkrirj∂2fk(X0)∂xi∂xj,b=5∑k,i=1lkri∂2fk(X0)∂xi∂β. $ |
Therefore, we obtain
$ a=l2r1r3∂2f2(X0)∂x1∂x3+l2r3r1∂2f2(X0)∂x3∂x1+l2r3r5∂2f2(X0)∂x3∂x5+l2r5r3∂2f2(X0)∂x5∂x3=2l2(r1r3∂2f2(X0)∂x1∂x3+r3r5∂2f2(X0)∂x3∂x5)=−2ρΛαβe−Λαμ1α1τα1(2α1+α2+q+γ+ρ)[α1(μ2−μ1)(α1+α2+q+γ)−ρ(α1μ1−α1μ3+α2μ1+γμ1−γu4)α1ρτ]+2ρβe−Λαμ1α1τ2α1+α2+q+γ+ρ[−(α1+ρ)(α1+α2+γ)−α1qα1ρ]=2[α1(α1+ρ)(α1+α2+q+γ)2+ρ(α1+ρ)(α1+α2+γ)(α1+α2+q+γ)Λρ(2α1+α2+q+γ+ρ)](R01−1).b=l2r3∂2f2(X0)∂x3∂β=Λρe−Λαμ1α1τα1(2α1+α2+q+γ+ρ)>0. $ |
According to Theorem 4.1 of [29], we notice that the coefficient $ b $ is always positive. The coefficient $ a $ is positive when $ {R_{01}} > 1 $. In this case, the direction of the bifurcation of the system (2.1) at $ {R_{0}} = 1 $ is backward, as shown in the Figure 9(a). The coefficient $ a $ is negative when $ {R_{01}} < 1 $. Under this circumstance, the direction of the bifurcation of the system (2.1) at $ {R_{0}} = 1 $ is forward, as shown in the Figure 9(b).
The goal of this section is to present some numerical simulations which complement the theoretical results in the previous sections. We choose some parameters based on the Table 1.
Parameter | Description | Value | Source |
$ \Lambda $ | The constant recruitment rate of the population | $ 0.7-0.8 day^{-1} $ | [30] |
$ \beta $ | Transmission coefficient from the moderate drinkers | ||
compartment to the light problem drinkers compartment | $ 0.0099 - 0.9 person^{-1} $ | Estimate | |
$ \alpha $ | The coefficient that determines how effective the positive | ||
drinking information can reduce the transmission rate | $ 0.00091 - 0.8 tweet^{-1} $ | Estimate | |
$ \rho $ | Transmission coefficient from the light problem drinkers | ||
compartment to the heavy problem drinkers compartment | $ 0.04 - 0.99 day^{-1} $ | Estimate | |
$ {\mu_1} $ | The rates that the moderate drinkers may tweet | ||
about alcoholism during an alcoholism occasion | $ 0 - 1 day^{-1} $ | [11] | |
$ {\mu_2} $ | The rates that the light problem drinkers may tweet | ||
about alcoholism during an alcoholism occasion | $ 0 - 1 day^{-1} $ | [11] | |
$ {\mu_3} $ | The rates that the heavy problem drinkers may tweet | ||
about alcoholism during an alcoholism occasion | $ 0 - 1 day^{-1} $ | [11] | |
$ {\mu_4} $ | The rates that quitting drinkers may tweet | ||
about alcoholism during an alcoholism occasion | $ 0 - 1 day^{-1} $ | [13] | |
$ {\alpha_1} $ | The natural death rate of the population | $ 0.009 - 0.6year^{-1} $ | [4,5] |
$ {\alpha_2} $ | The death rate due to heavy alcoholism | $ 0.02 - 0.5day^{-1} $ | Estimate |
$ q $ | Transmission coefficient from the heavy problem drinkers | ||
compartment to the moderate drinkers compartment | $ 0.006 - 0.99day^{-1} $ | Estimate | |
$ \gamma $ | Transmission coefficient from the heavy problem drinkers | ||
compartment to quitting drinkers compartment | $ 0.006 - 0.99day^{-1} $ | Estimate | |
$ {\tau} $ | The rate that message become outdated | $ 0.03 - 0.6year^{-1} $ | [11] |
As an example, we choose a set of the following parameters, the parameter values are $ \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_1 = 0.04, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.07, \rho = 0.09, \tau = 0.03 $ and $ \beta = 0.001 $. It follows from Theorem 1 that the alcohol free equilibrium $ P_{0} = (88.89, 0, 0, 0, 118.52) $ of system (2.1) is globally asymptotically stable for any value of time $ t $ when $ R_{0} = 0.0519 < 1 $ (see Figure 3 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium $ P^{*}(t) $ changes as $ t $ increasing and eventually tends to $ P_{0} = (88.89, 0, 0, 0, 118.52) $ from Figure 3 (a) and (b).
In order to verify the local stability of the alcoholism equilibrium $ P_{1}^{*} $, we choose a set of the following parameters, the parameter values are $ \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_1 = 0.04, \mu_2 = 0.04, \mu_3 = 0.04, \mu_4 = 0.04, \gamma = 0.1, q = 0.07, \rho = 0.09, \tau = 0.03 $ and $ \beta = 0.004 $. It follows from Theorem 3 that the alcoholism equilibrium $ P_{1}^{*} = (28.16, 6.09, 0.81, 8.97, 58.71) $ of system (2.1) is locally asymptotically stable for any value of time $ t $ when $ R_{0} = 2.0765 > \max\{1, R_{01}\} $, where $ R_{01} = 0.6128 $ (see Figure 4 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium $ P^{*}(t) $ changes with $ t $ increasing and eventually tends to $ P_{1}^{*} = (28.16, 6.09, 0.81, 8.97, 58.71) $ from Figure 4 (a) and (b).
In order to verify the local stability of the alcoholism equilibrium $ P_{4}^{*} $, we choose a set of the following parameters, the parameter values are $ \Lambda = 8, \alpha = 0.07, \alpha_1 = 0.003, \alpha_2 = 0.005, \mu_1 = 0.025, \mu_2 = 0.025, \mu_3 = 0.025, \mu_4 = 0.025, \gamma = 0.01, q = 0.07, \rho = 0.4, \tau = 0.45 $ and $ \beta = 0.9 $. It follows from Theorem 3 that the alcoholism equilibrium $ P_{4}^{*} = (254.1677, 85.2877, 387.8429, 1292.7081, 112.2223) $ of system (2.1) is locally asymptotically stable for any value of time $ t $ when $ R_{02} < R_{0} < \max\{1, R_{01}\} $, where $ R_{01} = 2.7788 $, $ R_{0} = 0.8486 $ and $ R_{02} = 0.4692 $ (see Figure 5 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium $ P^{*}(t) $ changes with $ t $ increasing and eventually tends to $ P_{4}^{*} = (254.1677, 85.2877, 387.8429, 1292.7081, 112.2223) $ from Figure 5 (a) and (b).
Then, we choose a set of the following parameters, the parameter values are $ \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_1 = 0, \mu_2 = 0.008, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.99, \rho = 0.99, \tau = 0.03 $ and $ \beta = 0.0204 $. It follows from Theorem 3 that the alcoholism equilibrium $ P_{1}^{*} = (49.19, 0.92, 0.57, 6.37, 185.30) $ of system (2.1) is locally asymptotically stable for any value of time $ t $ when $ R_{0} = 1.1238 > \max\{1, R_{01}\} $ and $ \beta < \beta^{*} $, where $ R_{01} = -2.9044 $ and $ \beta^{*} = 0.021 $ (see Figure 6 (a) and (b)).
If we choose $ \beta $ as $ 0.076 $ (see Figure 7 (a) and (b)), we have more intricate dynamic behaviors on system (2.1). As an example, we choose a set of the following parameters, the parameter values are $ \Lambda = 0.8, \alpha = 0.00626, \alpha_1 = 0.009, \alpha_2 = 0.4, \mu_1 = 0.009, \mu_2 = 0.004, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.06, \rho = 0.9, \tau = 0.03 $ and $ \beta = 0.076 $. The alcoholism equilibrium $ P_{1}^{*} $ of system (2.1) occurs a Hopf bifurcation when $ R_{0} = 9.9478 > 1 $ and $ \beta > \beta^{*} $, where $ \beta^{*} = 0.011 $ (see Figure 7 (a-d)). In Figure 7 (a-d), we can readily see that the solution curves of system (2.1) perform a sustained periodic oscillation and phase trajectories approaches limit cycle.
In order to demonstrate some results about Hopf bifurcation, we consider $ \beta $ as bifurcation parameter. We know that the alcoholism equilibrium $ P_{1}^{*} $ is feasible for $ \beta\in[0.0099, 0.8] $. Thus, system (2.1) is stable when $ 0.0099\leq \beta < 0.011 $, and Hopf bifurcation occurs at the alcoholism equilibrium $ P_{1}^{*} $ when $ 0.011\leq \beta < 0.08 $, and system (2.1) becomes stable again when $ 0.08\leq \beta \leq 0.2 $, as depicted in Figure 8(a-e).
The backward and forward bifurcation diagram of system (2.1) is shown in Figure 9, and the direction of bifurcation depends upon the value of $ R_{01} $. As seen in the backward bifurcation diagram of Figure 9(a) when $ R_{01} = 4.4936 > 1 $, there is a threshold quantity $ R_{t} $ which is the value of $ R_{0} $. The alcohol free equilibrium is globally asymptotically stable when $ R_{0} < R_{t} $, where $ R_{t} = 0.1350 $. There are two alcoholism equilibria and a alcohol free equilibrium when $ R_{t} < R_{0} < 1 $, the upper ones are stable, the middle ones are unstable and the lower ones is globally asymptotically stable. There are a stable alcoholism equilibria and an unstable alcohol free equilibrium when $ R_{0} > 1 $. As seen in the forward bifurcation diagram of Figure 9(b) when $ R_{01} = 0.5357 < 1 $, the alcohol free equilibrium is globally asymptotically stable when $ R_{0} < 1 $. There are a stable alcoholism equilibria and an unstable alcohol free equilibrium when $ R_{0} > 1 $.
In this section, we examine the effects of changes in some parameters on the number of heavy problem drinkers. Therefore, we carry out the sensitivity analysis of heavy problem drinkers H.
Figure 10 shows a comparison between the parameters of system (2.1) versus the heavy problem drinkers, we main consider the effect of $ \mu_{1}, q, \gamma, \tau $ on the dynamics of heavy problem drinkers. Firstly, we choose the effect of parameter $ \mu_{1} $ on the dynamics of heavy problem drinkers, the other parameter values are $ \Lambda = 0.8, \alpha = 0.07, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.09, \rho = 0.09, \tau = 0.03 $ and $ \beta = 0.04 $, as depicted in Figure 10(a). We know that the number of heavy problem drinkers will decrease when $ \mu_{1} $ increase from Figure 10(a). The simulation shows that more Twitter messages can result in the lower alcoholism cases, and changing the number of Twitter messages posted per day does affect the time when the alcoholism reaches the peak. Secondly, we choose the effect of parameter $ q $ on the dynamics of heavy problem drinkers, the other parameter values are $ \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_1 = 0.04, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, \rho = 0.09, \tau = 0.03 $ and $ \beta = 0.15 $, as depicted in Figure 10(b). We know that the number of heavy problem drinkers will decrease when $ q $ increase from Figure 10(b). Thirdly, we choose the effect of parameter $ \gamma $ on the dynamics of heavy problem drinkers, the other parameter values are $ \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_{1} = 0.04, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, q = 0.07, \tau = 0.03, \rho = 0.01 $ and $ \beta = 0.15 $, as depicted in Figure 10(c). We know that the number of heavy problem drinkers will decrease when $ \gamma $ increase from Figure 10(c). The simulation results in Figure 10(b) and 10(c) show that treatment significantly reduces the number of alcoholism cases. Finally, we choose the effect of parameter $ \tau $ on the dynamics of heavy problem drinkers, the other parameter values are $ \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_{1} = 0.04, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.07, \rho = 0.09 $ and $ \beta = 0.15 $, as depicted in Figure 10(d). We know that the number of heavy problem drinkers will increase when $ \tau $ increase from Figure 10(d). This indicates that the rate of upper outdated Twitter messages result in the upper alcoholism cases.
We construct a new alcoholism model with treatment and effect of Twitter in this paper. We study the stability of all equilibria and derive the basic reproductive number $ R_{0} $. We also investigate the occurrence of backward and forward bifurcation for a certain defined range of $ R_{0} $ by the center manifold theory. Furthermore, we give some numerical results and sensitivity analysis to extend and illustrate our results. Our results show that Twitter may be a good indicator of alcoholism model and affect the emergence and spread of drinking behavior. How to prove existence of Hopf bifurcation analytically is interesting and still open. We will leave this work in future.
We are grateful to the anonymous referees and the editors for their valuable comments and suggestions which improved the quality of the paper. This work is supported by the National Natural Science Foundation of China (11861044 and 11661050), and the HongLiu first-class disciplines Development Program of Lanzhou University of Technology.
The authors declare there is no conflict of interest.
The formula of $d_{1}$, $d_{2}$, $d_{3}$ in the proof of (Ⅱ) of Theorem 3.
$ d1=7Φ2α14+12Φ2α13α2+12Φ2α13γ+12Φ2α13q+12Φ2α13ρ+18Φ2α13τ+6Φ2α12α22+12Φ2α12α2γ+12Φ2α12α2q+18Φ2α12α2ρ+21Φ2α12α2τ+6Φ2α12γ2+12Φ2α12γq+18Φ2α12γρ+21Φ2α12γτ+6Φ2α12q2+12Φ2α12qρ+21Φ2α12qτ+6Φ2α12ρ2+21Φ2α12ρτ+13Φ2α12τ2+Φ2α1α23+3Φ2α1α22γ+3Φ2α1α22q+7Φ2α1α22ρ+8Φ2α1α22τ+3Φ2α1α2γ2+6Φ2α1α2γq+14Φ2α1α2γρ+16Φ2α1α2γτ+3Φ2α1α2q2+10Φ2α1α2qρ+16Φ2α1α2qτ+7Φ2α1α2ρ2+14Φ2α1α2ρτ+10Φ2α1α2τ2+Φ2α1γ3+3Φ2α1γ2q+7Φ2α1γ2ρ+8Φ2α1γ2τ+3Φ2α1γq2+10Φ2α1γqρ+16Φ2α1γqτ+14Φ2α1γρτ+10Φ2α1γτ2+Φ2α1q3+3Φ2α1q2ρ+8Φ2α1q2τ+3Φ2α1qρ2+10Φ2α1qτ2+Φ2α1ρ3+8Φ2α1ρ2τ+10Φ2α1ρτ2+2Φ2α1τ3+Φ2α23ρ+Φ2α23τ+3Φ2α22γτ+2Φ2α22qρ+3Φ2α22qτ+Φ2α22ρ2+2Φ2α22ρτ+2Φ2α22τ2+3Φ2α2γ2ρ+3Φ2α2γ2τ+4Φ2α2γqρ+6Φ2α2γqτ+2Φ2α2γρ2+4Φ2α2γρτ+4Φ2α2γτ2+3Φ2α2q2τ+2Φ2α2qρ2+3Φ2α2qρτ+4Φ2α2qτ2+Φ2α2ρ3+2Φ2α2ρ2τ+3Φ2α2ρτ2+Φ2α2τ3+Φ2γ3ρ+Φ2γ3τ+2Φ2γ2qρ+3Φ2γ2qτ+Φ2γ2ρ2+2Φ2γ2ρτ+2Φ2γ2τ2+Φ2γq2ρ+3Φ2γq2τ+2Φ2γqρ2+3Φ2γqρτ+4Φ2γqτ2+Φ2γρ3+2Φ2γρ2τ+3Φ2γρτ2+Φ2γτ3+Φ2q3τ+Φ2q2ρτ+2Φ2q2τ2+Φ2qρ2τ+2Φ2qρτ2+Φ2qτ3+Φ2ρ3τ+2Φ2ρ2τ2+Φ2ρτ3+6αΦα13α2ρ+8αΦα12α22ρ+8αΦα12α2γρ+8αΦα12α2qρ+8αΦα12α2ρ2+2αΦα12α2ρτ+2αΦα1α23ρ+4αΦα1α22γρ+4αΦα1α22qρ+10αΦα1α22ρ2+2αΦα1α22ρτ+2αΦα1α2γ2ρ+4αΦα1α2γqρ+10αΦα1α2γρ2+2αΦα1α2γρτ+2αΦα1α2q2ρ+10αΦα1α2qρ2+2αΦα1α2qρτ+2αΦα1α2ρ3+2αΦα1α2ρ2τ+2αΦα23ρ2+4αΦα22γρ2+4αΦα22qρ2+2αΦα22ρ3+2αΦα22ρ2τ+2αΦα2γ2ρ2+4αΦα2γqρ2+2αΦα2γρ3+2αΦα2γρ2τ+Φ2α2q2ρ+2αΦα2q2ρ2+2αΦα2qρ3+2αΦα2qρ2τ+3Φ2α22γρ+7Φ2α1γρ2+10Φ2α1qρτ, $ |
$\begin{eqnarray*} d_{2}& = &6\, \Phi \, {\alpha_{1}}^5 + 9\, \alpha\, {\alpha_{1}}^4\, \alpha_{2}\, \rho + 11\, \Phi \, {\alpha_{1}}^4\, \alpha_{2} + 11\, \Phi \, {\alpha_{1}}^4\, {\gamma} + 11\, \Phi \, {\alpha_{1}}^4\, q + 11\, \Phi \, {\alpha_{1}}^4\, \rho + 26\, \Phi \, {\alpha_{1}}^4\, \tau \\ &&+ 15\, \alpha\, {\alpha_{1}}^3\, {\alpha_{2}}^2\, \rho + 6\, \Phi \, {\alpha_{1}}^3\, {\alpha_{2}}^2 + 15\, \alpha\, {\alpha_{1}}^3\, \alpha_{2}\, {\gamma}\, \rho + 12\, \Phi \, {\alpha_{1}}^3\, \alpha_{2}\, {\gamma} + 15\, \alpha\, {\alpha_{1}}^3\, \alpha_{2}\, q\, \rho \\ &&+ 15\, \alpha\, {\alpha_{1}}^3\, \alpha_{2}\, {\rho}^2 + 6\, \alpha\, {\alpha_{1}}^3\, \alpha_{2}\, \rho\, \tau + 18\, \Phi \, {\alpha_{1}}^3\, \alpha_{2}\, \rho + 33\, \Phi \, {\alpha_{1}}^3\, \alpha_{2}\, \tau + 6\, \Phi \, {\alpha_{1}}^3\, {{\gamma}}^2 + 12\, \Phi \, {\alpha_{1}}^3\, {\gamma}\, q \\ &&+ 18\, \Phi \, {\alpha_{1}}^3\, {\gamma}\, \rho + 33\, \Phi \, {\alpha_{1}}^3\, {\gamma}\, \tau + 6\, \Phi \, {\alpha_{1}}^3\, q^2 + 12\, \Phi \, {\alpha_{1}}^3\, q\, \rho + 33\, \Phi \, {\alpha_{1}}^3\, q\, \tau + 6\, \Phi \, {\alpha_{1}}^3\, {\rho}^2 \\ &&+ 27\, \Phi \, {\alpha_{1}}^3\, {\tau}^2 + 7\, \alpha\, {\alpha_{1}}^2\, {\alpha_{2}}^3\, \rho + \Phi \, {\alpha_{1}}^2\, {\alpha_{2}}^3 + 14\, \alpha\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, {\gamma}\, \rho + 3\, \Phi \, {\alpha_{1}}^2\, {\alpha_{2}}^2\, {\gamma} + 14\, \alpha\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, q\, \rho\\ && + 3\, \Phi \, {\alpha_{1}}^2\, {\alpha_{2}}^2\, q + 23\, \alpha\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, {\rho}^2 + 8\, \alpha\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, \rho\, \tau + 8\, \Phi \, {\alpha_{1}}^2\, {\alpha_{2}}^2\, \rho + 14\, \Phi \, {\alpha_{1}}^2\, {\alpha_{2}}^2\, \tau \\ &&+ 3\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {{\gamma}}^2 + 14\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, q\, \rho + 6\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, q + 23\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, {\rho}^2 + 8\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, \rho\, \tau \\ &&+ 16\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, \rho + 28\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, \tau + 7\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, q^2\, \rho + 3\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, q^2+ 23\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, q\, {\rho}^2 \\ &&+ 8\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, q\, \rho\, \tau + 11\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, q\, \rho + 28\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, q\, \tau + 7\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, {\rho}^3 + 8\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, {\rho}^2\, \tau \\ &&+ 8\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {\rho}^2 + \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, \rho\, {\tau}^2 + 26\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, \rho\, \tau + 27\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {\tau}^2 + \Phi \, {\alpha_{1}}^2\, {{\gamma}}^3 + 3\, \Phi \, {\alpha_{1}}^2\, {{\gamma}}^2\, q \\ &&+ 8\, \Phi \, {\alpha_{1}}^2\, {{\gamma}}^2\, \rho + 14\, \Phi \, {\alpha_{1}}^2\, {{\gamma}}^2\, \tau + 3\, \Phi \, {\alpha_{1}}^2\, {\gamma}\, q^2 + 11\, \Phi \, {\alpha_{1}}^2\, {\gamma}\, q\, \rho + 28\, \Phi \, {\alpha_{1}}^2\, {\gamma}\, q\, \tau + 8\, \Phi \, {\alpha_{1}}^2\, {\gamma}\, {\rho}^2 \\ &&+ 26\, \Phi \, {\alpha_{1}}^2\, {\gamma}\, \rho\, \tau + 27\, \Phi \, {\alpha_{1}}^2\, {\gamma}\, {\tau}^2 + \Phi \, {\alpha_{1}}^2\, q^3 + 3\, \Phi \, {\alpha_{1}}^2\, q^2\, \rho + 14\, \Phi \, {\alpha_{1}}^2\, q^2\, \tau + 3\, \Phi \, {\alpha_{1}}^2\, q\, {\rho}^2 \\ &&+ 19\, \Phi \, {\alpha_{1}}^2\, q\, \rho\, \tau + 27\, \Phi \, {\alpha_{1}}^2\, q\, {\tau}^2 + \Phi \, {\alpha_{1}}^2\, {\rho}^3 + 14\, \Phi \, {\alpha_{1}}^2\, {\rho}^2\, \tau + 27\, \Phi \, {\alpha_{1}}^2\, \rho\, {\tau}^2+ 7\, \Phi \, {\alpha_{1}}^2\, {\tau}^3 \\ &&+ \alpha\, \alpha_{1}\, {\alpha_{2}}^4\, \rho + 3\, \alpha\, \alpha_{1}\, {\alpha_{2}}^3\, {\gamma}\, \rho + 3\, \alpha\, \alpha_{1}\, {\alpha_{2}}^3\, q\, \rho + 9\, \alpha\, \alpha_{1}\, {\alpha_{2}}^3\, {\rho}^2 + 2\, \alpha\, \alpha_{1}\, {\alpha_{2}}^3\, \rho\, \tau + \Phi \, \alpha_{1}\, {\alpha_{2}}^3\, \rho \\ &&+ 2\, \Phi \, \alpha_{1}\, {\alpha_{2}}^3\, \tau + 3\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, {{\gamma}}^2\, \rho + 6\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, q\, \rho + 18\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, {\rho}^2 + 4\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, \rho\, \tau \\ &&+ 6\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, \tau + 3\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, q^2\, \rho + 18\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, q\, {\rho}^2 + 4\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, q\, \rho\, \tau + 2\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, q\, \rho \\ &&+ 9\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, {\rho}^3 + 10\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, {\rho}^2\, \tau + 2\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, {\rho}^2 + \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, \rho\, {\tau}^2 + 5\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, \rho\, \tau + 9\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, {\tau}^2 \\ &&+ \alpha\, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^3\, \rho + 3\, \alpha\, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, q\, \rho + 9\, \alpha\, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, {\rho}^2 + 2\, \alpha\, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, \rho\, \tau + 3\, \Phi \, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, \rho \\ &&+ 3\, \alpha\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q^2\, \rho + 18\, \alpha\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q\, {\rho}^2 + 4\, \alpha\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q\, \rho\, \tau + 4\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q\, \rho + 12\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q\, \tau \\ &&+ 9\, \alpha\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, {\rho}^3 + 10\, \alpha\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, {\rho}^2\, \tau + 4\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, {\rho}^2 + \alpha\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, \rho\, {\tau}^2 + 10\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, \rho\, \tau \\ &&+ 18\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, {\tau}^2 + \alpha\, \alpha_{1}\, \alpha_{2}\, q^3\, \rho + 9\, \alpha\, \alpha_{1}\, \alpha_{2}\, q^2\, {\rho}^2 + 2\, \alpha\, \alpha_{1}\, \alpha_{2}\, q^2\, \rho\, \tau + \Phi \, \alpha_{1}\, \alpha_{2}\, q^2\, \rho + 6\, \Phi \, \alpha_{1}\, \alpha_{2}\, q^2\, \tau \\ &&+ 9\, \alpha\, \alpha_{1}\, \alpha_{2}\, q\, {\rho}^3 + 10\, \alpha\, \alpha_{1}\, \alpha_{2}\, q\, {\rho}^2\, \tau + 2\, \Phi \, \alpha_{1}\, \alpha_{2}\, q\, {\rho}^2 + \alpha\, \alpha_{1}\, \alpha_{2}\, q\, \rho\, {\tau}^2 + 5\, \Phi \, \alpha_{1}\, \alpha_{2}\, q\, \rho\, \tau \\ &&+ \alpha\, \alpha_{1}\, \alpha_{2}\, {\rho}^4+ 2\, \alpha\, \alpha_{1}\, \alpha_{2}\, {\rho}^3\, \tau + \Phi \, \alpha_{1}\, \alpha_{2}\, {\rho}^3 + \alpha\, \alpha_{1}\, \alpha_{2}\, {\rho}^2\, {\tau}^2 + 5\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\rho}^2\, \tau + 15\, \Phi \, \alpha_{1}\, \alpha_{2}\, \rho\, {\tau}^2 \\ &&+ 5\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\tau}^3 + \Phi \, \alpha_{1}\, {{\gamma}}^3\, \rho + 2\, \Phi \, \alpha_{1}\, {{\gamma}}^3\, \tau + 2\, \Phi \, \alpha_{1}\, {{\gamma}}^2\, q\, \rho + 6\, \Phi \, \alpha_{1}\, {{\gamma}}^2\, q\, \tau + 2\, \Phi \, \alpha_{1}\, {{\gamma}}^2\, {\rho}^2 \\ &&+ 9\, \Phi \, \alpha_{1}\, {{\gamma}}^2\, {\tau}^2 + \Phi \, \alpha_{1}\, {\gamma}\, q^2\, \rho + 6\, \Phi \, \alpha_{1}\, {\gamma}\, q^2\, \tau + 2\, \Phi \, \alpha_{1}\, {\gamma}\, q\, {\rho}^2 + 5\, \Phi \, \alpha_{1}\, {\gamma}\, q\, \rho\, \tau + 18\, \Phi \, \alpha_{1}\, {\gamma}\, q\, {\tau}^2 \\ &&+ \Phi \, \alpha_{1}\, {\gamma}\, {\rho}^3 + 5\, \Phi \, \alpha_{1}\, {\gamma}\, {\rho}^2\, \tau + 15\, \Phi \, \alpha_{1}\, {\gamma}\, \rho\, {\tau}^2 + 5\, \Phi \, \alpha_{1}\, {\gamma}\, {\tau}^3 + 2\, \Phi \, \alpha_{1}\, q^3\, \tau + 9\, \Phi \, \alpha_{1}\, q^2\, {\tau}^2 \\ &&+ 5\, \Phi \, \alpha_{1}\, q\, {\tau}^3 + 2\, \Phi \, \alpha_{1}\, {\rho}^3\, \tau + 9\, \Phi \, \alpha_{1}\, {\rho}^2\, {\tau}^2 + 5\, \Phi \, \alpha_{1}\, \rho\, {\tau}^3 + \alpha\, {\alpha_{2}}^4\, {\rho}^2 + 3\, \alpha\, {\alpha_{2}}^3\, {\gamma}\, {\rho}^2 + 3\, \alpha\, {\alpha_{2}}^3\, q\, {\rho}^2 \\ &&+ 2\, \alpha\, {\alpha_{2}}^3\, {\rho}^3+ 2\, \alpha\, {\alpha_{2}}^3\, {\rho}^2\, \tau + \Phi \, {\alpha_{2}}^3\, {\tau}^2 + 3\, \alpha\, {\alpha_{2}}^2\, {{\gamma}}^2\, {\rho}^2 + 6\, \alpha\, {\alpha_{2}}^2\, {\gamma}\, q\, {\rho}^2 + 4\, \alpha\, {\alpha_{2}}^2\, {\gamma}\, {\rho}^3 \\ &&+ 3\, \Phi \, {\alpha_{2}}^2\, {\gamma}\, {\tau}^2 + 3\, \alpha\, {\alpha_{2}}^2\, q^2\, {\rho}^2 + 4\, \alpha\, {\alpha_{2}}^2\, q\, {\rho}^3 + 4\alpha\, {\alpha_{2}}^2\, q\, {\rho}^2\, \tau + \Phi \, {\alpha_{2}}^2\, q\, {\tau}(3\tau-\rho) + \alpha\, {\alpha_{2}}^2\, {\rho}^4 \\ &&+ 2\, \alpha\, {\alpha_{2}}^2\, {\rho}^3\, \tau + \alpha\, {\alpha_{2}}^2\, {\rho}^2\, {\tau}^2 + 2\, \Phi \, {\alpha_{2}}^2\, \rho\, {\tau}^2 + \Phi \, {\alpha_{2}}^2\, {\tau}^3 + \alpha\, \alpha_{2}\, {{\gamma}}^3\, {\rho}^2 + 3\, \alpha\, \alpha_{2}\, {{\gamma}}^2\, q\, {\rho}^2 + 2\, \alpha\, \alpha_{2}\, {{\gamma}}^2\, {\rho}^3 \\ &&+ 2\, \alpha\, \alpha_{2}\, {{\gamma}}^2\, {\rho}^2\, \tau + 3\, \Phi \, \alpha_{2}\, {{\gamma}}^2\, {\tau}^2 + 3\, \alpha\, \alpha_{2}\, {\gamma}\, q^2\, {\rho}^2 + 4\, \alpha\, \alpha_{2}\, {\gamma}\, q\, {\rho}^3 + 4\, \alpha\, \alpha_{2}\, {\gamma}\, q\, {\rho}^2\, \tau \\ && + \alpha\, \alpha_{2}\, {\gamma}\, {\rho}^4 + 2\, \alpha\, \alpha_{2}\, {\gamma}\, {\rho}^3\, \tau + \alpha\, \alpha_{2}\, {\gamma}\, {\rho}^2\, {\tau}^2 + 4\, \Phi \, \alpha_{2}\, {\gamma}\, \rho\, {\tau}^2 + 2\, \Phi \, \alpha_{2}\, {\gamma}\, {\tau}^3 + \alpha\, \alpha_{2}\, q^3\, {\rho}^2 \\ &&+ 2\, \alpha\, \alpha_{2}\, q^2\, {\rho}^3+ 2\, \alpha\, \alpha_{2}\, q^2\, {\rho}^2\, \tau+\Phi \, \alpha_{2}\, q^2\, {\tau}(3\tau-2\rho) + \alpha\, \alpha_{2}\, q\, {\rho}^4 + 2\, \alpha\, \alpha_{2}\, q\, {\rho}^3\, \tau + \alpha\, \alpha_{2}\, q\, {\rho}^2\, {\tau}^2 \\ &&+\Phi \, \alpha_{2}\, q\, \rho\, {\tau}(3\tau-2\rho) + 2\, \Phi \, \alpha_{2}\, q\, {\tau}^3 + 2\, \Phi \, \alpha_{2}\, {\rho}^2\, {\tau}^2 + \Phi \, \alpha_{2}\, \rho\, {\tau}^3 + \Phi \, {{\gamma}}^3\, {\tau}^2+ \Phi \, {\rho}^2\, {\tau}^3\\ &&+\Phi \, {{\gamma}}^2\, q\, {\tau}(3\tau-\rho) + 2\, \Phi \, {{\gamma}}^2\, \rho\, {\tau}^2 + \Phi \, {{\gamma}}^2\, {\tau}^3+\Phi \, {\gamma}\, q^2\, {\tau}(3\tau-2\rho)+ \Phi \, {\gamma}\, q\, \rho\, {\tau}(3\tau-2\rho) \\ &&+ 2\, \Phi \, {\gamma}\, q\, {\tau}^3 + 2\, \Phi \, {\gamma}\, {\rho}^2\, {\tau}^2 + \Phi \, {\gamma}\, \rho\, {\tau}^3+ \Phi \, q^3\, {\tau}(\tau-\rho) + \Phi \, q^2\, \rho\, {\tau}(\tau-\rho) + \Phi q^2{\tau}(\tau^2-\rho^2)\\ &&+\Phi \, q\, {\rho}^2{\tau}(\tau-\rho) + \Phi \, q\, \rho\, {\tau}^3 + \Phi \, {\rho}^3\, {\tau}^2+ 7\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, {{\gamma}}^2\, \rho+ 3\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, \rho+ 6\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, q\, \tau\\ &&+ 6\, \Phi \, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, \tau+ 18\, \Phi \, \alpha_{1}\, \alpha_{2}\, q\, {\tau}^2+ 5\, \Phi \, \alpha_{1}\, {{\gamma}}^2\, \rho\, \tau+ 12\, \Phi \, \alpha_{1}\, q\, \rho\, {\tau}^2+ 4\, \alpha\, {\alpha_{2}}^2\, {\gamma}\, {\rho}^2\, \tau\\ &&+ \Phi \, \alpha_{2}\, {\gamma}\, q\, {\tau}(6\tau-2\rho)+ 33\, \Phi \, {\alpha_{1}}^3\, \rho\, \tau+ 12\, \Phi \, {\alpha_{1}}^3\, \alpha_{2}\, q, \end{eqnarray*} $ |
$\begin{eqnarray*} d_{3}& = &12\, {\alpha_{1}}^5\, \tau + 16\, {\alpha_{1}}^4\, \alpha_{2}\, \tau + 16\, {\alpha_{1}}^4\, {\gamma}\, \tau + 16\, {\alpha_{1}}^4\, q\, \tau + 16\, {\alpha_{1}}^4\, \rho\, \tau + 18\, {\alpha_{1}}^4\, {\tau}^2 + 7\, {\alpha_{1}}^3\, {\alpha_{2}}^2\, \tau \\ &&+ 14\, {\alpha_{1}}^3\, \alpha_{2}\, q\, \tau + 14\, {\alpha_{1}}^3\, \alpha_{2}\, \rho\, \tau + 21\, {\alpha_{1}}^3\, \alpha_{2}\, {\tau}^2 + 7\, {\alpha_{1}}^3\, {{\gamma}}^2\, \tau + 14\, {\alpha_{1}}^3\, {\gamma}\, q\, \tau + 14\, {\alpha_{1}}^3\, {\gamma}\, \rho\, \tau\\ &&+ 7\, {\alpha_{1}}^3\, q^2\, \tau + 14\, {\alpha_{1}}^3\, q\, \rho\, \tau + 21\, {\alpha_{1}}^3\, q\, {\tau}^2 + 7\, {\alpha_{1}}^3\, {\rho}^2\, \tau + 21\, {\alpha_{1}}^3\, \rho\, {\tau}^2 + 6\, {\alpha_{1}}^3\, {\tau}^3 + {\alpha_{1}}^2\, {\alpha_{2}}^3\, \tau \\ &&+ 3\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, q\, \tau + 3\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, \rho\, \tau + 8\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, {\tau}^2 + 3\, {\alpha_{1}}^2\, \alpha_{2}\, {{\gamma}}^2\, \tau + 6\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, q\, \tau + 6\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, \rho\, \tau \\ &&+ 16\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, {\tau}^2 + 3\, {\alpha_{1}}^2\, \alpha_{2}\, q^2\, \tau + 6\, {\alpha_{1}}^2\, \alpha_{2}\, q\, \rho\, \tau + 16\, {\alpha_{1}}^2\, \alpha_{2}\, q\, {\tau}^2 + 3\, {\alpha_{1}}^2\, \alpha_{2}\, {\rho}^2\, \tau + 16\, {\alpha_{1}}^2\, \alpha_{2}\, \rho\, {\tau}^2 \\ &&+ 5\, {\alpha_{1}}^2\, \alpha_{2}\, {\tau}^3 + {\alpha_{1}}^2\, {{\gamma}}^3\, \tau + 3\, {\alpha_{1}}^2\, {{\gamma}}^2\, q\, \tau + 3\, {\alpha_{1}}^2\, {{\gamma}}^2\, \rho\, \tau + 8\, {\alpha_{1}}^2\, {{\gamma}}^2\, {\tau}^2 + 3\, {\alpha_{1}}^2\, {\gamma}\, q^2\, \tau + 6\, {\alpha_{1}}^2\, {\gamma}\, q\, \rho\, \tau \\ &&+ 16\, {\alpha_{1}}^2\, {\gamma}\, q\, {\tau}^2 + 3\, {\alpha_{1}}^2\, {\gamma}\, {\rho}^2\, \tau + 16\, {\alpha_{1}}^2\, {\gamma}\, \rho\, {\tau}^2 + 5\, {\alpha_{1}}^2\, {\gamma}\, {\tau}^3 + {\alpha_{1}}^2\, q^3\, \tau + 3\, {\alpha_{1}}^2\, q^2\, \rho\, \tau + 8\, {\alpha_{1}}^2\, q^2\, {\tau}^2 \\ &&+ 3\, {\alpha_{1}}^2\, q\, {\rho}^2\, \tau + 16\, {\alpha_{1}}^2\, q\, \rho\, {\tau}^2 + 5\, {\alpha_{1}}^2\, q\, {\tau}^3 + {\alpha_{1}}^2\, {\rho}^3\, \tau + 8\, {\alpha_{1}}^2\, {\rho}^2\, {\tau}^2 + 5\, {\alpha_{1}}^2\, \rho\, {\tau}^3 + \alpha_{1}\, {\alpha_{2}}^3\, {\tau}^2 \\ &&+ 3\, \alpha_{1}\, {\alpha_{2}}^2\, q\, {\tau}^2 + 3\, \alpha_{1}\, {\alpha_{2}}^2\, \rho\, {\tau}^2 + \alpha_{1}\, {\alpha_{2}}^2\, {\tau}^3 + 3\, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, {\tau}^2 + 6\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q\, {\tau}^2 + 6\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, \rho\, {\tau}^2 \\ &&+ 3\, \alpha_{1}\, \alpha_{2}\, q^2\, {\tau}^2 + 6\, \alpha_{1}\, \alpha_{2}\, q\, \rho\, {\tau}^2+ 2\, \alpha_{1}\, \alpha_{2}\, q\, {\tau}^3 + 3\, \alpha_{1}\, \alpha_{2}\, {\rho}^2\, {\tau}^2 + 2\, \alpha_{1}\, \alpha_{2}\, \rho\, {\tau}^3 + \alpha_{1}\, {{\gamma}}^3\, {\tau}^2 \\ && + 3\, \alpha_{1}\, {{\gamma}}^2\, \rho\, {\tau}^2+ \alpha_{1}\, {{\gamma}}^2\, {\tau}^3 + 3\, \alpha_{1}\, {\gamma}\, q^2\, {\tau}^2 + 6\, \alpha_{1}\, {\gamma}\, q\, \rho\, {\tau}^2 + 2\, \alpha_{1}\, {\gamma}\, q\, {\tau}^3 + 3\, \alpha_{1}\, {\gamma}\, {\rho}^2\, {\tau}^2 + 2\, \alpha_{1}\, {\gamma}\, \rho\, {\tau}^3 \\ &&+ \alpha_{1}\, q^3\, {\tau}^2 + 3\, \alpha_{1}\, q^2\, \rho\, {\tau}^2 + \alpha_{1}\, q^2\, {\tau}^3 + 3\, \alpha_{1}\, q\, {\rho}^2\, {\tau}^2 + 2\, \alpha_{1}\, q\, \rho\, {\tau}^3 + \alpha_{1}\, {\rho}^3\, {\tau}^2 + \alpha_{1}\, {\rho}^2\, {\tau}^3\\ &&+14\, {\alpha_{1}}^3\, \alpha_{2}\, {\gamma}\, \tau+ 21\, {\alpha_{1}}^3\, {\gamma}\, {\tau}^2+ 3\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, {\gamma}\, \tau+ 3\, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, {\tau}^2+ 2\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, {\tau}^3+ 3\, \alpha_{1}\, {{\gamma}}^2\, q\, {\tau}^2 . \end{eqnarray*} $ |
The formula of $f_{1}$, $f_{2}$, $f_{3}$.
$ \begin{eqnarray*} f_{1}& = &7\, {{\Phi}}^2\, {{\alpha}_{1}}^4 + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, {\alpha}_{2} + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, {\gamma} + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, q + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, {\rho} + 18\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, {\tau} + 6\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2 \\ &&+ 12\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma} + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q + 18\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho} + 21\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\tau} + 6\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {{\gamma}}^2 + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\gamma}\, q \\ &&+ 18\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\gamma}\, {\rho}+ 21\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\gamma}\, {\tau} + 6\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, q^2 + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, q\, {\rho} + 21\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, q\, {\tau} + 6\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {{\rho}}^2 \\ &&+ 21\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\rho}\, {\tau} + 13\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {{\tau}}^2 + {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^3 + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q + 7\, {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho} \\ &&+ 8\, {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2 + 6\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q + 14\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho} + 16\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, q^2 \\ &&+ 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho} + 16\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\tau} + 7\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2 + 14\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {\rho}\, {\tau} + 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {{\tau}}^2+ {{\Phi}}^2\, {\alpha}_{1}\, {{\gamma}}^3 \\ &&+ 3\, {{\Phi}}^2\, {\alpha}_{1}\, {{\gamma}}^2\, q + 7\, {{\Phi}}^2\, {\alpha}_{1}\, {{\gamma}}^2\, {\rho} + 8\, {{\Phi}}^2\, {\alpha}_{1}\, {{\gamma}}^2\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, q^2 + 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, q\, {\rho} + 16\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, q\, {\tau} \\ &&+ 14\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, {\rho}\, {\tau} + 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, {{\tau}}^2 + {{\Phi}}^2\, {\alpha}_{1}\, q^3 + 3\, {{\Phi}}^2\, {\alpha}_{1}\, q^2\, {\rho} + 8\, {{\Phi}}^2\, {\alpha}_{1}\, q^2\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, q\, {{\rho}}^2 \\ &&+ 10\, {{\Phi}}^2\, {\alpha}_{1}\, q\, {{\tau}}^2 + {{\Phi}}^2\, {\alpha}_{1}\, {{\rho}}^3 + 8\, {{\Phi}}^2\, {\alpha}_{1}\, {{\rho}}^2\, {\tau} + 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\rho}\, {{\tau}}^2 + 2\, {{\Phi}}^2\, {\alpha}_{1}\, {{\tau}}^3 + {{\Phi}}^2\, {{\alpha}_{2}}^3\, {\rho} + {{\Phi}}^2\, {{\alpha}_{2}}^3\, {\tau} \\ &&+ 3\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, {\gamma}\, {\tau} + 2\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, q\, {\rho} + 3\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, q\, {\tau} + {{\Phi}}^2\, {{\alpha}_{2}}^2\, {{\rho}}^2 + 2\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 2\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, {{\tau}}^2 + 3\, {{\Phi}}^2\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho} \\ &&+ 3\, {{\Phi}}^2\, {\alpha}_{2}\, {{\gamma}}^2\, {\tau} + 4\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, q\, {\rho} + 6\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, q\, {\tau} + 2\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2 + 4\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} + 4\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^2 \\ &&+ 3\, {{\Phi}}^2\, {\alpha}_{2}\, q^2\, {\tau} + 2\, {{\Phi}}^2\, {\alpha}_{2}\, q\, {{\rho}}^2 + 3\, {{\Phi}}^2\, {\alpha}_{2}\, q\, {\rho}\, {\tau} + 4\, {{\Phi}}^2\, {\alpha}_{2}\, q\, {{\tau}}^2 + {{\Phi}}^2\, {\alpha}_{2}\, {{\rho}}^3 + 2\, {{\Phi}}^2\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{2}\, {\rho}\, {{\tau}}^2 \\ && +{{\Phi}}^2\, {\alpha}_{2}\, {{\tau}}^3 + {{\Phi}}^2\, {{\gamma}}^3\, {\rho} + {{\Phi}}^2\, {{\gamma}}^3\, {\tau} + 2\, {{\Phi}}^2\, {{\gamma}}^2\, q\, {\rho} + 3\, {{\Phi}}^2\, {{\gamma}}^2\, q\, {\tau} + {{\Phi}}^2\, {{\gamma}}^2\, {{\rho}}^2 + 2\, {{\Phi}}^2\, {{\gamma}}^2\, {\rho}\, {\tau} + 2\, {{\Phi}}^2\, {{\gamma}}^2\, {{\tau}}^2\\ && + {{\Phi}}^2\, {\gamma}\, q^2\, {\rho} + 3\, {{\Phi}}^2\, {\gamma}\, q^2\, {\tau} + 2\, {{\Phi}}^2\, {\gamma}\, q\, {{\rho}}^2 + 3\, {{\Phi}}^2\, {\gamma}\, q\, {\rho}\, {\tau} + 4\, {{\Phi}}^2\, {\gamma}\, q\, {{\tau}}^2 + {{\Phi}}^2\, {\gamma}\, {{\rho}}^3 + 2\, {{\Phi}}^2\, {\gamma}\, {{\rho}}^2\, {\tau} \\ &&+ 3\, {{\Phi}}^2\, {\gamma}\, {\rho}\, {{\tau}}^2 + {{\Phi}}^2\, {\gamma}\, {{\tau}}^3 + {{\Phi}}^2\, q^3\, {\tau} + {{\Phi}}^2\, q^2\, {\rho}\, {\tau} + 2\, {{\Phi}}^2\, q^2\, {{\tau}}^2 + {{\Phi}}^2\, q\, {{\rho}}^2\, {\tau} + 2\, {{\Phi}}^2\, q\, {\rho}\, {{\tau}}^2 + {{\Phi}}^2\, q\, {{\tau}}^3 \\ &&+ {{\Phi}}^2\, {{\rho}}^3\, {\tau} + 2\, {{\Phi}}^2\, {{\rho}}^2\, {{\tau}}^2 + {{\Phi}}^2\, {\rho}\, {{\tau}}^3 + 6\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\rho} + 8\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\rho} + 8\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho}\\ && + 8\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\rho} + 8\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho}\, {\tau} + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\rho} + 4\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho} \\ &&+ 4\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {\rho} + 10\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho} + 4\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {\rho} \\ &&+ 10\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {\rho} + 10\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho}\, {\tau} \\ &&+ 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^3 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} + 2\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^3\, {{\rho}}^2 + 4\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\rho}}^2 + 4\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^2\, q\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^2\, {{\rho}}^3 \\ &&+ 2\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^2\, {{\rho}}^2\, {\tau} + 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\rho}}^2 + 4\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, q\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^3 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2\, {\tau}+ {{\Phi}}^2\, {\alpha}_{2}\, q^2\, {\rho} \\ &&+ 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, q^2\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, q\, {{\rho}}^3+ 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, q\, {{\rho}}^2\, {\tau}+ 3\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho}+ 7\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, {{\rho}}^2+ 10\, {{\Phi}}^2\, {\alpha}_{1}\, q\, {\rho}\, {\tau}, \\ f_{2}& = &6\, {\Phi}\, {{\alpha}_{1}}^5 + 9\, {\alpha}\, {{\alpha}_{1}}^4\, {\alpha}_{2}\, {\rho} + 11\, {\Phi}\, {{\alpha}_{1}}^4\, {\alpha}_{2} + 11\, {\Phi}\, {{\alpha}_{1}}^4\, {\gamma} + 11\, {\Phi}\, {{\alpha}_{1}}^4\, q + 11\, {\Phi}\, {{\alpha}_{1}}^4\, {\rho} + 26\, {\Phi}\, {{\alpha}_{1}}^4\, {\tau} \\ &&+ 15\, {\alpha}\, {{\alpha}_{1}}^3\, {{\alpha}_{2}}^2\, {\rho} + 6\, {\Phi}\, {{\alpha}_{1}}^3\, {{\alpha}_{2}}^2 + 15\, {\alpha}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\gamma}\, {\rho} + 12\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\gamma} + 15\, {\alpha}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, q\, {\rho} \\ &&+ 15\, {\alpha}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {{\rho}}^2 + 6\, {\alpha}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\rho}\, {\tau} + 18\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\rho} + 33\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\tau} + 6\, {\Phi}\, {{\alpha}_{1}}^3\, {{\gamma}}^2 + 12\, {\Phi}\, {{\alpha}_{1}}^3\, {\gamma}\, q \\ &&+ 18\, {\Phi}\, {{\alpha}_{1}}^3\, {\gamma}\, {\rho} + 33\, {\Phi}\, {{\alpha}_{1}}^3\, {\gamma}\, {\tau} + 6\, {\Phi}\, {{\alpha}_{1}}^3\, q^2 + 12\, {\Phi}\, {{\alpha}_{1}}^3\, q\, {\rho} + 33\, {\Phi}\, {{\alpha}_{1}}^3\, q\, {\tau} + 6\, {\Phi}\, {{\alpha}_{1}}^3\, {{\rho}}^2 \\ &&+ 27\, {\Phi}\, {{\alpha}_{1}}^3\, {{\tau}}^2 + 7\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^3\, {\rho} + {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^3 + 14\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho} + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\gamma} + 14\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, q\, {\rho}\\ && + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, q + 23\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {{\rho}}^2 + 8\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 8\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\rho} + 14\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\tau} \\ &&+ 3\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\gamma}}^2 + 14\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, q\, {\rho} + 6\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, q + 23\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2 + 8\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} \\ &&+ 16\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho} + 28\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\tau} + 7\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q^2\, {\rho} + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q^2+ 23\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {{\rho}}^2 \\ &&+ 8\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\rho}\, {\tau} + 11\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\rho} + 28\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\tau} + 7\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^3 + 8\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} \\ &&+ 8\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^2 + {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho}\, {{\tau}}^2 + 26\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho}\, {\tau} + 27\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\tau}}^2 + {\Phi}\, {{\alpha}_{1}}^2\, {{\gamma}}^3 + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, q \\ &&+ 8\, {\Phi}\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, {\rho} + 14\, {\Phi}\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, {\tau} + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, q^2 + 11\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, q\, {\rho} + 28\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, q\, {\tau} + 8\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, {{\rho}}^2 \\ &&+ 26\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, {\rho}\, {\tau} + 27\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, {{\tau}}^2 + {\Phi}\, {{\alpha}_{1}}^2\, q^3 + 3\, {\Phi}\, {{\alpha}_{1}}^2\, q^2\, {\rho} + 14\, {\Phi}\, {{\alpha}_{1}}^2\, q^2\, {\tau} + 3\, {\Phi}\, {{\alpha}_{1}}^2\, q\, {{\rho}}^2 \\ &&+ 19\, {\Phi}\, {{\alpha}_{1}}^2\, q\, {\rho}\, {\tau} + 27\, {\Phi}\, {{\alpha}_{1}}^2\, q\, {{\tau}}^2 + {\Phi}\, {{\alpha}_{1}}^2\, {{\rho}}^3 + 14\, {\Phi}\, {{\alpha}_{1}}^2\, {{\rho}}^2\, {\tau} + 27\, {\Phi}\, {{\alpha}_{1}}^2\, {\rho}\, {{\tau}}^2+ 7\, {\Phi}\, {{\alpha}_{1}}^2\, {{\tau}}^3 \\ &&+ {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^4\, {\rho} + 3\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\gamma}\, {\rho} + 3\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, q\, {\rho} + 9\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {{\rho}}^2 + 2\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\rho}\, {\tau} + {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\rho} \\ &&+ 2\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\tau} + 3\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\gamma}}^2\, {\rho} + 6\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, q\, {\rho} + 18\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\rho}}^2 + 4\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho}\, {\tau} \\ &&+ 6\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {\tau} + 3\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q^2\, {\rho} + 18\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {{\rho}}^2 + 4\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {\rho}\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {\rho} \\ &&+ 9\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\rho}}^3 + 10\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\rho}}^2\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\rho}}^2 + {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho}\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 9\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\tau}}^2 \\ &&+ {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^3\, {\rho} + 3\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, q\, {\rho} + 9\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\rho}}^2 + 2\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho}\, {\tau} + 3\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho} \\ &&+ 3\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q^2\, {\rho} + 18\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {{\rho}}^2 + 4\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {\rho}\, {\tau} + 4\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {\rho} + 12\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {\tau} \\ &&+ 9\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^3 + 10\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2\, {\tau} + 4\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2 + {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {{\tau}}^2 + 10\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} \\ &&+ 18\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^2 + {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q^3\, {\rho} + 9\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {{\rho}}^2 + 2\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {\rho}\, {\tau} + {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {\rho} + 6\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {\tau} \\ &&+ 9\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\rho}}^3 + 10\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\rho}}^2\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\rho}}^2 + {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho}\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho}\, {\tau} \\ &&+ {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^4+ 2\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^3\, {\tau} + {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^3 + {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} + 15\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\rho}\, {{\tau}}^2 \\ &&+ 5\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\tau}}^3 + {\Phi}\, {\alpha}_{1}\, {{\gamma}}^3\, {\rho} + 2\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^3\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, q\, {\rho} + 6\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, q\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, {{\rho}}^2 \\ &&+ 9\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, {{\tau}}^2 + {\Phi}\, {\alpha}_{1}\, {\gamma}\, q^2\, {\rho} + 6\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, q^2\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, q\, {{\rho}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, q\, {\rho}\, {\tau} + 18\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, q\, {{\tau}}^2 \\ &&+ {\Phi}\, {\alpha}_{1}\, {\gamma}\, {{\rho}}^3 + 5\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, {{\rho}}^2\, {\tau} + 15\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, {\rho}\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, {{\tau}}^3 + 2\, {\Phi}\, {\alpha}_{1}\, q^3\, {\tau} + 9\, {\Phi}\, {\alpha}_{1}\, q^2\, {{\tau}}^2 \\ &&+ 5\, {\Phi}\, {\alpha}_{1}\, q\, {{\tau}}^3 + 2\, {\Phi}\, {\alpha}_{1}\, {{\rho}}^3\, {\tau} + 9\, {\Phi}\, {\alpha}_{1}\, {{\rho}}^2\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\rho}\, {{\tau}}^3 + {\alpha}\, {{\alpha}_{2}}^4\, {{\rho}}^2 + 3\, {\alpha}\, {{\alpha}_{2}}^3\, {\gamma}\, {{\rho}}^2 + 3\, {\alpha}\, {{\alpha}_{2}}^3\, q\, {{\rho}}^2 \\ &&+ 2\, {\alpha}\, {{\alpha}_{2}}^3\, {{\rho}}^3+ 2\, {\alpha}\, {{\alpha}_{2}}^3\, {{\rho}}^2\, {\tau} + {\Phi}\, {{\alpha}_{2}}^3\, {{\tau}}^2 + 3\, {\alpha}\, {{\alpha}_{2}}^2\, {{\gamma}}^2\, {{\rho}}^2 + 6\, {\alpha}\, {{\alpha}_{2}}^2\, {\gamma}\, q\, {{\rho}}^2 + 4\, {\alpha}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\rho}}^3 \\ &&+ 3\, {\Phi}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\tau}}^2 + 3\, {\alpha}\, {{\alpha}_{2}}^2\, q^2\, {{\rho}}^2 + 4\, {\alpha}\, {{\alpha}_{2}}^2\, q\, {{\rho}}^3 + 4{\alpha}\, {{\alpha}_{2}}^2\, q\, {{\rho}}^2\, {\tau} + {\Phi}\, {{\alpha}_{2}}^2\, q\, {{\tau}}(3\tau-\rho) + {\alpha}\, {{\alpha}_{2}}^2\, {{\rho}}^4 \\ &&+ 2\, {\alpha}\, {{\alpha}_{2}}^2\, {{\rho}}^3\, {\tau} + {\alpha}\, {{\alpha}_{2}}^2\, {{\rho}}^2\, {{\tau}}^2 + 2\, {\Phi}\, {{\alpha}_{2}}^2\, {\rho}\, {{\tau}}^2 + {\Phi}\, {{\alpha}_{2}}^2\, {{\tau}}^3 + {\alpha}\, {\alpha}_{2}\, {{\gamma}}^3\, {{\rho}}^2 + 3\, {\alpha}\, {\alpha}_{2}\, {{\gamma}}^2\, q\, {{\rho}}^2 + 2\, {\alpha}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\rho}}^3 \\ &&+ 2\, {\alpha}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\rho}}^2\, {\tau} + 3\, {\Phi}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\tau}}^2 + 3\, {\alpha}\, {\alpha}_{2}\, {\gamma}\, q^2\, {{\rho}}^2 + 4\, {\alpha}\, {\alpha}_{2}\, {\gamma}\, q\, {{\rho}}^3 + 4\, {\alpha}\, {\alpha}_{2}\, {\gamma}\, q\, {{\rho}}^2\, {\tau} \\ && + {\alpha}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^4 + 2\, {\alpha}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^3\, {\tau} + {\alpha}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2\, {{\tau}}^2 + 4\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {{\tau}}^2 + 2\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^3 + {\alpha}\, {\alpha}_{2}\, q^3\, {{\rho}}^2 \\ &&+ 2\, {\alpha}\, {\alpha}_{2}\, q^2\, {{\rho}}^3+ 2\, {\alpha}\, {\alpha}_{2}\, q^2\, {{\rho}}^2\, {\tau}+{\Phi}\, {\alpha}_{2}\, q^2\, {{\tau}}(3\tau-2\rho) + {\alpha}\, {\alpha}_{2}\, q\, {{\rho}}^4 + 2\, {\alpha}\, {\alpha}_{2}\, q\, {{\rho}}^3\, {\tau} + {\alpha}\, {\alpha}_{2}\, q\, {{\rho}}^2\, {{\tau}}^2 \\ &&+{\Phi}\, {\alpha}_{2}\, q\, {\rho}\, {{\tau}}(3\tau-2\rho) + 2\, {\Phi}\, {\alpha}_{2}\, q\, {{\tau}}^3 + 2\, {\Phi}\, {\alpha}_{2}\, {{\rho}}^2\, {{\tau}}^2 + {\Phi}\, {\alpha}_{2}\, {\rho}\, {{\tau}}^3 + {\Phi}\, {{\gamma}}^3\, {{\tau}}^2+ {\Phi}\, {{\rho}}^2\, {{\tau}}^3\\ &&+{\Phi}\, {{\gamma}}^2\, q\, {{\tau}}(3\tau-\rho) + 2\, {\Phi}\, {{\gamma}}^2\, {\rho}\, {{\tau}}^2 + {\Phi}\, {{\gamma}}^2\, {{\tau}}^3+{\Phi}\, {\gamma}\, q^2\, {{\tau}}(3\tau-2\rho)+ {\Phi}\, {\gamma}\, q\, {\rho}\, {{\tau}}(3\tau-2\rho) \\ &&+ 2\, {\Phi}\, {\gamma}\, q\, {{\tau}}^3 + 2\, {\Phi}\, {\gamma}\, {{\rho}}^2\, {{\tau}}^2 + {\Phi}\, {\gamma}\, {\rho}\, {{\tau}}^3+ {\Phi}\, q^3\, {{\tau}}(\tau-\rho) + {\Phi}\, q^2\, {\rho}\, {{\tau}}(\tau-\rho) + {\Phi}q^2{{\tau}}(\tau^2-\rho^2)\\ &&+{\Phi}\, q\, {{\rho}}^2{{\tau}}(\tau-\rho) + {\Phi}\, q\, {\rho}\, {{\tau}}^3 + {\Phi}\, {{\rho}}^3\, {{\tau}}^2+ 7\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho}+ 3\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho}+ 6\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {\tau}\\ &&+ 6\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {\tau}+ 18\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\tau}}^2+ 5\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, {\rho}\, {\tau}+ 12\, {\Phi}\, {\alpha}_{1}\, q\, {\rho}\, {{\tau}}^2+ 4\, {\alpha}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\rho}}^2\, {\tau}\\ &&+ {\Phi}\, {\alpha}_{2}\, {\gamma}\, q\, {{\tau}}(6\tau-2\rho)+ 33\, {\Phi}\, {{\alpha}_{1}}^3\, {\rho}\, {\tau}+ 12\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, q, \\ f_{3}& = &12\, {{\alpha}_{1}}^5\, {\tau} + 16\, {{\alpha}_{1}}^4\, {\alpha}_{2}\, {\tau} + 16\, {{\alpha}_{1}}^4\, {\gamma}\, {\tau} + 16\, {{\alpha}_{1}}^4\, q\, {\tau} + 16\, {{\alpha}_{1}}^4\, {\rho}\, {\tau} + 18\, {{\alpha}_{1}}^4\, {{\tau}}^2 + 7\, {{\alpha}_{1}}^3\, {{\alpha}_{2}}^2\, {\tau} \\ &&+ 14\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, q\, {\tau} + 14\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\rho}\, {\tau} + 21\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {{\tau}}^2 + 7\, {{\alpha}_{1}}^3\, {{\gamma}}^2\, {\tau} + 14\, {{\alpha}_{1}}^3\, {\gamma}\, q\, {\tau} + 14\, {{\alpha}_{1}}^3\, {\gamma}\, {\rho}\, {\tau}\\ &&+ 7\, {{\alpha}_{1}}^3\, q^2\, {\tau} + 14\, {{\alpha}_{1}}^3\, q\, {\rho}\, {\tau} + 21\, {{\alpha}_{1}}^3\, q\, {{\tau}}^2 + 7\, {{\alpha}_{1}}^3\, {{\rho}}^2\, {\tau} + 21\, {{\alpha}_{1}}^3\, {\rho}\, {{\tau}}^2 + 6\, {{\alpha}_{1}}^3\, {{\tau}}^3 + {{\alpha}_{1}}^2\, {{\alpha}_{2}}^3\, {\tau} \\ &&+ 3\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, q\, {\tau} + 3\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 8\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\gamma}}^2\, {\tau} + 6\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, q\, {\tau} + 6\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} \\ &&+ 16\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q^2\, {\tau} + 6\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\rho}\, {\tau} + 16\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} + 16\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho}\, {{\tau}}^2 \\ &&+ 5\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\tau}}^3 + {{\alpha}_{1}}^2\, {{\gamma}}^3\, {\tau} + 3\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, q\, {\tau} + 3\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, {\rho}\, {\tau} + 8\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\gamma}\, q^2\, {\tau} + 6\, {{\alpha}_{1}}^2\, {\gamma}\, q\, {\rho}\, {\tau} \\ &&+ 16\, {{\alpha}_{1}}^2\, {\gamma}\, q\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\gamma}\, {{\rho}}^2\, {\tau} + 16\, {{\alpha}_{1}}^2\, {\gamma}\, {\rho}\, {{\tau}}^2 + 5\, {{\alpha}_{1}}^2\, {\gamma}\, {{\tau}}^3 + {{\alpha}_{1}}^2\, q^3\, {\tau} + 3\, {{\alpha}_{1}}^2\, q^2\, {\rho}\, {\tau} + 8\, {{\alpha}_{1}}^2\, q^2\, {{\tau}}^2 \\ &&+ 3\, {{\alpha}_{1}}^2\, q\, {{\rho}}^2\, {\tau} + 16\, {{\alpha}_{1}}^2\, q\, {\rho}\, {{\tau}}^2 + 5\, {{\alpha}_{1}}^2\, q\, {{\tau}}^3 + {{\alpha}_{1}}^2\, {{\rho}}^3\, {\tau} + 8\, {{\alpha}_{1}}^2\, {{\rho}}^2\, {{\tau}}^2 + 5\, {{\alpha}_{1}}^2\, {\rho}\, {{\tau}}^3 + {\alpha}_{1}\, {{\alpha}_{2}}^3\, {{\tau}}^2 \\ &&+ 3\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {{\tau}}^2 + 3\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho}\, {{\tau}}^2 + {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\tau}}^3 + 3\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\tau}}^2 + 6\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {{\tau}}^2 + 6\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {{\tau}}^2 \\ &&+ 3\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {{\tau}}^2 + 6\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho}\, {{\tau}}^2+ 2\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\tau}}^3 + 3\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2\, {{\tau}}^2 + 2\, {\alpha}_{1}\, {\alpha}_{2}\, {\rho}\, {{\tau}}^3 + {\alpha}_{1}\, {{\gamma}}^3\, {{\tau}}^2 \\ && + 3\, {\alpha}_{1}\, {{\gamma}}^2\, {\rho}\, {{\tau}}^2+ {\alpha}_{1}\, {{\gamma}}^2\, {{\tau}}^3 + 3\, {\alpha}_{1}\, {\gamma}\, q^2\, {{\tau}}^2 + 6\, {\alpha}_{1}\, {\gamma}\, q\, {\rho}\, {{\tau}}^2 + 2\, {\alpha}_{1}\, {\gamma}\, q\, {{\tau}}^3 + 3\, {\alpha}_{1}\, {\gamma}\, {{\rho}}^2\, {{\tau}}^2 + 2\, {\alpha}_{1}\, {\gamma}\, {\rho}\, {{\tau}}^3 \\ &&+ {\alpha}_{1}\, q^3\, {{\tau}}^2 + 3\, {\alpha}_{1}\, q^2\, {\rho}\, {{\tau}}^2 + {\alpha}_{1}\, q^2\, {{\tau}}^3 + 3\, {\alpha}_{1}\, q\, {{\rho}}^2\, {{\tau}}^2 + 2\, {\alpha}_{1}\, q\, {\rho}\, {{\tau}}^3 + {\alpha}_{1}\, {{\rho}}^3\, {{\tau}}^2 + {\alpha}_{1}\, {{\rho}}^2\, {{\tau}}^3\\ &&+14\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\gamma}\, {\tau}+ 21\, {{\alpha}_{1}}^3\, {\gamma}\, {{\tau}}^2+ 3\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\gamma}\, {\tau}+ 3\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\tau}}^2+ 2\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^3+ 3\, {\alpha}_{1}\, {{\gamma}}^2\, q\, {{\tau}}^2 . \end{eqnarray*} $ |
[1] |
Besag J, York J, Mollie A (1991) Bayesian image restoration with two applications in spatial statistics. Annals Institute Stat Mathe 43: 1-59. doi: 10.1007/BF00116466
![]() |
[2] | Congdon P (2003) Applied Bayesian Modelling. Chichester: John Wiley, 276-281. |
[3] |
Graham P (2008) Intelligent smoothing using hierarchical Bayesian models. Epidemiology 19: 493-495. doi: 10.1097/EDE.0b013e31816b7859
![]() |
[4] |
Ryan L (2009) Spatial epidemiology: some pitfalls and opportunities. Epidemiology 20: 242-244. doi: 10.1097/EDE.0b013e318198a5fb
![]() |
[5] | Waller LA, Gotway CA (2004) Applied spatial statistics for public health data. Hoboken, N.J.: John Wiley & Sons, 259-260. |
[6] | Conlon EM, Waller LA (1998) Flexible neighborhood structures in hierarchical models for disease mapping. University of Minnesota Biostatistics Research Report, No rr98-018: Division of Biostatistics, University of Minnesota. |
[7] |
Lee D, Mitchell R (2012) Boundary detection in disease mapping studies. Biostatistics 13: 415-426. doi: 10.1093/biostatistics/kxr036
![]() |
[8] | Lu H, Reilly CS, Banerjee S, et al. (2007) Bayesian areal wombling via adjacency modeling. EnvirEcolog Stat 14: 433-452. |
[9] |
Ma H, Carlin BP (2007) Bayesian multivariate areal wombling for multiple disease boundary analysis. Bayesian analysis 2: 281-302. doi: 10.1214/07-BA211
![]() |
[10] |
Lee D, Rushworth A, Sahu SK (2014) A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution. Biometrics 70: 419-429. doi: 10.1111/biom.12156
![]() |
[11] |
Chan WC, Law J, Seliske P (2012) Bayesian spatial methods for small-area injury analysis: a study of geographical variation of falls in older people in the Wellington-Dufferin-Guelph health region of Ontario, Canada. Injury Preve 18: 303-308. doi: 10.1136/injuryprev-2011-040068
![]() |
[12] | Ministry of Health and Long-term Care. Fall-Related Hospitalizations Among Seniors, 2011. Available from http://www.health.gov.on.ca/english/public/pub/pubhealth/init_report/fhas.html. |
[13] | Congdon P (2006) Bayesian Statistical Modelling, Second Edition. Chichester: John Wiley, 303-310. |
[14] |
Law J, Haining RP (2004) A Bayesian Approach to Modelling Binary Data: the Case of High-intensity Crime Areas. Geog Analysis 36: 197-216. doi: 10.1111/j.1538-4632.2004.tb01132.x
![]() |
[15] | Kelsall JE, Wakefield JC (1999) Discussion of 'Bayesian models for spatially correlated disease and exposure data' by Best et al. In: Bernardo JM, Berger JO, David AP et al., editors. Bayesian Statistics 6: Oxford University Press. pp. 151. |
[16] | U.S. Geological Survey Adjacency for WinBUGS tool, 2015. Available from http://www.umesc.usgs.gov/management/dss/adjacency_tool.html. |
[17] |
Law J, Quick M (2013) Exploring links between juvenile offenders and social disorganization at a large map scale: a Bayesian spatial modeling approach. J Geog Sys 15: 89-113. doi: 10.1007/s10109-012-0164-1
![]() |
[18] | Spiegelhalter DJ, Best N, Carlin BP, et al. (2001) Bayesian measures of model complexity and fit. Medical Research Council Biostatistics Unit, Cambridge, UK. |
[19] | Best N, Arnold R, Thomas A, et al. (1999) Bayesian models for spatially correlated disease and exposure data. In: Bernardo JM, Berger JO, David AP et al., editors. Bayesian Statistics 6. Oxford: Oxford University Press. pp. 131-156. |
[20] |
Assuncao R, Krainski E (2009) Neighborhood dependence in Bayesian spatial models. Biometrical J 51: 851-869. doi: 10.1002/bimj.200900056
![]() |
1. | Fernando Antunes, Paula Matos Brito, Quantitative biology of hydrogen peroxide signaling, 2017, 13, 22132317, 1, 10.1016/j.redox.2017.04.039 | |
2. | Tamar Friedlander, Roshan Prizak, Călin C. Guet, Nicholas H. Barton, Gašper Tkačik, Intrinsic limits to gene regulation by global crosstalk, 2016, 7, 2041-1723, 10.1038/ncomms12307 | |
3. | Michał Komorowski, Dan S. Tawfik, The Limited Information Capacity of Cross-Reactive Sensors Drives the Evolutionary Expansion of Signaling, 2019, 8, 24054712, 76, 10.1016/j.cels.2018.12.006 | |
4. | Alejandra C. Ventura, Alan Bush, Gustavo Vasen, Matías A. Goldín, Brianne Burkinshaw, Nirveek Bhattacharjee, Albert Folch, Roger Brent, Ariel Chernomoretz, Alejandro Colman-Lerner, Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range, 2014, 111, 0027-8424, E3860, 10.1073/pnas.1322761111 | |
5. | Damon A. Clark, Raphael Benichou, Markus Meister, Rava Azeredo da Silveira, Lyle J. Graham, Dynamical Adaptation in Photoreceptors, 2013, 9, 1553-7358, e1003289, 10.1371/journal.pcbi.1003289 | |
6. | Ilan Smoly, Haim Elbaz, Chaim Engelen, Tahel Wechsler, Gal Elbaz, Giora Ben-Ari, Alon Samach, Tamar Friedlander, John Lunn, A model estimating the level of floral transition in olive trees exposed to warm periods during winter, 2024, 0022-0957, 10.1093/jxb/erae459 |
Parameter | Description | Value | Source |
$ \Lambda $ | The constant recruitment rate of the population | $ 0.7-0.8 day^{-1} $ | [30] |
$ \beta $ | Transmission coefficient from the moderate drinkers | ||
compartment to the light problem drinkers compartment | $ 0.0099 - 0.9 person^{-1} $ | Estimate | |
$ \alpha $ | The coefficient that determines how effective the positive | ||
drinking information can reduce the transmission rate | $ 0.00091 - 0.8 tweet^{-1} $ | Estimate | |
$ \rho $ | Transmission coefficient from the light problem drinkers | ||
compartment to the heavy problem drinkers compartment | $ 0.04 - 0.99 day^{-1} $ | Estimate | |
$ {\mu_1} $ | The rates that the moderate drinkers may tweet | ||
about alcoholism during an alcoholism occasion | $ 0 - 1 day^{-1} $ | [11] | |
$ {\mu_2} $ | The rates that the light problem drinkers may tweet | ||
about alcoholism during an alcoholism occasion | $ 0 - 1 day^{-1} $ | [11] | |
$ {\mu_3} $ | The rates that the heavy problem drinkers may tweet | ||
about alcoholism during an alcoholism occasion | $ 0 - 1 day^{-1} $ | [11] | |
$ {\mu_4} $ | The rates that quitting drinkers may tweet | ||
about alcoholism during an alcoholism occasion | $ 0 - 1 day^{-1} $ | [13] | |
$ {\alpha_1} $ | The natural death rate of the population | $ 0.009 - 0.6year^{-1} $ | [4,5] |
$ {\alpha_2} $ | The death rate due to heavy alcoholism | $ 0.02 - 0.5day^{-1} $ | Estimate |
$ q $ | Transmission coefficient from the heavy problem drinkers | ||
compartment to the moderate drinkers compartment | $ 0.006 - 0.99day^{-1} $ | Estimate | |
$ \gamma $ | Transmission coefficient from the heavy problem drinkers | ||
compartment to quitting drinkers compartment | $ 0.006 - 0.99day^{-1} $ | Estimate | |
$ {\tau} $ | The rate that message become outdated | $ 0.03 - 0.6year^{-1} $ | [11] |
Parameter | Description | Value | Source |
$ \Lambda $ | The constant recruitment rate of the population | $ 0.7-0.8 day^{-1} $ | [30] |
$ \beta $ | Transmission coefficient from the moderate drinkers | ||
compartment to the light problem drinkers compartment | $ 0.0099 - 0.9 person^{-1} $ | Estimate | |
$ \alpha $ | The coefficient that determines how effective the positive | ||
drinking information can reduce the transmission rate | $ 0.00091 - 0.8 tweet^{-1} $ | Estimate | |
$ \rho $ | Transmission coefficient from the light problem drinkers | ||
compartment to the heavy problem drinkers compartment | $ 0.04 - 0.99 day^{-1} $ | Estimate | |
$ {\mu_1} $ | The rates that the moderate drinkers may tweet | ||
about alcoholism during an alcoholism occasion | $ 0 - 1 day^{-1} $ | [11] | |
$ {\mu_2} $ | The rates that the light problem drinkers may tweet | ||
about alcoholism during an alcoholism occasion | $ 0 - 1 day^{-1} $ | [11] | |
$ {\mu_3} $ | The rates that the heavy problem drinkers may tweet | ||
about alcoholism during an alcoholism occasion | $ 0 - 1 day^{-1} $ | [11] | |
$ {\mu_4} $ | The rates that quitting drinkers may tweet | ||
about alcoholism during an alcoholism occasion | $ 0 - 1 day^{-1} $ | [13] | |
$ {\alpha_1} $ | The natural death rate of the population | $ 0.009 - 0.6year^{-1} $ | [4,5] |
$ {\alpha_2} $ | The death rate due to heavy alcoholism | $ 0.02 - 0.5day^{-1} $ | Estimate |
$ q $ | Transmission coefficient from the heavy problem drinkers | ||
compartment to the moderate drinkers compartment | $ 0.006 - 0.99day^{-1} $ | Estimate | |
$ \gamma $ | Transmission coefficient from the heavy problem drinkers | ||
compartment to quitting drinkers compartment | $ 0.006 - 0.99day^{-1} $ | Estimate | |
$ {\tau} $ | The rate that message become outdated | $ 0.03 - 0.6year^{-1} $ | [11] |