$ \alpha_{p} $ | $ 0.06 $ | $ 0.07 $ | $ 0.08 $ | $ 0.09 $ | $ 0.1 $ |
$ \theta_{\max} $ | $ 0.5843 $ | $ 0.5459 $ | $ 0.5080 $ | $ 0.4708 $ | $ 0.4341 $ |
Citation: Maria Kristina Parr, Anna Müller-Schöll. Pharmacology of doping agents—mechanisms promoting muscle hypertrophy[J]. AIMS Molecular Science, 2018, 5(2): 131-159. doi: 10.3934/molsci.2018.2.131
[1] | Luyao Li, Licheng Fang, Huan Liang, Tengda Wei . Observer-based event-triggered impulsive control of delayed reaction-diffusion neural networks. Mathematical Biosciences and Engineering, 2025, 22(7): 1634-1652. doi: 10.3934/mbe.2025060 |
[2] | Guodong Zhao, Haitao Li, Ting Hou . Survey of semi-tensor product method in robustness analysis on finite systems. Mathematical Biosciences and Engineering, 2023, 20(6): 11464-11481. doi: 10.3934/mbe.2023508 |
[3] | Mingxia Gu, Zhiyong Yu, Haijun Jiang, Da Huang . Distributed consensus of discrete time-varying linear multi-agent systems with event-triggered intermittent control. Mathematical Biosciences and Engineering, 2024, 21(1): 415-443. doi: 10.3934/mbe.2024019 |
[4] | Siyu Li, Shu Li, Lei Liu . Fuzzy adaptive event-triggered distributed control for a class of nonlinear multi-agent systems. Mathematical Biosciences and Engineering, 2024, 21(1): 474-493. doi: 10.3934/mbe.2024021 |
[5] | Raquel Caballero-Águila, María J. García-Ligero, Aurora Hermoso-Carazo, Josefa Linares-Pérez . Unreliable networks with random parameter matrices and time-correlated noises: distributed estimation under deception attacks. Mathematical Biosciences and Engineering, 2023, 20(8): 14550-14577. doi: 10.3934/mbe.2023651 |
[6] | Wenjing Wang, Jingjing Dong, Dong Xu, Zhilian Yan, Jianping Zhou . Synchronization control of time-delay neural networks via event-triggered non-fragile cost-guaranteed control. Mathematical Biosciences and Engineering, 2023, 20(1): 52-75. doi: 10.3934/mbe.2023004 |
[7] | Yilin Tu, Jin-E Zhang . Event-triggered impulsive control for input-to-state stability of nonlinear time-delay system with delayed impulse. Mathematical Biosciences and Engineering, 2025, 22(4): 876-896. doi: 10.3934/mbe.2025031 |
[8] | Qiushi Wang, Hongwei Ren, Zhiping Peng, Junlin Huang . Dynamic event-triggered consensus control for nonlinear multi-agent systems under DoS attacks. Mathematical Biosciences and Engineering, 2024, 21(2): 3304-3318. doi: 10.3934/mbe.2024146 |
[9] | Bing Shang, Jin-E Zhang . Stability of nonlinear stochastic systems under event-triggered impulsive control with distributed-delay impulses. Mathematical Biosciences and Engineering, 2025, 22(9): 2339-2359. doi: 10.3934/mbe.2025085 |
[10] | Xinggui Zhao, Bo Meng, Zhen Wang . Event-triggered integral sliding mode control for uncertain networked linear control systems with quantization. Mathematical Biosciences and Engineering, 2023, 20(9): 16705-16724. doi: 10.3934/mbe.2023744 |
Networked control systems (NCSs) have been widely studied and applied in many fields in the past few decades, including DC motor [1], intelligent transportation [2], teleoperation [3], etc. Compared with traditional feedback control systems, the components in NCSs transmit data packets through communication networks, which reduce wiring requirements, save installation costs, and improve the maintainability [4]. However, public and open communication networks are vulnerable to malicious attacks by hackers. Cyber attacks can not only disrupt data transmission but also indirectly cause controlled plants to malfunction and stop operating by injecting fake data [5]. For example, in 2011, the "Stuxnet" virus invaded Iran's Bolshevik nuclear power plant, causing massive damage to its nuclear program [6]; in 2015, the "BlackEnergy" trojan virus successfully attacked Ukraine's power companies and cut off the local power supply [7]. Therefore, the security of NCS under cyber attacks has received increasing attention, and many illuminating results have been reported (see surveys [8,9]).
Current cyber-attacks may be roughly divided into two categories: denial of service (DoS) attacks and deception attacks. DoS attacks can cause network congestion or paralysis by sending a large amount of useless request information, thereby blocking the transmission of signals [10,11]. Compared to the simple and direct blocking of signal transmission in DoS attacks, deception attacks are more subtle and difficult to detect. More specifically, deception attacks compromise data integrity by hijacking sensors to tamper with measurement data and control signals. In some cases, they may be more damaging than DoS attacks [12]. Therefore, many researchers have conducted analysis and synthesis of NCSs under deception attacks. For instance, Du et al. [13] presented stability conditions for wireless NCSs subjected to deception attacks on the data link layer, and determined the maximum permissible deception attack time. Hu et al. [14] examined discrete-time stochastic NCSs with deception attacks and packet loss, and gave security analysis and controller design. In [15], Gao et al. investigated nonlinear NCSs faced with several types of deception attacks, and proposed asynchronous observer design strategies. Notably, the existing literature characterized the random occurrence of deception attacks by introducing a stochastic variable that obeys the Bernoulli distribution with a fixed probability, which is over-limited in reality.
In previous literature on NCSs, control tasks are often executed in a fixed/variable period, giving rise to the so-called sampled-data control (time-triggered control) [16,17,18,19]. Although this control scheme is simple and easy to implement, it has two shortcomings. On the one hand, to stabilize the system in some extreme scenarios, it is necessary to set a small sampling interval, which results in a large number of redundant data packets and may cause network congestion. On the other hand, due to the lack of a judgment condition for the system state, even if the stabilization of the system is achieved, the sampling task will not stop, which is undoubtedly a waste of network resources. In contrast to the time-triggered scheme (TTS), the event-triggered scheme (ETS) can significantly conquer these shortcomings and save communication resources [20,21,22]. In the ETS, the execution frequency of the control task is limited by introducing an event generator. That is, only when the change in system state exceeds a given threshold, an event will be generated and the controller will execute [23,24,25]. Based on the above facts, a multitude of studies have been conducted on event-triggered control for NCSs suffering from deception attacks (see [26,27,28,29,30]). However, most ETS designs under deception attacks adopted the periodic event-triggered scheme (PETS). The PETS can avoid the Zeno phenomenon by periodically checking the event trigger conditions but inevitably lose some system state information. To resolve this contradiction, Selivanov et al. proposed a switched event-triggered scheme (SETS) [31]. By switching between TTS and continuous event triggering [32], the SETS not only avoids the Zeno phenomenon, but also fully utilizes the system information, thereby further reducing the number of event triggers [33,34,35,36].
Inspired by the above facts, the subject of this study is SETS-based stabilization for NCSs under random deception attacks. By means of the Lyapunov function method, a sufficient condition is developed to assure that the close-loop system is mean square exponentially (MSE) stable. Then, a co-design of the trigger and feedback-gain matrices for the SETS-based controller is presented in terms of linear matrix inequalities (LMIs), which can be checked easily. The major contributions can be outlined as follows: 1) A new SETS (NSETS), which additionally introduces a term concerning the last event triggering time, is designed. In contrast to the SETS in [31], the NSETS can further reduce the number of trigger times while maintaining performance. 2) Compared with the existing literature (see, e.g., [28,29,30]), the occurrence of deception attacks under our consideration is assumed to be a time-dependent stochastic variable that obeys the Bernoulli distribution with probability uncertainty, which is more realistic. 3) Stability analysis criterion and computationally tractable controller design strategy are presented by utilizing a piecewise-defined Lyapunov function together with a few matrix inequalities.
Notation. In this paper, we use $ \mathbb{R}^{m\times n} $ and $ \mathbb{R}^{m} $ to denote $ m\times n $-dimensional real matrices and $ m $-dimensional Euclidean space, respectively. For each $ Z \in \mathbb{R}^{m\times n} $, we use $ Z < 0 $ $ (Z\leq 0) $ to indicate that the matrix $ Z $ is real symmetric negative definite (semi-negative definite), $ \mathcal{S}\{Z\} $ to denote the sum of $ Z+Z^{T} $, and $ \lambda_{M}(Z) $ and $ \lambda_{m}(Z) $ to represent the maximum eigenvalue and the minimum eigenvalue of the symmetric matrix $ Z $, respectively. We use $ ||\cdot|| $, $ \mathcal{P}_{r} $, and $ \mathcal{E} $ to represent the Euclidean norm, probability operator, and expectation operator, respectively. In addition, we use $ diag\{\cdot\} $ to denote a diagonal matrix and $ * $ to denote a symmetric term in a symmetric matrix.
In this section, we first give the system description, deception-attack model, and NSETS design, and then formulate the switched closed-loop system.
Consider a linear time-invariant system (LTIS) described as
$ ˙x(t)=Ax(t)+Bu(t). $
|
(2.1) |
In system (2.1), $ {A} $ and $ {{B}} $ are known system matrices of suitable dimensions, $ x(t)\in \mathbb{R}^{n_{x}} $, $ u(t)\in \mathbb{R}^{n_{u}} $, denote the state, control input, respectively.
In the event-triggered NCS, an event generator is used to determine whether the lately sampled data should be forwarded to the controller. When cyber-attacks do not happen, any state signals that satisfy the triggering condition can be received successfully by the controller, and the corresponding control signals can be received successfully by the actuator. However, when the communication network is subject to deception attacks, the control signal will be substituted with fake data, the performance of the controller will inevitably decline, and even lead to system instability in some extreme cases.
In view of the openness of network protocols, it is quite possible that attackers can inject the information transmitted in NCSs with fake data. In this paper, we suppose that the deception signal $ d (x(t)) $ satisfying Assumption 1 will totally substitute the original transmission data.
Assumption 1. [26] The signal of deception attack $ d(x(t)) $ satisfies
$ ||d(x(t))||≤||Dx(t)||, $
|
(2.2) |
where $ D $ is a real constant matrix.
To demonstrate the randomness of deception attacks, a Bernoulli variable $ \beta(t) \in \{0, 1\} $ with uncertain probability is introduced:
$ Pr(β(t)=1)=α+Δα(t), Pr(β(t)=0)=1−α−Δα(t). $
|
(2.3) |
Clearly, $ \mathcal{E}\{\beta(t)\} = \alpha +\Delta \alpha (t) $. Then, the signal transmitted under deception attacks can be presented as
$ ˜x(t)=(1−β(t))d(x(t))+β(t)x(t). $
|
Remark 2.1. Motivated by [26,27,28,29,30], the deception attacks are assumed to be randomly occurring. However, different from these references, this paper supposes that the probability of deception attack occurrence allows for some uncertainty; that is, there is a small positive constant $ \bar{\alpha} $ such that $ ||\Delta \alpha (t)||\leq \bar{\alpha} $.
Taking into consideration the constrained network resources, a NSETS is devised as follows:
$ tσ+1=min{t≥tσ+h∣[x(t)−x(tσ)]TM[x(t)−x(tσ)]>ε1xT(t)Mx(t)+ε2xT(tσ)Mx(tσ)}, $
|
(2.4) |
where $ t_{\sigma} $ is the last triggering moment with $ \sigma\in \mathbb{N} $, $ M > 0 $ is a trigger matrix to be determined, $ h > 0 $ and $ \varepsilon_{i} $ ($ i\in \{1, 2\} $) are predefined parameters that stand for the waiting interval and triggering thresholds, respectively.
Remark 2.2. Inspired by [31,33,34,35,36], the SETS is used in this paper. However, unlike the existing SETSs, the proposed NSETS introduces an additional term $ \varepsilon_{2} x^{T}(t_{\sigma})M x(t_{\sigma}) $ into the trigger condition to more efficiently utilize the state information at the current moment and previous triggering moment. The introduced $ \varepsilon_{2} x^{T}(t_{\sigma})M x(t_{\sigma}) $ increases the difficulty of the event triggering and, therefore, prolongs the interval between triggered events.
In accordance with the proposed NSETS, the control input of system (2.1) under deception attacks with uncertain probability can be designed as
$ u(t)=K(1−β(t))d(x(t))+Kβ(t)x(tσ), $
|
(2.5) |
where $ K $ is the feedback gain that remains to be determined.
Then, we introduce $ \mathcal{T}_{\sigma}^{1} = [t_{\sigma}, t_{\sigma}+h) $ and $ \mathcal{T}_{\sigma}^{2} = [t_{\sigma}+h, t_{\sigma+1}) $, under event-triggered controller (2.5), system (2.1) can be characterized as
$ {˙x(t)=[A+BKβ(t)]x(t)+BK(1−β(t))d(x(t))−BKβ(t)∫ttσ˙x(s)ds,t∈T1σ,˙x(t)=[A+BKβ(t)]x(t)+BK(1−β(t))d(x(t))+BKβ(t)e(t),t∈T2σ, $
|
(2.6) |
where $ \sigma\in\mathbb{N} $ and $ e(t) = x(t_{\sigma})-x(t) $ satisfying
$ eT(t)Me(t)≤ε1xT(t)Mx(t)+ε2xT(tσ)Mx(tσ). $
|
(2.7) |
Remark 2.3. Unlike general ETSs, the controlled system with the SETS needs to switch between periodic sampling and continuous event triggering to ensure the performance of the system. Inspired by [31], we denote the sampling error and triggering error by $ \int_{t_{\sigma}}^{t}\dot{x}(s)ds $ and $ e(t) $, respectively, and rewrite the controlled system as switched system (2.6) with two different modes.
Next, we introduce a definition of mean square exponential stability and several lemmas.
Definition 2.1 ([37]). System (2.6) is said to be MSE stable if there exist two scalars $ c_{1} > 0 $ and $ c_{2} > 0 $ such that
$ E{||x(t)||}≤c1e−c2tE{||x0||},∀t≥0, $
|
Lemma 2.2 ([38]). For any positive definite matrix $ S \in $ $ \mathbb{R}^{n\times n} $, scalars $ a $, $ b $ ($ a > b $), and a vector function $ \eta :[a, b]\rightarrow \mathbb{R}^{n} $, we have
$ [∫abη(δ)dδ]TS[∫abη(δ)dδ]≤(a−b)∫abηT(δ)Sη(δ)dδ. $
|
Lemma 2.3 ([39]). For given $ a $, $ b \in $ $ \mathbb{R}^{n} $, and positive definite matrix $ Q \in {\mathbb{R}^{n\times n}} $, we have
$ 2aTb≤aTQa+bTQ−1b. $
|
Lemma 2.4 ([40]). For a prescribed constant $ \vartheta > 0 $ and real matrices $ \Pi $, $ X_i $, $ Y_i $, and $ Z_i (i = 1, \dots, n) $, if
$ [ΠXY∗Z]<0 $
|
holds, where $ {X}_{Y}\! = \!\left[X_1+\vartheta Y_1, X_2+\vartheta Y_2, \dots, X_n+\vartheta Y_n\right] $ and $ {Z} = {diag}\left\{\mathcal{S}\{-\vartheta Z_1\}, \mathcal{S}\{-\vartheta Z_2\}, \dots, \mathcal{S}\{-\vartheta Z_n\} \right\} $, then we have
$ Π+n∑i=1S{XiZ−1iYTi}<0. $
|
(2.8) |
Now, the issue of event-triggered control in response to deception attacks can be expressed more specifically as follows: given a LTIS in (2.1), determine the NSETS-based controller in (2.5) such that, for all admissible deception attacks $ d(x(t)) $, the switched closed-loop system in (2.6) is MSE stable.
In this section, we first establish the exponential stability criterion for system (2.1), then develop a joint design method for the trigger matrix and feedback gain.
To be consistent with the switched closed-loop system (2.6), we construct the following Lyapunov function:
$ V(t)={V1(t)=Vp(t)+Vq(t)+Vu(t),t∈T1σ,V2(t)=Vp(t),t∈T2σ $
|
(3.1) |
where
$ Vp(t)=xT(t)Px(t),Vq(t)=(tσ+h−t)∫ttσe−2θ(t−s)˙xT(s)Q˙x(s)ds,Vu(t)=(tσ+h−t)[x(t)x(tσ)]T[S{U1}2−U1+U2∗S{U12−U2}][x(t)x(tσ)], $
|
and $ P $, $ Q $ are symmetric positive matrices, $ U_{1} $, $ U_{2} $ are general matrices, and $ \theta $ is a positive constant.
Based on Lyapunov function (3.1), an exponential stability criterion of system (2.6) can be established, which is provided as follows:
Theorem 3.1. For given positive scalars $ \varepsilon_{1} $, $ \varepsilon_{2} $, $ h $, $ \theta $, $ \alpha $, $ \bar{\alpha} $ and matrices $ K $, $ D $, under the NSETS (2.4) and random deception attacks, system (2.6) is MSE stable, if there exist symmetric matrices $ P > 0 $, $ Q > 0 $, $ M > 0 $, $ \Lambda_{i} > 0 $ $ (i\in \{1, 2, 3, 4\}) $, and general matrices $ U_{1} $, $ U_{2} $, $ W_{1} $, $ W_{2} $, $ W_{3} $, $ N_{1, 1} $, $ N_{2, 1} $, $ N_{1, 2} $, $ N_{2, 2} $, such that
$ Σ=[P+hS{U12}−hU1+hU2∗−hS{U2−U12}]>0, $
|
(3.2) |
$ Σ1=[Ω11Ω12∗Ω3]<0, $
|
(3.3) |
$ Σ2=[Ω21Ω22∗Ω3]<0, $
|
(3.4) |
$ Σ3=[Ω31Ω32∗Ω33]<0 $
|
(3.5) |
hold true, where
$ Ω11=[Ω11,1Ω11,2Ω11,3Ω1,4∗Ω12,2Ω12,3Ω2,4∗∗Ω13,30∗∗∗−I]+ˉα2RT1(Λ1+Λ2)R1,R1=[I00−I],Ω21=[Ω21,1Ω21,2Ω21,3Ω1,4Ω1,5∗−S{N2,1}WT2Ω2,4Ω2,5∗∗Ω23,30hWT3∗∗∗−I0∗∗∗∗Ω5,5]+ˉα2RT2(Λ1+Λ2)R2,R2=[I00−I−hI],R3=[I0−II],Ω31=[Ω31,1Ω31,2Ω31,3Ω31,4∗−S{N2,2}Ω32,3Ω32,4∗∗Ω33,30∗∗∗−I]+ˉα2RT3(Λ3+Λ4)R3,Ω12=[ΩT1,60000ΩT2,700]T,Ω32=[Ω3T1,50000Ω3T2,600]T,Ω22=[Ω120], Ω3=[−Λ100−Λ2],Ω33=[−Λ300−Λ4],Ω11,1=S{NT1,1(A+BKα)−W1+(2θh−1)U12}+2θP+DTD,Ω21,1=Ω11,1−θhS{U1},Ω11,2=P−W2−NT1,1+h2S{U1}+(A+BKα)TN2,1,Ω21,2=Ω11,2−h2S{U1},Ω11,3=WT1−W3+(1−2θh)(U1−U2), Ω21,3=Ω11,3+2θh(U1−U2),Ω1,4=(1−α)NT1,1BK, Ω1,5=h(WT1−αNT1,1BK), Ω1,6=NT1,1BK,Ω12,2=hQ−S{N2,1}, Ω12,3=WT2−h(U1−U2),Ω2,4=(1−α)NT2,1BK, Ω2,5=h(WT2−αNT2,1BK),Ω2,7=NT2,1BK, Ω5,5=−he−2θhQ,Ω13,3=S{W3+(2θh−1)(U12−U2)},Ω23,3=Ω13,3−S{2θh(U12−U2)},Ω31,1=2θP+S{NT1,2(A+BKα)}+(ε1+ε2)M+DTD,Ω31,2=P−NT1,2+(A+BKα)TN2,2, Ω31,3=NT1,2BKα+ε2M,Ω31,4=NT1,2BK(1−α), Ω31,5=NT1,2BK, Ω32,3=αNT2,2BK,Ω32,4=(1−α)NT2,2BK, Ω32,6=NT2,2BK, Ω33,3=(ε2−1)M. $
|
Proof. Since
$ Vp(t)+Vu(t)=xT(t)Px(t)+(tσ+h−t)[x(t)x(tσ)]T[S{U1}2−U1+U2∗S{U12−U2}][x(t)x(tσ)]=tσ+h−th[x(t)x(tσ)]TΣ[x(t)x(tσ)]+t−tσh[x(t)x(tσ)]T[P0∗0][x(t)x(tσ)], $
|
(3.6) |
which, in conjunction with $ P > 0 $ and $ \Sigma > 0 $, ensures the positive definiteness of $ V_{p}(t) $ $ + $ $ V_{u}(t) $. From (3.1) and (3.6), we have
$ min{λm(P),λm(Σ)}||x(t)||2≤V(t). $
|
(3.7) |
For any $ t\in \mathcal{T}_{\sigma}^{1} $, $ \sigma \in \mathbb{N} $, differentiating $ V_{1}(t) $ along the trajectories of the system (2.6) and taking mathematical expectations on it yields:
$ E{˙V1(t)}=E{˙Vp(t)}+E{˙Vq(t)}+E{˙Vu(t)}, $
|
where
$ E{˙Vp(t)}=E{−2θVp(t)}+2θxT(t)Px(t)+2xT(t)P˙x(t),E{˙Vq(t)}=E{−2θVq(t)}−∫ttσe−2θ(t−s)˙xT(s)Q˙x(s)ds+(tσ+h−t)˙xT(t)Q˙x(t),E{˙Vu(t)}=E{−2θVu(t)}+(tσ+h−t)[˙xT(t)S{U1}x(t)+2˙xT(t)(−U1+U2)x(tσ)]+[2θ(tσ+h−t)−1]×[xT(t)S{U1}2x(t)+2xT(t)(−U1+U2)x(tσ)+xT(tσ)S{U12−U2}x(tσ)]. $
|
Thus
$ E{˙V1(t)}≤E{−2θV1(t)}+2θxT(t)Px(t)+2xT(t)P˙x(t)+(tσ+h−t)˙xT(t)Q˙x(t)−e−2θh∫ttσ˙xT(s)Q˙x(s)ds+(tσ+h−t)[˙xT(t)S{U1}x(t)+2˙xT(t)(−U1+U2)x(tσ)]+[2θ(tσ+h−t)−1]×[xT(t)S{U1}2x(t)+2xT(t)(−U1+U2)x(tσ)+xT(tσ)S{U12−U2}x(tσ)]. $
|
(3.8) |
Denote
$ ϕ(t)=1t−tσ∫ttσ˙x(s)ds, $
|
where the case that $ \phi (t)|_{t = t_{\sigma}} $ can be understood as $ \lim_{t \rightarrow t_{\sigma}}\phi (t) = \dot{x}(t_{\sigma}) $ [41]. Then, utilizing Lemma 2.2 gives
$ −∫ttσ˙x(s)Q˙x(s)ds≤−(t−tσ)ϕT(t)Qϕ(t). $
|
(3.9) |
Furthermore, using the Newton-Leibniz formula and the expectation of (2.6), we can write
$ 0=2[xT(t)WT1+˙xT(t)WT2+xT(tσ)WT3]×[−x(t)+x(tσ)+(t−tσ)ϕ(t)], $
|
(3.10) |
$ 0=2[xT(t)NT1,1+˙xT(t)NT2,1][−˙x(t)+Ax(t)+BK(α+Δα(t))x(t)+BK(1−α−Δα(t))d(x(t))−(t−tσ)BK(α+Δα(t))ϕ(t)]. $
|
(3.11) |
Setting $ \varsigma_{1}(t) = col\{x(t), \dot{x}(t), x(t_{\sigma}), d(x(t))\} $, $ \varsigma_{2}(t) = $ $ col\{x(t), \dot{x}(t), x(t_{\sigma}), d(x(t)), \phi (t)\} $, by employing Lemma 2.3, for positive definite matrices $ \Lambda_{1} $ and $ \Lambda_{2} $, we can write the following inequalities:
$ 2xT(t)NT1,1BKΔα(t)[x(t)−d(x(t))−(t−tσ)ϕ(t)]=2xT(t)NT1,1BKΔα(t)[tσ+h−thR1ς1(t)+t−tσhR2ς2(t)]≤tσ+h−thˉα2ςT1(t)RT1Λ1R1ς1(t)+t−tσhˉα2ςT2(t)RT2Λ1R2ς2(t)+xT(t)NT1,1BKΛ−11KTBTN1,1x(t). $
|
(3.12) |
Similarly,
$ 2˙xT(t)NT2,1BKΔα(t)[x(t)−d(x(t))−(t−tσ)ϕ(t)]≤tσ+h−thˉα2ςT1(t)RT1Λ2R1ς1(t)+t−tσhˉα2ςT2(t)RT2Λ2R2ς2(t)+˙xT(t)NT2,1BKΛ−12KTBTN2,1˙x(t). $
|
(3.13) |
Moreover, by using Assumption 1, we can derive
$ xT(t)DTDx(t)−dT(x(t))d(x(t))≥0. $
|
(3.14) |
By using inequalities (3.8)–(3.14), we have
$ E{˙V1(t)}+2θE{V1(t)}≤tσ+h−thςT1(t)Ω11ς1(t)+t−tσhςT2(t)Ω21ς2(t)+xT(t)NT1,1BKΛ−11KTBTN1,1x(t)+˙xT(t)NT2,1BKΛ−12KTBTN2,1˙x(t), $
|
which, in conjunction with the Schur complement, $ \Sigma_{1} < 0 $, and $ \Sigma_{2} < 0 $, guarantees that
$ E{˙V1(t)}+2θE{V1(t)}≤0. $
|
(3.15) |
Denote $ \xi_3(t) = col\{x(t), \dot{x}(t), e(t), d(x(t))\} $. Then, in a similar way to the above proof, it is not hard to obtain
$ E{˙V2(t)}≤−2θE{V2(t)}+2θxT(t)Px(t)+xT(t)DTDx(t)+2xT(t)P˙x(t)+2[xT(t)NT1,2+˙xT(t)NT2,2]×[−˙x(t)+Ax(t)+BK(α+Δα(t))x(t)+BK(1−α−Δα(t))d(x(t))+BK(α+Δα(t))e(t)]+ε1xT(t)Mx(t)+ε2[e(t)+x(t)]TM[e(t)+x(t)]−eT(t)Me(t)−dT(x(t))d(x(t)). $
|
(3.16) |
By using Lemma 2.3, for given positive definite matrices $ \Lambda_{3} $ and $ \Lambda_{4} $, we can obtain
$ 2xT(t)NT1,2BKΔα(t)ς3(t)≤xT(t)NT1,2BKΛ−13KTBTN1,2x(t)+ˉα2ςT3(t)RT3Λ3R3ς3(t), $
|
(3.17) |
$ 2˙xT(t)NT2,2BKΔα(t)(t)ς3(t)≤˙xT(t)NT2,2BKΛ−14KTBTN2,2˙x(t)+ˉα2ςT3(t)RT3Λ4R3ς3(t). $
|
(3.18) |
Combining (3.16)–(3.18), we get
$ E{˙V2(t)}+2θE{V2(t)}≤ςT3(t)Σ3ς3(t)+xT(t)NT1,2BKΛ−13KTBTN1,2x(t)+˙xT(t)NT2,2BKΛ−14KTBTN2,2˙x(t) $
|
for any $ t\in \mathcal{T}_{\sigma}^{2} $, which together with the Schur complement and $ \Omega_{31} < 0 $, implies that
$ E{˙V2(t)}+2θE{V2(t)}≤0. $
|
(3.19) |
According to the expression of $ V(t) $, it is easy to obtain that
$ Vq(tσ)=Vu(tσ)=0,limt→(tσ+h)−Vq(t)=limt→(tσ+h)−Vu(t)=0, $
|
which confirms the continuity of $ V(t) $ at instants $ t_{\sigma} $ and $ t_{\sigma}+h $.
Then combining (3.15) and (3.19), for $ t \in \mathcal{T}_{\sigma}^{1} $ we can derive
$ E{V(t)}≤E{V(tσ)}e−2θ(t−tσ)≤E{V(tσ−1)}e−2θ(t−tσ−1)⋯≤E{V(0)}e−2θt. $
|
Similarly, for $ t \in \mathcal{T}_{\sigma}^{2} $, the same results can be obtained. In the light of (3.1), we get
$ E{V(0)}≤λM(P)E{‖x(0)‖2}. $
|
It can be concluded that for any $ t\in \mathcal{T}_{\sigma}^{1} \cup \mathcal{T}_{\sigma}^{2} $,
$ E{V(t)}≤e−2θtE{V(0)}, $
|
which, together with (3.7), gives
$ E{‖x(t)‖}≤√min{λm(P),λm(Σ)}λM(P)e−θtE{‖x0‖}. $
|
This completes the proof.
When there is no deception attacks, $ d(x(t)) = 0 $, and system (2.6) becomes
$ {˙x(t)=(A+BK)x(t)−BK∫ttσ˙x(s)ds,t∈T1σ,˙x(t)=(A+BK)x(t)+BKe(t),t∈T2σ, $
|
(3.20) |
and we can write the following sufficient condition:
Corollary 1. For given feedback gain matrix $ K $ and positive scalars $ \varepsilon_{1} $, $ \varepsilon_{2} $, $ h $, $ \theta $, under the NSETS (2.4), system (3.20) is exponentially stable, if there exist symmetric matrices $ P > 0 $, $ Q > 0 $, $ M > 0 $, and general matrices $ U_{1} $, $ U_{2} $, $ W_{1} $, $ W_{2} $, $ W_{3} $, $ N_{1, 1} $, $ N_{2, 1} $, $ N_{1, 2} $, $ N_{2, 2} $, such that (3.2) and the following LMIs
$ [Ω11,1Ω11,2Ω11,3∗Ω12,2Ω12,3∗∗Ω13,3]<0, $
|
(3.21) |
$ [Ω21,1Ω21,2Ω21,3Ω1,5∗−S{N2,1}WT2Ω2,5∗∗Ω23,3hWT3∗∗∗Ω5,5]<0, $
|
(3.22) |
$ [Ω31,1Ω31,2Ω31,3∗−S{N2,2}Ω32,3∗∗Ω33,3]<0 $
|
(3.23) |
hold true, where matrix blocks such as $ \Omega^{1}_{1, 1} $, $ \Omega^{1}_{1, 2} $, and $ \Omega^{1}_{1, 3} $ are the same as those in Theorem 3.1 except that $ \alpha = 1 $ and $ \bar{\alpha} = 0 $.
In this section, we will explore the feasibility of the event-triggered controller design. On the basis of Theorem 3.1, the trigger matrix $ M $ and feedback-gain matrix $ K $ can be derived from the following result:
Theorem 3.2. For given positive scalars $ \varepsilon_{1} $, $ \varepsilon_{2} $, $ h $, $ \theta $, $ \alpha $, $ \bar{\alpha} $, $ \vartheta $ and matrix $ D $, under the NSETS (2.4) and random deception attacks, switched system (2.6) with control gain $ K = X^{-1}Y $ is MSE stable, if there exist symmetric matrices $ P > 0 $, $ Q > 0 $, $ U > 0 $, $ M > 0 $, $ \bar{\Lambda}_{i} > 0 $ $ (i\in \{1, 2, 3, 4\}) $, and general matrices $ X $, $ Y $, $ \tilde{W}_{1} $, $ \tilde{W}_{2} $, $ \tilde{W}_{3} $, $ \tilde{N}_{1, 1} $, $ \tilde{N}_{2, 1} $, $ \tilde{N}_{1, 2} $, $ \tilde{N}_{2, 2} $, such that (3.2) and the following LMIs
$ [˜Ω11˜Ω12∗˜Ω3]<0, $
|
(3.24) |
$ [˜Ω21˜Ω22∗˜Ω3]<0, $
|
(3.25) |
$ [˜Ω31˜Ω32∗˜Ω3]<0 $
|
(3.26) |
hold true, where
$ ˜Ω11=[˜Ω11˜Ω12∗˜Ω13],˜Ω21=[˜Ω21˜Ω22∗˜Ω13],˜Ω31=[˜Ω31˜Ω32∗˜Ω33],˜Ω11=[˜Ω11,1˜Ω11,2˜Ω11,3˜Ω1,4∗˜Ω12,2˜Ω12,3˜Ω2,4∗∗˜Ω13,30∗∗∗−I]+ˉα2˜RT1(˜Λ1+˜Λ2)˜R1,˜R1=[I00−I],˜Ω21=[˜Ω21,1˜Ω21,2˜Ω21,3˜Ω1,4˜Ω1,5∗˜Ω22,2˜WT2˜Ω2,4˜Ω2,5∗∗˜Ω23,30h˜WT3∗∗∗−I0∗∗∗∗−he−2θhQ]+ˉα2˜RT2(˜Λ1+˜Λ2)˜R2,˜R2=[I00−I−hI], ˜R3=[I0−II],˜Ω31=[˜Ω31,1˜Ω31,2˜Ω31,3˜Ω31,4∗−S{˜N2,2}αGTY˜Ω32,4∗∗(ε2−1)M0∗∗∗−I]+ˉα2˜RT3(˜Λ3+˜Λ4)˜R3,˜Ω12=[YTG0000YTG00]T,˜Ω22=[˜Ω120],˜Ω32=[YTG0000YTG00]T,˜Ω13=[−˜Λ100−˜Λ2],˜Ω33=[−˜Λ300−˜Λ4],˜Ω3=−ϑ[X00X]−ϑ[XT00XT],˜Ω12=[˜ΩT1,800(1−α)ϑYϑY0αϑY˜ΩT2,90(1−α)ϑY0ϑY]T,˜Ω22=[˜ΩT1,800(1−α)ϑY−αϑhYϑY0αϑY˜ΩT2,90(1−α)ϑY−αϑhY0ϑY]T,˜Ω32=[˜Ω3T1,80αϑY(1−α)ϑYϑY0αϑY˜Ω3T2,9αϑY(1−α)ϑY0ϑY]T,˜Ω11,1=2θP+DTD+S{˜NT1,1A−˜W1+(2θh−1)U12+αGTY},˜Ω21,1=˜Ω11,1−θhS{U1},˜Ω11,2=P−˜W2−˜NT1,1+h2S{U1}+AT˜N2,1,˜Ω21,2=˜Ω11,2−h2S{U1},˜Ω11,3=˜WT1−˜W3+(1−2θh)(U1−U2), ˜Ω21,3=˜Ω11,3+2θh(U1−U2),˜Ω1,4=(1−α)GTY, ˜Ω1,5=h(˜WT1−αGTY),˜Ω1,8=˜NT1,1B−GTX+αϑYT, ˜Ω12,2=hQ−S{˜N2,1},˜Ω22,2=−S{˜N2,1}, ˜Ω12,3=˜WT2−h(U1−U2),˜Ω2,4=(1−α)GTY,˜Ω2,5=h(˜WT2−αGTY), ˜Ω2,9=˜NT2,1B−GTX,˜Ω13,3=S{˜W3+(2θh−1)(U12−U2)},˜Ω23,3=˜Ω13,3−S{2θh(U12−U2)},˜Ω31,1=2θP+S{˜NT1,2A+αGTY} +(ε1+ε2)M+DTD,˜Ω31,2=P−˜NT1,2+AT˜N2,2+αYTG,˜Ω31,3=ε2M+αGTY,˜Ω31,4=(1−α)GTY, ˜Ω31,8=˜NT1,2B−GTX+αϑYT,˜Ω32,4=(1−α)GTY, ˜Ω32,9=˜NT2,2B−GTX, $
|
and $ G $ is an all-ones matrix with the same dimension as $ B $.
Proof. By Lemma 2.4, it follows from (3.24) that
$ ˜Ω11+S{[˜NT1,1B−GTL00˜NT2,1B−GTL00000000][X00X]−1[αY00(1−α)YY0αY00(1−α)Y0Y]}<0, $
|
which can be equivalently rewritten as
$ [Ω11Ω12∗Ω3]<0. $
|
In other words, we can derive (3.3) from (3.24). Similarly, (3.4)–(3.5) can be obtained from (3.25)–(3.26). The proof is complete.
Corollary 2. For given positive scalars $ \varepsilon_{1} $, $ \varepsilon_{2} $, $ h $, $ \theta $, $ \vartheta $, under the NSETS (2.4), switched system (3.20) with control gain $ K = X^{-1}Y $ is exponentially stable, if there exist symmetric matrices $ P > 0 $, $ Q > 0 $, $ U > 0 $, $ M > 0 $, and general matrices $ X $, $ Y $, $ \tilde{W}_{1} $, $ \tilde{W}_{2} $, $ \tilde{W}_{3} $, $ \tilde{N}_{1, 1} $, $ \tilde{N}_{2, 1} $, $ \tilde{N}_{1, 2} $, $ \tilde{N}_{2, 2} $, such that (3.2) and the following LMIs
$ [˜Ω11,1˜Ω11,2˜Ω11,3˜Ω1,8∗˜Ω12,2˜Ω12,3˜Ω2,9∗∗˜Ω13,30∗∗∗−ϑS{X}]<0, $
|
(3.27) |
$ [˜Ω21,1˜Ω21,2˜Ω21,3˜Ω1,5˜Ω1,8∗˜Ω22,2˜WT2˜Ω2,5˜Ω2,9∗∗˜Ω23,3h˜WT30∗∗∗−he−2θhQ−hϑYT∗∗∗∗−ϑS{X}]<0, $
|
(3.28) |
$ [˜Ω31,1˜Ω31,2˜Ω31,3˜Ω31,8∗−S{˜N2,2}GTY˜Ω32,9∗∗(ε2−1)M0∗∗∗−ϑS{X}]<0 $
|
(3.29) |
hold true, where matrix blocks such as $ \tilde{\Omega}^{1}_{1, 1} $, $ \tilde{\Omega}^{1}_{1, 2} $, and $ \tilde{\Omega}^{1}_{1, 3} $ are the same as those in Theorem 3.2 except that $ \alpha = 1 $ and $ \bar{\alpha} = 0 $.
In this section, we use a simplified inverted pendulum model [42] to illustrate the validity of the proposed NSETS-based controller design scheme under random deception attacks. This model can be described as follows:
$ ˙x(t)=[−1.840.337.18−1.14]x(t)+[2.43−0.42]u(t). $
|
First, we will co-design the triggering matrix $ W $ and control gain $ K $ to guarantee the MSE stability of the above system.
Choosing triggering thresholds $ \varepsilon_{1} = \varepsilon_{2} = 0.1 $, waiting interval $ h = 0.05 $, deception attack signal $ d(x(t)) = \tanh(0.15x(t)) $, uncertain probability term $ \Delta \alpha (t) = \alpha_{p} \sin(t) $, and $ \vartheta = 0.01 $. Then, based on Theorem 3.2, when $ \alpha = 0.8 $, for different probability uncertainty coefficient $ \alpha_{p} $, the maximum exponential decay rate $ \theta_{\max} $ can be obtained, which is listed in Table 1. It is straightforward to see that, as the probability uncertainty coefficient grows, the maximum exponential decay rate continues to deteriorate. In addition, Table 2 gives the values of $ \theta_{\max} $ under the different probability $ \alpha $ of deception attacks occurrence (when $ \alpha_{p} = 0.1 $). It can be found that as the value of $ \alpha $ decreases (which means the frequency of deception attacks increases), the performance of the controller declines.
$ \alpha_{p} $ | $ 0.06 $ | $ 0.07 $ | $ 0.08 $ | $ 0.09 $ | $ 0.1 $ |
$ \theta_{\max} $ | $ 0.5843 $ | $ 0.5459 $ | $ 0.5080 $ | $ 0.4708 $ | $ 0.4341 $ |
$ \alpha $ | $ 0.88 $ | $ 0.86 $ | $ 0.84 $ | $ 0.82 $ | $ 0.8 $ |
$ \theta_{\max} $ | $ 0.4655 $ | $ 0.4613 $ | $ 0.4549 $ | $ 0.4459 $ | $ 0.4341 $ |
Next, to further reflect on the impact of deception attacks, we consider two cases: with and without deception attacks. In Case 1, the estimated probability of deception attacks and uncertainty coefficient are fixed as $ \alpha = 0.5 $, $ \alpha_{p} = 0.08 $, and other parameters are unchanged. By solving the LMIs in Theorem 3.2, the matrices $ M $ and $ K $ can be computed as
$ M=[0.7893−0.0158−0.01580.4791],K=[−0.0695−0.3175]. $
|
In Case 2, $ \alpha = 1 $ and $ \alpha_{p} = 0 $ (that is, the probability of occurring deception attacks is $ 0 $). By solving the LMIs in Corollary 2, the matrices $ M $ and $ K $ are calculated as
$ M=[1.23330.41990.41991.3964],K=[−0.1841−0.2688]. $
|
In the simulations, the initial condition is taken as $ x_0 = [1, -1]^{T} $, and the running time is set as $ 10 s $. Figures 1–3 depict the state trajectories, control inputs, and release moment intervals between any two successively release moments of Cases 1 and 2, respectively. It can be seen that the state variables can converge to zero faster in the absence of deception attacks, which is consistent with the information in Table 2.
Finally, we will show the effect of triggering thresholds $ \varepsilon_{1} $ and $ \varepsilon_{2} $ in NSETS on the number of transmitted signals. Let $ t_{n} $ and $ t_{r} $ denote the number of trigger times and the ratio of transmitted signals, respectively, and other parameters are the same as those in Case 1. Then, as shown in Table 3, when $ \varepsilon_{1} $ and $ \varepsilon_{2} $ are both set to $ 0 $, the NSETS degenerates into the TTS in [16], and $ t_{n} $ is as high as $ 200 $; when $ \varepsilon_{1} = 0.1 $ and $ \varepsilon_{2} = 0 $, the ETS changes into the SETS in [31], and $ t_{n} $ is reduced to $ 71 $; when $ \varepsilon_{1} $ is fixed, $ t_{n} $ will continue to decrease as $ \varepsilon_{2} $ increases. It can be observed that compared with SETS, the $ t_{r} $ of the NSETS decreases by more than $ 8.5\% $, and compared with TTS, the rate can be reduced by more than $ 73\% $. These results demonstrate that the addition of trigger condition $ x^{T}(t_{\sigma})M x(t_{\sigma}) $ significantly conserves network resources while ensuring stability.
Scheme | TTS in [16] | SETS in [31] | NSETS in this paper | |||
$ (\varepsilon_{1}, \varepsilon_{2}) $ | $ (0, 0) $ | $ (0.1, 0) $ | $ (0.1, 0.05) $ | $ (0.1, 0.1) $ | $ (0.1, 0.15) $ | $ (0.1, 0.2) $ |
$ t_{n} $ | $ 200 $ | $ 71 $ | $ 54 $ | $ 43 $ | $ 36 $ | $ 32 $ |
$ t_{r} $ | $ 100 \% $ | $ 35.5 \% $ | $ 27 \% $ | $ 21.5 \% $ | $ 18 \% $ | $ 16 \% $ |
In this paper, the event-triggered exponential stabilization of NCSs under deception attacks has been investigated. Unlike existing ETSs, an NSETS, which additionally introduces a prescribed trigger term regarding the last triggering moment (i.e., $ \varepsilon_{2} x^{T}(t_{\sigma})M x(t_{\sigma}) $), has been designed in (2.4). It has been demonstrated that the additional trigger term plays a positive role in reducing the number of trigger times. Moreover, by using a Bernoulli variable with uncertain probability to characterize the randomness of deception attacks, a new mathematical model of random deception attacks has been constructed in (2.3). A piecewise-defined Lyapunov function, which can make use of the system information at the instants $ t_{\sigma} $ and $ t_{\sigma}+h $, has been established, which allows us to establish a sufficient exponential stability conation. Based on this, a co-design of the trigger and feedback-gain matrices under NSETS has been derived in terms of LMIs. Finally, a simulation example has been given to confirm the effectiveness of the developed design method. Future attention will be focused on the event-triggered security control problem of time-delay Markov jump systems [43,44,45,46].
This work was supported by the Key Research and Development Project of Anhui Province (Grant No. 202004a07020028).
The authors declare there is no conflict of interest.
[1] | World Anti-Doping Agency (2015) World anti-doping code. World Anti-Doping Agency. |
[2] |
Shahidi NT (2001) A review of the chemistry, biological action, and clinical applications of anabolic-androgenic steroids. Clin Ther 23: 1355–1390. doi: 10.1016/S0149-2918(01)80114-4
![]() |
[3] |
Celotti F, Negri-Cesi P (1992) Anabolic-Steroids - a Review of Their Effects on the Muscles, of Their Possible Mechanisms of Action and of Their Use in Athletics. J Steroid Biochem Mol Biol 43: 469–477. doi: 10.1016/0960-0760(92)90085-W
![]() |
[4] | Dalbo VJ, Roberts MD, Mobley CB, et al. (2017) Testosterone and trenbolone enanthate increase mature myostatin protein expression despite increasing skeletal muscle hypertrophy and satellite cell number in rodent muscle. Andrologia 49. |
[5] |
Bennett NC, Gardiner RA, Hooper JD, et al. (2010) Molecular cell biology of androgen receptor signalling. Int J Biochem Cell Biol 42: 813–827. doi: 10.1016/j.biocel.2009.11.013
![]() |
[6] |
Kicman AT (2008) Pharmacology of anabolic steroids. Br J Pharmacol 154: 502–521. doi: 10.1038/bjp.2008.165
![]() |
[7] |
Li J, Al-Azzawi F (2009) Mechanism of androgen receptor action. Maturitas 63: 142–148. doi: 10.1016/j.maturitas.2009.03.008
![]() |
[8] |
Maravelias C, Dona A, Stefanidou M, et al. (2005) Adverse effects of anabolic steroids in athletes. A constant threat. Toxicol Lett 158: 167–175. doi: 10.1016/j.toxlet.2005.06.005
![]() |
[9] |
Foradori CD, Weiser MJ, Handa RJ (2008) Non-genomic actions of androgens. Front Neuroendocrinol 29: 169–181. doi: 10.1016/j.yfrne.2007.10.005
![]() |
[10] | Kousteni S, Bellido T, Plotkin LI, et al. (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: Dissociation from transcriptional activity. Cell 104: 719–730. |
[11] |
Hamdi MM, Mutungi G (2010) Dihydrotestosterone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intract mouse skeletal muscle fibres. J Physiol 588: 511–525. doi: 10.1113/jphysiol.2009.182162
![]() |
[12] |
Michels G, Hoppe UC (2008) Rapid actions of androgens. Front Neuroendocrinol 29: 182–198. doi: 10.1016/j.yfrne.2007.08.004
![]() |
[13] |
Norman AW, Mizwicki MT, Norman DP (2004) Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov 3: 27–41. doi: 10.1038/nrd1283
![]() |
[14] |
Rahman F, Christian HC (2007) Non-classical actions of testosterone: an update. Trends Endocrinol Metab 18: 371–378. doi: 10.1016/j.tem.2007.09.004
![]() |
[15] |
Losel RM, Falkenstein E, Feuring M, et al. (2003) Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 83: 965–1016. doi: 10.1152/physrev.00003.2003
![]() |
[16] |
Mayer M, Rosen F (1977) Interaction of glucocorticoids and androgens with skeletal muscle. Metabolism 26: 937–962. doi: 10.1016/0026-0495(77)90013-0
![]() |
[17] |
Nicolaides NC, Galata Z, Kino T, et al. (2010) The human glucocorticoid receptor: molecular basis of biologic function. Steroids 75: 1–12. doi: 10.1016/j.steroids.2009.09.002
![]() |
[18] | Schaaf M, Cidlowski J (2003) Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 83: 37–48. |
[19] |
Schoneveld OJ, Gaemers IC, Lamers WH (2004) Mechanisms of glucocorticoid signalling. Biochim Biophys Acta 1680: 114–128. doi: 10.1016/j.bbaexp.2004.09.004
![]() |
[20] |
Bhasin S, Storer TW, Berman N, et al. (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 335: 1–7. doi: 10.1056/NEJM199607043350101
![]() |
[21] |
Gorelick-Feldman J, Maclean D, Ilic N, et al. (2008) Phytoecdysteroids increase protein synthesis in skeletal muscle cells. J Agric Food Chem 56: 3532–3537. doi: 10.1021/jf073059z
![]() |
[22] |
van Amsterdam J, Opperhuizen A, Hartgens F (2010) Adverse health effects of anabolic-androgenic steroids. Regul Toxicol Pharmacol 57: 117–123. doi: 10.1016/j.yrtph.2010.02.001
![]() |
[23] | Mottram DR, George AJ (2000) Anabolic steroids. Baillieres Best Pract Res Clin Endocrinol Metab 14: 55–69. |
[24] |
Achar S, Rostamian A, Narayan SM (2010) Cardiac and metabolic effects of anabolic-androgenic steroid abuse on lipids, blood pressure, left ventricular dimensions, and rhythm. Am J Cardiol 106: 893–901. doi: 10.1016/j.amjcard.2010.05.013
![]() |
[25] |
Herlitz LC, Markowitz GS, Farris AB, et al. (2010) Development of focal segmental glomerulosclerosis after anabolic steroid abuse. J Am Soc Nephrol 21: 163–172. doi: 10.1681/ASN.2009040450
![]() |
[26] |
Choi SM, Lee BM (2015) Comparative safety evaluation of selective androgen receptor modulators and anabolic androgenic steroids. Expert Opin Drug Saf 14: 1773–1785. doi: 10.1517/14740338.2015.1094052
![]() |
[27] |
Kicman AT, Gower DB (2003) Anabolic steroids in sport: biochemical, clinical and analytical perspectives. Ann Clin Biochem 40: 321–356. doi: 10.1258/000456303766476977
![]() |
[28] |
Basaria S (2010) Androgen abuse in athletes: detection and consequences. J Clin Endocrinol Metab 95: 1533–1543. doi: 10.1210/jc.2009-1579
![]() |
[29] |
Christou MA, Christou PA, Markozannes G, et al. (2017) Effects of Anabolic Androgenic Steroids on the Reproductive System of Athletes and Recreational Users: A Systematic Review and Meta-Analysis. Sports Med 47: 1869–1883. doi: 10.1007/s40279-017-0709-z
![]() |
[30] |
Rahnema CD, Lipshultz LI, Crosnoe LE, et al. (2014) Anabolic steroid-induced hypogonadism: diagnosis and treatment. Fertil Steril 101: 1271–1279. doi: 10.1016/j.fertnstert.2014.02.002
![]() |
[31] |
Nieschlag E, Vorona E (2015) Doping with anabolic androgenic steroids (AAS): Adverse effects on non-reproductive organs and functions. Rev Endocr Metab Disord 16: 199–211. doi: 10.1007/s11154-015-9320-5
![]() |
[32] |
Vasconsuelo A, Milanesi L, Boland R (2008) 17Beta-estradiol abrogates apoptosis in murine skeletal muscle cells through estrogen receptors: role of the phosphatidylinositol 3-kinase/Akt pathway. J Endocrinol 196: 385–397. doi: 10.1677/JOE-07-0250
![]() |
[33] |
Parr MK, Zhao P, Haupt O, et al. (2014) Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone. Mol Nutr Food Res 58: 1861–1872. doi: 10.1002/mnfr.201300806
![]() |
[34] |
Weigt C, Hertrampf T, Zoth N, et al. (2012) Impact of estradiol, ER subtype specific agonists and genistein on energy homeostasis in a rat model of nutrition induced obesity. Mol Cell Endocrinol 351: 227–238. doi: 10.1016/j.mce.2011.12.013
![]() |
[35] |
Velloso CP (2008) Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol 154: 557–568. doi: 10.1038/bjp.2008.153
![]() |
[36] |
Enmark E, Gustafsson JA (1999) Oestrogen receptors - an overview. J Intern Med 246: 133–138. doi: 10.1046/j.1365-2796.1999.00545.x
![]() |
[37] |
Weigt C, Hertrampf T, Kluxen FM, et al. (2013) Molecular effects of ER alpha- and beta-selective agonists on regulation of energy homeostasis in obese female Wistar rats. Mol Cell Endocrinol 377: 147–158. doi: 10.1016/j.mce.2013.07.007
![]() |
[38] |
Lazovic G, Radivojevic U, Milosevic V, et al. (2007) Tibolone and osteoporosis. Arch Gynecol Obstet 276: 577–581. doi: 10.1007/s00404-007-0387-4
![]() |
[39] |
Narayanan R, Coss CC, Dalton JT (2018) Development of selective androgen receptor modulators (SARMs). Mol Cell Endocrinol 465: 134–142. doi: 10.1016/j.mce.2017.06.013
![]() |
[40] |
Gao WQ, Dalton JT (2007) Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs). Drug Discovery Today 12: 241–248. doi: 10.1016/j.drudis.2007.01.003
![]() |
[41] | Choo JJ, Horan MA, Little RA, et al. (1992) Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation. Am J Physiol 263: E50–56. |
[42] | Moore N, Pegg G, Sillence M (1994) Anabolic effects of the beta2-andrenoceptor agonist salmeterol are dependent on route of administration. Am J Physiol 267: E475–E484. |
[43] |
Barbosa J, Cruz C, Martins J, et al. (2005) Food poisoning by clenbuterol in Portugal. Food Addit Contam 22: 563–566. doi: 10.1080/02652030500135102
![]() |
[44] |
Brambilla G, Cenci T, Franconi F, et al. (2000) Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol Lett 114: 47–53. doi: 10.1016/S0378-4274(99)00270-2
![]() |
[45] | Sporano V, Grasso L, Esposito M, et al. (1998) Clenbuterol residues in non-liver containing meat as a cause of collective food poisoning. Vet Hum Toxicol 40: 141–143. |
[46] | Brambilla G, Loizzo A, Fontana L, et al. (1997) Food poisoning following consumption of clenbuterol-treated veal in Italy. JAMA, J Am Med Assoc 278: 635. |
[47] | Pulce C, Lamaison D, Keck G, et al. (1991) Collective human food poisonings by clenbuterol residues in veal liver. Vet Hum Toxicol 33: 480–481. |
[48] | Salleras L, Dominguez A, Mata E, et al. (1995) Epidemiologic study of an outbreak of clenbuterol poisoning in Catalonia, Spain. Public Health Rep 110: 338–342. |
[49] | Martinez-Navarro JF (1990) Food poisoning related to consumption of illicit beta-agonist in liver. Lancet 336: 1311. |
[50] |
Parr MK, Blokland MH, Liebetrau F, et al. (2017) Distinction of clenbuterol intake from drug or contaminated food of animal origin in a controlled administration trial - the potential of enantiomeric separation for doping control analysis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34: 525–535. doi: 10.1080/19440049.2016.1242169
![]() |
[51] |
Parr MK, Opfermann G, Schanzer W (2009) Analytical methods for the detection of clenbuterol. Bioanalysis 1: 437–450. doi: 10.4155/bio.09.29
![]() |
[52] |
Mersmann HJ (1998) Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J Anim Sci 76: 160–172. doi: 10.2527/1998.761160x
![]() |
[53] | World Anti-Doping Agency (2017) The 2018 Prohibited List. World Anti-Doping Agency. |
[54] |
Serra C, Bhasin S, Tangherlini F, et al. (2011) The role of GH and IGF-I in mediating anabolic effects of testosterone on androgen-responsive muscle. Endocrinology 152: 193–206. doi: 10.1210/en.2010-0802
![]() |
[55] |
Rommel C, Bodine SC, Clarke BA, et al. (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3: 1009–1013. doi: 10.1038/ncb1101-1009
![]() |
[56] |
Bolster DR, Jefferson LS, Kimball SR (2004) Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. Proc Nutr Soc 63: 351–356. doi: 10.1079/PNS2004355
![]() |
[57] |
Holecek M (2017) Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J Cachexia Sarcopenia Muscle 8: 529–541. doi: 10.1002/jcsm.12208
![]() |
[58] |
Thomas M, Langley B, Berry C, et al. (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275: 40235–40243. doi: 10.1074/jbc.M004356200
![]() |
[59] |
Schuelke M, Wagner KR, Stolz LE, et al. (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350: 2682–2688. doi: 10.1056/NEJMoa040933
![]() |
[60] |
McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83–90. doi: 10.1038/387083a0
![]() |
[61] | Rı́os R, Carneiro I, Arce VM, et al. (2002) Myostatin is an inhibitor of myogenic differentiation. Am J Physiol Cell Physiol 282: C993–C999. |
[62] |
Sharma M, Langley B, Bass J, et al. (2001) Myostatin in muscle growth and repair. Exerc Sport Sci Rev 29: 155–158. doi: 10.1097/00003677-200110000-00004
![]() |
[63] |
Joulia-Ekaza D, Cabello G (2007) The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7: 310–315. doi: 10.1016/j.coph.2006.11.011
![]() |
[64] |
Elliott B, Renshaw D, Getting S, et al. (2012) The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol 205: 324–340. doi: 10.1111/j.1748-1716.2012.02423.x
![]() |
[65] |
Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, et al. (1998) Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA 95: 14938–14943. doi: 10.1073/pnas.95.25.14938
![]() |
[66] |
Pearen MA, Ryall JG, Maxwell MA, et al. (2006) The orphan nuclear receptor, NOR-1, is a target of beta-adrenergic signaling in skeletal muscle. Endocrinology 147: 5217–5227. doi: 10.1210/en.2006-0447
![]() |
[67] |
Ma K, Mallidis C, Bhasin S, et al. (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285: E363–E371. doi: 10.1152/ajpendo.00487.2002
![]() |
[68] |
Chen PR, Lee K (2016) INVITED REVIEW: Inhibitors of myostatin as methods of enhancing muscle growth and development. J Anim Sci 94: 3125–3134. doi: 10.2527/jas.2016-0532
![]() |
[69] |
Dschietzig TB (2014) Myostatin - From the Mighty Mouse to cardiovascular disease and cachexia. Clin Chim Acta 433: 216–224. doi: 10.1016/j.cca.2014.03.021
![]() |
[70] |
Kung T, Springer J, Doehner W, et al. (2010) Novel treatment approaches to cachexia and sarcopenia: highlights from the 5th Cachexia Conference. Expert Opin Investig Drugs 19: 579–585. doi: 10.1517/13543781003724690
![]() |
[71] |
Rodgers BD, Garikipati DK (2008) Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr Rev 29: 513–534. doi: 10.1210/er.2008-0003
![]() |
[72] |
Marchitelli C, Savarese MC, Crisa A, et al. (2003) Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mammalian Genome 14: 392–395. doi: 10.1007/s00335-002-2176-5
![]() |
[73] |
Bellinge RH, Liberles DA, Iaschi SP, et al. (2005) Myostatin and its implications on animal breeding: a review. Anim Genet 36: 1–6. doi: 10.1111/j.1365-2052.2004.01229.x
![]() |
[74] | Arnold H, Della-Fera M, Baile C (2001) Review of myostatin history, physiology and applications. Int Arch Biosci 1: 1014–1022. |
[75] |
Lee YS, Lehar A, Sebald S, et al. (2015) Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy. Hum Mol Genet 24: 5711–5719. doi: 10.1093/hmg/ddv288
![]() |
[76] | Bhasin S, Storer TW (2009) Anabolic applications of androgens for functional limitations associated with aging and chronic illness. Front Horm Res 37: 163–182. |
[77] |
Dobs AS, Boccia RV, Croot CC, et al. (2013) Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol 14: 335–345. doi: 10.1016/S1470-2045(13)70055-X
![]() |
[78] |
Dillon EL, Durham WJ, Urban RJ, et al. (2010) Hormone treatment and muscle anabolism during aging: androgens. Clin Nutr 29: 697–700. doi: 10.1016/j.clnu.2010.03.010
![]() |
[79] |
Madeddu C, Maccio A, Mantovani G (2012) Multitargeted treatment of cancer cachexia. Crit Rev Oncog 17: 305–314. doi: 10.1615/CritRevOncog.v17.i3.80
![]() |
[80] |
Ebner N, Springer J, Kalantar-Zadeh K, et al. (2013) Mechanism and novel therapeutic approaches to wasting in chronic disease. Maturitas 75: 199–206. doi: 10.1016/j.maturitas.2013.03.014
![]() |
[81] |
Jasuja R, LeBrasseur NK (2014) Regenerating skeletal muscle in the face of aging and disease. Am J Phys Med Rehabil 93: S88–96. doi: 10.1097/PHM.0000000000000118
![]() |
[82] |
Madeddu C, Mantovani G, Gramignano G, et al. (2015) Advances in pharmacologic strategies for cancer cachexia. Expert Opin Pharmacother 16: 2163–2177. doi: 10.1517/14656566.2015.1079621
![]() |
[83] |
Srinath R, Dobs A (2014) Enobosarm (GTx-024, S-22): a potential treatment for cachexia. Future Oncol 10: 187–194. doi: 10.2217/fon.13.273
![]() |
[84] |
Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93: 137-188. doi: 10.1152/physrev.00045.2011
![]() |
[85] | Abdul-Ghani MA, DeFronzo RA (2010) Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol 2010: 476279. |
[86] |
Heinlein CA, Chang C (2002) Androgen receptor (AR) coregulatros: An overview. Endocr Rev 23: 175–200. doi: 10.1210/edrv.23.2.0460
![]() |
[87] |
Hengevoss J, Piechotta M, Muller D, et al. (2015) Combined effects of androgen anabolic steroids and physical activity on the hypothalamic-pituitary-gonadal axis. J Steroid Biochem Mol Biol 150: 86–96. doi: 10.1016/j.jsbmb.2015.03.003
![]() |
[88] | Murthy KS, Zhou H, Grider JR, et al. (2003) Inhibition of sustained smooth muscle contraction byPKA and PKG preferentially mediated by phosphorylation of RhoA. Am J Physiol Gastrointest Liver Physiol 284: G1006–1016. |
[89] |
Mahabadi V, Amory JK, Swerdloff RS, et al. (2009) Combined transdermal testosterone gel and the progestin nestorone suppresses serum gonadotropins in men. J Clin Endocrinol Metab 94: 2313–2320. doi: 10.1210/jc.2008-2604
![]() |
[90] |
Bonsall RW, Rees HD, Michael RP (1985) The distribution, nuclear uptake and metabolism of [3H]dihydrotestosterone in the brain, pituitary gland and genital tract of the male rhesus monkey. J Steroid Biochem 23: 389–398. doi: 10.1016/0022-4731(85)90184-0
![]() |
[91] |
Bonsall RW, Rees HD, Michael RP (1983) Characterization by high performance liquid chromatography of nuclear metabolites of testosterone in the brains of male rhesus monkeys. Life Sci 33: 655–663. doi: 10.1016/0024-3205(83)90254-0
![]() |
[92] |
Tilbrook AJ, Clarke IJ (2001) Negative feedback regulation of the secretion and actions of gonadotropin-releasing hormone in males. Biol Reprod 64: 735–742. doi: 10.1095/biolreprod64.3.735
![]() |
[93] | Alen M, Reinila M, Vihko R (1985) Response of serum hormones to androgen administration in power athletes. Med Sci Sports Exerc 17: 354–359. |
[94] |
Smith CL, O'Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25: 45–71. doi: 10.1210/er.2003-0023
![]() |
[95] |
McEwan IJ (2013) Androgen receptor modulators: a marriage of chemistry and biology. Future Med Chem 5: 1109–1120. doi: 10.4155/fmc.13.69
![]() |
[96] |
Narayanan R, Coss CC, Yepuru M, et al. (2008) Steroidal androgens and nonsteroidal, tissue-selective androgen receptor modulator, S-22, regulate androgen receptor function through distinct genomic and nongenomic signaling pathways. Mol Endocrinol 22: 2448–2465. doi: 10.1210/me.2008-0160
![]() |
[97] |
Skelton DA, Phillips SK, Bruce SA, et al. (1999) Hormone replacement therapy increases isometric muscle strength of adductor pollicis in post-menopausal women. Clin Sci 96: 357–364. doi: 10.1042/cs0960357
![]() |
[98] | Heikkinen J, Kyllonen E, Kurttila-Matero E, et al. (1997) HRT and exercise: effects on bone density, muscle strength and lipid metabolism. A placebo controlled 2-year prospective trial on two estrogen-progestin regimens in healthy postmenopausal women. Maturitas 26: 139–149. |
[99] |
Glenmark B, Nilsson M, Gao H, et al. (2004) Difference in skeletal muscle function in males vs. females: role of estrogen receptor-beta. Am J Physiol Endocrinol Metab 287: E1125–1131. doi: 10.1152/ajpendo.00098.2004
![]() |
[100] |
Velders M, Schleipen B, Fritzemeier KH, et al. (2012) Selective estrogen receptor-beta activation stimulates skeletal muscle growth and regeneration. FASEB J 26: 1909–1920. doi: 10.1096/fj.11-194779
![]() |
[101] |
Harris HA, Albert LM, Leathurby Y, et al. (2003) Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology 144: 4241–4249. doi: 10.1210/en.2003-0550
![]() |
[102] |
Martin C, Ross M, Chapman KE, et al. (2004) CYP7B generates a selective estrogen receptor beta agonist in human prostate. J Clin Endocrinol Metab 89: 2928–2935. doi: 10.1210/jc.2003-031847
![]() |
[103] |
Harris HA, Bruner-Tran KL, Zhang X, et al. (2005) A selective estrogen receptor-beta agonist causes lesion regression in an experimentally induced model of endometriosis. Hum Reprod 20: 936–941. doi: 10.1093/humrep/deh711
![]() |
[104] |
Norman BH, Dodge JA, Richardson TI, et al. (2006) Benzopyrans are selective estrogen receptor beta agonists with novel activity in models of benign prostatic hyperplasia. J Med Chem 49: 6155–6157. doi: 10.1021/jm060491j
![]() |
[105] |
Mersereau JE, Levy N, Staub RE, et al. (2008) Liquiritigenin is a plant-derived highly selective estrogen receptor beta agonist. Mol Cell Endocrinol 283: 49–57. doi: 10.1016/j.mce.2007.11.020
![]() |
[106] |
Piu F, Cheevers C, Hyldtoft L, et al. (2008) Broad modulation of neuropathic pain states by a selective estrogen receptor beta agonist. Eur J Pharmacol 590: 423–429. doi: 10.1016/j.ejphar.2008.05.015
![]() |
[107] | Stovall DW, Pinkerton JV (2009) MF-101, an estrogen receptor beta agonist for the treatment of vasomotor symptoms in peri- and postmenopausal women. Curr Opin Investig Drugs 10: 365–371. |
[108] |
Roman-Blas JA, Castaneda S, Cutolo M, et al. (2010) Efficacy and safety of a selective estrogen receptor beta agonist, ERB-041, in patients with rheumatoid arthritis: a 12-week, randomized, placebo-controlled, phase II study. Arthritis Care Res 62: 1588–1593. doi: 10.1002/acr.20275
![]() |
[109] |
Robb EL, Stuart JA (2011) Resveratrol interacts with estrogen receptor-beta to inhibit cell replicative growth and enhance stress resistance by upregulating mitochondrial superoxide dismutase. Free Radic Biol Med 50: 821–831. doi: 10.1016/j.freeradbiomed.2010.12.038
![]() |
[110] | Tagliaferri MA, Tagliaferri MC, Creasman JM, et al. (2016) A Selective Estrogen Receptor Beta Agonist for the Treatment of Hot Flushes: Phase 2 Clinical Trial. J Altern Complement Med 22: 722–728. |
[111] |
Leitman DC, Christians U (2012) MF101: a multi-component botanical selective estrogen receptor beta modulator for the treatment of menopausal vasomotor symptoms. Expert Opin Investig Drugs 21: 1031–1042. doi: 10.1517/13543784.2012.685652
![]() |
[112] |
Jackson RL, Greiwe JS, Schwen RJ (2011) Emerging evidence of the health benefits of S-equol, an estrogen receptor beta agonist. Nutr Rev 69: 432–448. doi: 10.1111/j.1753-4887.2011.00400.x
![]() |
[113] |
Weiser MJ, Wu TJ, Handa RJ (2009) Estrogen receptor-beta agonist diarylpropionitrile: biological activities of R- and S-enantiomers on behavior and hormonal response to stress. Endocrinology 150: 1817–1825. doi: 10.1210/en.2008-1355
![]() |
[114] |
Amer DA, Kretzschmar G, Muller N, et al. (2010) Activation of transgenic estrogen receptor-beta by selected phytoestrogens in a stably transduced rat serotonergic cell line. J Steroid Biochem Mol Biol 120: 208–217. doi: 10.1016/j.jsbmb.2010.04.018
![]() |
[115] | Moutsatsou P (2007) The spectrum of phytoestrogens in nature: our knowledge is expanding. Hormones 6: 173–193. |
[116] |
Arias-Loza PA, Hu K, Dienesch C, et al. (2007) Both estrogen receptor subtypes, alpha and beta, attenuate cardiovascular remodeling in aldosterone salt-treated rats. Hypertension 50: 432–438. doi: 10.1161/HYPERTENSIONAHA.106.084798
![]() |
[117] |
Sun J, Baudry J, Katzenellenbogen JA, et al. (2003) Molecular basis for the subtype discrimination of the estrogen receptor-beta-selective ligand, diarylpropionitrile. Mol Endocrinol 17: 247–258. doi: 10.1210/me.2002-0341
![]() |
[118] |
Escande A, Pillon A, Servant N, et al. (2006) Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor alpha or beta. Biochem Pharmacol 71: 1459–1469. doi: 10.1016/j.bcp.2006.02.002
![]() |
[119] |
Ogawa M, Kitano T, Kawata N, et al. (2017) Daidzein down-regulates ubiquitin-specific protease 19 expression through estrogen receptor beta and increases skeletal muscle mass in young female mice. J Nutr Biochem 49: 63–70. doi: 10.1016/j.jnutbio.2017.07.017
![]() |
[120] |
Choi SY, Ha TY, Ahn JY, et al. (2008) Estrogenic activities of isoflavones and flavones and their structure-activity relationships. Planta Med 74: 25–32. doi: 10.1055/s-2007-993760
![]() |
[121] |
Zierau O, Kolba S, Olff S, et al. (2006) Analysis of the promoter-specific estrogenic potency of the phytoestrogens genistein, daidzein and coumestrol. Planta Med 72: 184–186. doi: 10.1055/s-2005-873182
![]() |
[122] | Parr MK, Botre F, Nass A, et al. (2015) Ecdysteroids: A novel class of anabolic agents? Biol Sport 32: 169–173. |
[123] |
Kohara A, Machida M, Setoguchi Y, et al. (2017) Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice. J Int Soc Sports Nutr 14: 32. doi: 10.1186/s12970-017-0190-y
![]() |
[124] |
Foryst-Ludwig A, Clemenz M, Hohmann S, et al. (2008) Metabolic actions of estrogen receptor beta (ERbeta) are mediated by a negative cross-talk with PPARgamma. PLoS Genet 4: e1000108. doi: 10.1371/journal.pgen.1000108
![]() |
[125] |
Semple RK, Chatterjee VK, O'Rahilly S (2006) PPAR gamma and human metabolic disease. J Clin Invest 116: 581–589. doi: 10.1172/JCI28003
![]() |
[126] |
Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37: 1974–1984. doi: 10.1016/j.biocel.2005.04.018
![]() |
[127] |
Bodine SC, Stitt TN, Gonzalez M, et al. (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014–1019. doi: 10.1038/ncb1101-1014
![]() |
[128] |
Wang M, Wang Y, Weil B, et al. (2009) Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol 296: R972–978. doi: 10.1152/ajpregu.00045.2009
![]() |
[129] |
Stitt TN, Drujan D, Clarke BA, et al. (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14: 395–403. doi: 10.1016/S1097-2765(04)00211-4
![]() |
[130] |
Guttdrige D (2004) Signaling pathways weigh in on decisions to make or break skeletal muscle. Curr Opin Clin Nutr Metab Care 7: 443–450. doi: 10.1097/01.mco.0000134364.61406.26
![]() |
[131] |
Nader GA (2005) Molecular determinants of skeletal muscle mass: getting the "AKT" together. Int J Biochem Cell Biol 37: 1985–1996. doi: 10.1016/j.biocel.2005.02.026
![]() |
[132] |
Glass DJ (2010) Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care 13: 225–229. doi: 10.1097/MCO.0b013e32833862df
![]() |
[133] |
Song YH, Godard M, Li Y, et al. (2005) Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation. J Investig Med 53: 135–142. doi: 10.2310/6650.2005.00309
![]() |
[134] |
Glass DJ (2003) Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5: 87–90. doi: 10.1038/ncb0203-87
![]() |
[135] |
Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 1: 4. doi: 10.1186/2044-5040-1-4
![]() |
[136] |
Lux MP, Fasching PA, Schrauder MG, et al. (2016) The PI3K Pathway: Background and Treatment Approaches. Breast Care 11: 398–404. doi: 10.1159/000453133
![]() |
[137] |
MacLennan P, Edwards R (1989) Effects of clenbuterol and propanolol on muscle mass. Biochem J 264: 573–579. doi: 10.1042/bj2640573
![]() |
[138] | Schmidt P, Holsboer F, Spengler D (2001) β2-Adrenergic Receptors Potentiate Glucocorticoid Receptor Transactivation via G Proteinβγ-Subunits and the Phosphoinositide 3-Kinase Pathway. Mol Endocrinol 15: 553–564. |
[139] |
Murga C, Laguinge L, Wetzker R, et al. (1998) Activation of Akt/Protein Kinase B by G Protein-coupled Receptors A ROLE FOR α AND βγ SUBUNITS OF HETEROTRIMERIC G PROTEINS ACTING THROUGH PHOSPHATIDYLINOSITOL-3-OH KINASEγ. J Biol Chem 273: 19080–19085. doi: 10.1074/jbc.273.30.19080
![]() |
[140] | Huang P, Li Y, Lv Z, et al. (2017) Comprehensive attenuation of IL-25-induced airway hyperresponsiveness, inflammation and remodelling by the PI3K inhibitor LY294002. Respirology 22: 78–85. |
[141] |
Welle S, Burgess K, Mehta S (2009) Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice. Am J Physiol Endocrinol Metab 296: E567–572. doi: 10.1152/ajpendo.90862.2008
![]() |
[142] |
Jefferies HB, Fumagalli S, Dennis PB, et al. (1997) Rapamycin suppresses 5' TOP mRNA translation through inhibition of p70 s6k. EMBO J 16: 3693–3704. doi: 10.1093/emboj/16.12.3693
![]() |
[143] | Beretta L, Gingras AC, Svitkin YV, et al. (1996) Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 15: 658–664. |
[144] |
Sneddon AA, Delday MI, Steven J, et al. (2001) Elevated IGF-II mRNA and phosphorylation of 4E-BP1 and p70S6k in muscle showing clenbuterol-induced anabolism. Am J Physiol Endocrinol Metab 281: E676–E682. doi: 10.1152/ajpendo.2001.281.4.E676
![]() |
[145] |
Bodine SC, Latres E, Baumhueter S, et al. (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704–1708. doi: 10.1126/science.1065874
![]() |
[146] |
Kline WO, Panaro FJ, Yang H, et al. (2007) Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol. J Appl Physiol (1985) 102: 740–747. doi: 10.1152/japplphysiol.00873.2006
![]() |
[147] |
Okumura S, Fujita T, Cai W, et al. (2014) Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses. J Clin Invest 124: 2785–2801. doi: 10.1172/JCI64784
![]() |
[148] |
Ohnuki Y, Umeki D, Mototani Y, et al. (2014) Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by beta2-adrenoceptor stimulation. J Physiol 592: 5461–5475. doi: 10.1113/jphysiol.2014.282996
![]() |
[149] | Ohnuki Y, Umeki D, Mototani Y, et al. (2016) Role of phosphodiesterase 4 expression in the Epac1 signaling-dependent skeletal muscle hypertrophic action of clenbuterol. Physiol Rep 4. |
[150] |
Burnett DD, Paulk CB, Tokach MD, et al. (2016) Effects of Added Zinc on Skeletal Muscle Morphometrics and Gene Expression of Finishing Pigs Fed Ractopamine-HCL. Anim Biotechnol 27: 17–29. doi: 10.1080/10495398.2015.1069301
![]() |
[151] |
Py G, Ramonatxo C, Sirvent P, et al. (2015) Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery. J Physiol 593: 2071–2084. doi: 10.1113/jphysiol.2014.287060
![]() |
[152] |
Rena G, Guo S, Cichy SC, et al. (1999) Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 274: 17179–17183. doi: 10.1074/jbc.274.24.17179
![]() |
[153] |
Biggs WH, 3rd, Meisenhelder J, Hunter T, et al. (1999) Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A 96: 7421–7426. doi: 10.1073/pnas.96.13.7421
![]() |
[154] |
Umeki D, Ohnuki Y, Mototani Y, et al. (2015) Protective Effects of Clenbuterol against Dexamethasone-Induced Masseter Muscle Atrophy and Myosin Heavy Chain Transition. PLoS One 10: e0128263. doi: 10.1371/journal.pone.0128263
![]() |
[155] |
de Palma L, Marinelli M, Pavan M, et al. (2008) Ubiquitin ligases MuRF1 and MAFbx in human skeletal muscle atrophy. Joint Bone Spine 75: 53–57. doi: 10.1016/j.jbspin.2007.04.019
![]() |
[156] |
Gomez-SanMiguel AB, Gomez-Moreira C, Nieto-Bona MP, et al. (2016) Formoterol decreases muscle wasting as well as inflammation in the rat model of rheumatoid arthritis. Am J Physiol Endocrinol Metab 310: E925–937. doi: 10.1152/ajpendo.00503.2015
![]() |
[157] |
Jesinkey SR, Korrapati MC, Rasbach KA, et al. (2014) Atomoxetine prevents dexamethasone-induced skeletal muscle atrophy in mice. J Pharmacol Exp Ther 351: 663–673. doi: 10.1124/jpet.114.217380
![]() |
[158] |
Yang YT, McElligott MA (1989) Multiple actions of beta-adrenergic agonists on skeletal muscle and adipose tissue. Biochem J 261: 1–10. doi: 10.1042/bj2610001
![]() |
[159] |
Peterla TA, Scanes CG (1990) Effect of beta-adrenergic agonists on lipolysis and lipogenesis by porcine adipose tissue in vitro. J Anim Sci 68: 1024–1029. doi: 10.2527/1990.6841024x
![]() |
[160] | Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2: 599–609. |
[161] |
Pearen MA, Myers SA, Raichur S, et al. (2008) The orphan nuclear receptor, NOR-1, a target of beta-adrenergic signaling, regulates gene expression that controls oxidative metabolism in skeletal muscle. Endocrinology 149: 2853–2865. doi: 10.1210/en.2007-1202
![]() |
[162] |
Martinez JA, Portillo MP, Larralde J (1991) Anabolic actions of a mixed beta-adrenergic agonist on nitrogen retention and protein turnover. Horm Metab Res 23: 590–593. doi: 10.1055/s-2007-1003762
![]() |
[163] |
Watkins LE, Jones DJ, Mowrey DH, et al. (1990) The Effect of Various Levels of Ractopamine Hydrochloride on the Performance and Carcass Characteristics of Finishing Swine. J Anim Sci 68: 3588–3595. doi: 10.2527/1990.68113588x
![]() |
[164] |
Crome PK, McKeith FK, Carr TR, et al. (1996) Effect of ractopamine on growth performance, carcass composition, and cutting yields of pigs slaughtered at 107 and 125 kilograms. J Anim Sci 74: 709–716. doi: 10.2527/1996.744709x
![]() |
[165] |
Adams GR, Haddad F (1996) The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Applied Physiol 81: 2509–2516. doi: 10.1152/jappl.1996.81.6.2509
![]() |
[166] |
Adams GR (2002) Invited Review: Autocrine/paracrine IGF-I and skeletal muscle adaptation. J Appl Physiol 93: 1159–1167. doi: 10.1152/japplphysiol.01264.2001
![]() |
[167] |
Grounds MD (2002) Reasons for the degeneration of ageing skeletal muscle: a central role for IGF-1 signalling. Biogerontology 3: 19–24. doi: 10.1023/A:1015234709314
![]() |
[168] |
Kicman AT, Miell JP, Teale JD, et al. (1997) Serum IGF-I and IGF binding proteins 2 and 3 as potential markers of doping with human GH. Clin Endocrinol 47: 43–50. doi: 10.1046/j.1365-2265.1997.2111036.x
![]() |
[169] |
Bahl N, Stone G, McLean M, et al. (2018) Decorin, a growth hormone-regulated protein in humans. Eur J Endocrinol 178: 147–154. doi: 10.1530/EJE-17-0844
![]() |
[170] |
Kanzleiter T, Rath M, Gorgens SW, et al. (2014) The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochem Biophys Res Commun 450: 1089–1094. doi: 10.1016/j.bbrc.2014.06.123
![]() |
[171] |
Musaro A, McCullagh K, Paul A, et al. (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27: 195–200. doi: 10.1038/84839
![]() |
[172] |
Adams GR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84: 1716–1722. doi: 10.1152/jappl.1998.84.5.1716
![]() |
[173] |
Yin HN, Chai JK, Yu YM, et al. (2009) Regulation of signaling pathways downstream of IGF-I/insulin by androgen in skeletal muscle of glucocorticoid-treated rats. J Trauma 66: 1083–1090. doi: 10.1097/TA.0b013e31817e7420
![]() |
[174] | Jang YJ, Son HJ, Choi YM, et al. (2017) Apigenin enhances skeletal muscle hypertrophy and myoblast differentiation by regulating Prmt7. Oncotarget 8: 78300–78311. |
[175] |
Song YH, Li Y, Du J, et al. (2005) Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest 115: 451–458. doi: 10.1172/JCI22324
![]() |
[176] |
LaVigne EK, Jones AK, Londono AS, et al. (2015) Muscle growth in young horses: Effects of age, cytokines, and growth factors. J Anim Sci 93: 5672–5680. doi: 10.2527/jas.2015-9634
![]() |
[177] |
Chin ER, Olson EN, Richardson JA, et al. (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12: 2499–2509. doi: 10.1101/gad.12.16.2499
![]() |
[178] |
Delling U, Tureckova J, Lim HW, et al. (2000) A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Mol Cell Biol 20: 6600–6611. doi: 10.1128/MCB.20.17.6600-6611.2000
![]() |
[179] |
Semsarian C, Wu MJ, Ju YK, et al. (1999) Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400: 576–581. doi: 10.1038/23054
![]() |
[180] |
Miyashita T, Takeishi Y, Takahashi H, et al. (2001) Role of calcineurin in insulin-like growth factor-1-induced hypertrophy of cultured adult rat ventricular myocytes. Jpn Circ J 65: 815–819. doi: 10.1253/jcj.65.815
![]() |
[181] |
Musaro A, McCullagh KJA, Naya FJ, et al. (1999) IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400: 581–585. doi: 10.1038/23060
![]() |
[182] |
Swoap SJ, Hunter RB, Stevenson EJ, et al. (2000) The calcineurin-NFAT pathway and muscle fiber-type gene expression. Am J Physiol Cell Physiol 279: C915–C924. doi: 10.1152/ajpcell.2000.279.4.C915
![]() |
[183] |
White TA, LeBrasseur NK (2014) Myostatin and sarcopenia: opportunities and challenges - a mini-review. Gerontology 60: 289–293. doi: 10.1159/000356740
![]() |
[184] |
Patel K, Amthor H (2005) The function of Myostatin and strategies of Myostatin bloackde - new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscular Disord 15: 117–126. doi: 10.1016/j.nmd.2004.10.018
![]() |
[185] |
Sartori R, Milan G, Patron M, et al. (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296: C1248–1257. doi: 10.1152/ajpcell.00104.2009
![]() |
[186] |
Smith RC, Lin BK (2013) Moystatin inhibitors as therapies for muscle wasting associated with cancer and other disorders. Curr Opin Support Palliat Care 7: 352–360. doi: 10.1097/SPC.0000000000000013
![]() |
[187] |
Winbanks CE, Weeks KL, Thomson RE, et al. (2012) Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J Cell Biol 197: 997–1008. doi: 10.1083/jcb.201109091
![]() |
[188] |
Winbanks CE, Chen JL, Qian H, et al. (2013) The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J Cell Biol 203: 345–357. doi: 10.1083/jcb.201211134
![]() |
[189] |
Barbe C, Kalista S, Loumaye A, et al. (2015) Role of IGF-I in follistatin-induced skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab 309: E557–567. doi: 10.1152/ajpendo.00098.2015
![]() |
[190] |
Wang Q, Guo T, Portas J, et al. (2015) A soluble activin receptor type IIB does not improve blood glucose in streptozotocin-treated mice. Int J Biol Sci 11: 199–208. doi: 10.7150/ijbs.10430
![]() |
[191] |
Barreiro E, Tajbakhsh S (2017) Epigenetic regulation of muscle development. J Muscle Res Cell Motil 38: 31–35. doi: 10.1007/s10974-017-9469-5
![]() |
[192] |
Grazioli E, Dimauro I, Mercatelli N, et al. (2017) Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics 18: 802. doi: 10.1186/s12864-017-4193-5
![]() |
[193] |
Saccone V, Puri PL (2010) Epigenetic regulation of skeletal myogenesis. Organogenesis 6: 48–53. doi: 10.4161/org.6.1.11293
![]() |
[194] |
Sincennes MC, Brun CE, Rudnicki MA (2016) Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease. Stem Cells Transl Med 5: 282–290. doi: 10.5966/sctm.2015-0266
![]() |
[195] |
Townley-Tilson WH, Callis TE, Wang D (2010) MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol 42: 1252–1255. doi: 10.1016/j.biocel.2009.03.002
![]() |
[196] |
Proctor CJ, Goljanek-Whysall K (2017) Using computer simulation models to investigate the most promising microRNAs to improve muscle regeneration during ageing. Sci Rep 7: 12314. doi: 10.1038/s41598-017-12538-6
![]() |
[197] |
Yu H, Lu Y, Li Z, et al. (2014) microRNA-133: expression, function and therapeutic potential in muscle diseases and cancer. Curr Drug Targets 15: 817–828. doi: 10.2174/1389450115666140627104151
![]() |
1. | Xinling Li, Xueli Qin, Zhiwei Wan, Weipeng Tai, Chaos synchronization of stochastic time-delay Lur'e systems: An asynchronous and adaptive event-triggered control approach, 2023, 31, 2688-1594, 5589, 10.3934/era.2023284 | |
2. | Xiaoyu Wang, Yingqi Zhang, Jingjing Yan, Yan Shi, Event-triggered finite-time state estimation for discrete singular Markovian systems with quantization, 2023, 360, 00160032, 14430, 10.1016/j.jfranklin.2023.11.013 | |
3. | Yuxiang Ji, Yu Zhang, Xiaofeng Ma, Xinling Li, Taiping Jiang, Resilient Energy-to-peak Event-triggered Control of NCSs, 2023, 2638, 1742-6588, 012006, 10.1088/1742-6596/2638/1/012006 | |
4. | Xinling Li, Xiaofeng Ma, Weipeng Tai, Jianping Zhou, Designing an event-triggered H∞ filter with possibly inconsistent modes for Markov jump systems, 2023, 139, 10512004, 104092, 10.1016/j.dsp.2023.104092 | |
5. | Suhuan Zhang, Fanglai Zhu, Xufeng Ling, Event-triggered UIO-based security control for discrete-time systems under deception attacks, 2025, 00200255, 121902, 10.1016/j.ins.2025.121902 |
$ \alpha_{p} $ | $ 0.06 $ | $ 0.07 $ | $ 0.08 $ | $ 0.09 $ | $ 0.1 $ |
$ \theta_{\max} $ | $ 0.5843 $ | $ 0.5459 $ | $ 0.5080 $ | $ 0.4708 $ | $ 0.4341 $ |
$ \alpha $ | $ 0.88 $ | $ 0.86 $ | $ 0.84 $ | $ 0.82 $ | $ 0.8 $ |
$ \theta_{\max} $ | $ 0.4655 $ | $ 0.4613 $ | $ 0.4549 $ | $ 0.4459 $ | $ 0.4341 $ |
Scheme | TTS in [16] | SETS in [31] | NSETS in this paper | |||
$ (\varepsilon_{1}, \varepsilon_{2}) $ | $ (0, 0) $ | $ (0.1, 0) $ | $ (0.1, 0.05) $ | $ (0.1, 0.1) $ | $ (0.1, 0.15) $ | $ (0.1, 0.2) $ |
$ t_{n} $ | $ 200 $ | $ 71 $ | $ 54 $ | $ 43 $ | $ 36 $ | $ 32 $ |
$ t_{r} $ | $ 100 \% $ | $ 35.5 \% $ | $ 27 \% $ | $ 21.5 \% $ | $ 18 \% $ | $ 16 \% $ |
$ \alpha_{p} $ | $ 0.06 $ | $ 0.07 $ | $ 0.08 $ | $ 0.09 $ | $ 0.1 $ |
$ \theta_{\max} $ | $ 0.5843 $ | $ 0.5459 $ | $ 0.5080 $ | $ 0.4708 $ | $ 0.4341 $ |
$ \alpha $ | $ 0.88 $ | $ 0.86 $ | $ 0.84 $ | $ 0.82 $ | $ 0.8 $ |
$ \theta_{\max} $ | $ 0.4655 $ | $ 0.4613 $ | $ 0.4549 $ | $ 0.4459 $ | $ 0.4341 $ |
Scheme | TTS in [16] | SETS in [31] | NSETS in this paper | |||
$ (\varepsilon_{1}, \varepsilon_{2}) $ | $ (0, 0) $ | $ (0.1, 0) $ | $ (0.1, 0.05) $ | $ (0.1, 0.1) $ | $ (0.1, 0.15) $ | $ (0.1, 0.2) $ |
$ t_{n} $ | $ 200 $ | $ 71 $ | $ 54 $ | $ 43 $ | $ 36 $ | $ 32 $ |
$ t_{r} $ | $ 100 \% $ | $ 35.5 \% $ | $ 27 \% $ | $ 21.5 \% $ | $ 18 \% $ | $ 16 \% $ |