Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Nadph oxidase and epithelial sodium channels regulate neonatal mouse lung development

1 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30322, USA
2 Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA

Background: Epithelial sodium channels (ENaC) play critically important roles in lung fluid clearance at birth. We have previously shown that Nadph oxidase (NOX)-derived reactive oxygen species signaling activates ENaC and promotes alveolar fluid clearance. In this study, we examined a new physiological role for NOX-mediated ENaC activity in mouse lung development. Methods: NOX isoform and ENaC subunit mRNA levels were evaluated in preterm and neonatal C57Bl6 mouse lung using real-time PCR analysis. Newborn mice were intra-nasally treated with 1 mM amiloride, 100 mM NSC 23766, or 300 mM apocynin during postnatal days 1–15 to study development. Lung development was assessed using hematoxylin and eosin (H&E) staining, coupled with radial alveolar counts (RAC) and mean linear intercept (MLI) measurements. Results: ENaC subunits and NOX1-4 mRNA were detected in mouse lung during late gestation, birth, and postnatally. Inhibition of Rac-1-mediated-NOX signaling indicates functional (Rac-dependent) NOX1-3 isoforms in newborn lung, determined by dihydroethidium (DHE) detection of reactive oxygen species production in postnatal (PN) day 7 mouse lung. Amiloride inhibition of ENaC activity, NSC 23766 inhibition of Rac1, and apocynin inhibition of pan NOX activity attenuated normal alveolar development in mouse lung. Conclusion: NOX and ENaC play important roles in mouse lung development.
  Figure/Table
  Supplementary
  Article Metrics

Keywords epithelial sodium channels; Nadph oxidase; oxygen therapy; preterm birth

Citation: David Trac, My N. Helms. Nadph oxidase and epithelial sodium channels regulate neonatal mouse lung development. AIMS Molecular Science, 2017, 4(1): 28-40. doi: 10.3934/molsci.2017.1.28

References

  • 1. Eaton DC, Helms MN, Koval M, et al. (2009) The Contribution of Epithelial Sodium Channels to Alveolar Function in Health and Disease. Annu Rev Physiol 71: 403-423.    
  • 2. Liggins GC, Howie RN (1972) A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 50: 515-525.
  • 3. Otulakowski G, Rafii B, Harris M, et al. (2006) Oxygen and glucocorticoids modulate alphaENaC mRNA translation in fetal distal lung epithelium. Am J Respir Cell Mol Biol 34: 204-212.    
  • 4. Otulakowski G, Duan W, Gandhi S, et al. (2007) Steroid and oxygen effects on eIF4F complex, mTOR, and ENaC translation in fetal lung epithelia. Am J Respir Cell Mol Biol 37: 457-466.    
  • 5. Bland RD, Albertine KH, Carlton DP, et al. (2000) Chronic Lung Injury in Preterm Lambs: Abnormalities of the Pulmonary Circulation and Lung Fluid Balance. Pediatr Res 48: 64-74.    
  • 6. Helve O, Pitkanen OM, Andersson S, et al. (2004) Low expression of human epithelial sodium channel in airway epithelium of preterm infants with respiratory distress. Pediatrics 113: 1267-1272.    
  • 7. Helve O, Janer C, Pitkanen O, et al. (2007) Expression of the epithelial sodium channel in airway epithelium of newborn infants depends on gestational age. Pediatrics 120: 1311-1316.    
  • 8. Blackburn S (2012) Respiratory Systems, Maternal, Fetal, & Neonatal Physiology. 4 ed. Marlyand Heights, MO, Elsevier and Saunders, Chapt 10.
  • 9. Jackson RM (1985) Pulmonary oxygen toxicity. Chest 88: 900-905.    
  • 10. Jenkinson SG (1982) Pulmonary oxygen toxicity. Clin Chest Med 3: 109-119.
  • 11. Jobe AH, Kallapur SG (2010) Long term consequences of oxygen therapy in the neonatal period. Semin Fetal Neonatal Med 15: 230-235.    
  • 12. Northway WH, Rosan RC, Porter DY (1967) Pulmonary disease following respirator therapy of hyaline membrane disease. Bronchopulmonary dysplasia. N Engl J Med 276: 357-368.    
  • 13. Goodson P, Kumar A, Jain L, et al. (2012) Nadph oxidase regulates alveolar epithelial sodium channel activity and lung fluid balance in vivo via O(-)(2) signaling. Am J Physiol Lung Cell Mol Physiol 302: L410-L419.    
  • 14. Trac D, Liu B, Pao AC, et al. (2013) Fulvene-5 inhibition of Nadph oxidases attenuates activation of epithelial sodium channels in A6 distal nephron cells. Am J Physiol Renal Physiol 305: F995-F1005.    
  • 15. Emery JL, Mithal A (1960) The number of alveoli in the terminal respiratory unit of man during late intrauterine life and childhood. Arch Dis Child 35: 544-547.    
  • 16. Dunnill MS (1962) Quantitative methods in the study of pulmonary pathology. Thorax 17: 320-328.    
  • 17. Fukuda N, Folkesson HG, Matthay MA (2000) Relationship of interstitial fluid volume to alveolar fluid clearance in mice: ventilated vs. in situ studies. J Appl Physiol 89: 672-679.
  • 18. Hummler E, Barker P, Gatzy J, et al. (1996) Early death due to defective neonatal lung liquid clearance in [alpha]-ENaC-deficient mice. Nat Genet 12: 325-328.    
  • 19. Barker PM, Nguyen MS, Gatzy JT, et al. (1998) Role of gamma ENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. Insights into perinatal adaptation and pseudohypoaldosteronism. J Clin Invest 102: 1634-1640.
  • 20. Rafii B, Tanswell AK, Otulakowski G, et al. (1998) O2- induced ENaC expression is associated with NF-kappaB activation and blocked by superoxide scavenger. Am J Physiol 275: L764-L770.
  • 21. Rafii B, Coutinho C, Otulakowski G, et al. (2000) Oxygen induction of epithelial Na(+) transport requires heme proteins. Am J Physiol Lung Cell Mol Physiol 278: L399-L406.
  • 22. Pendyala S, Gorshkova IA, Usatyuk PV, et al. (2009) Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells. Antioxid Redox Signal 11: 747-764.    
  • 23. Pendyala S, Natarajan V (2010) Redox regulation of Nox proteins. Respir Physiol Neurobiol 174: 265-271.    
  • 24. Dagenais A, Kothary R, Berthiaume Y (1997) The alpha subunit of the epithelial sodium channel in the mouse: developmental regulation of its expression. Pediatr Res 42: 327-334.    
  • 25. Jesse NM, McCartney J, Feng X, et al. (2009) Expression of ENaC subunits, chloride channels, and aquaporins in ovine fetal lung: ontogeny of expression and effects of altered fetal cortisol concentrations. Am J Physiol Regul Integr Comp Physiol 297: R453-R461.    
  • 26. O'Brodovich H, Canessa C, Ueda J, et al. (1993) Expression of the epithelial Na+ channel in the developing rat lung. Am J Physiol 265: C491-C496.
  • 27. Talbot CL, Bosworth DG, Briley EL, et al. (1999) Quantitation and localization of ENaC subunit expression in fetal, newborn, and adult mouse lung. Am J Physiol Lung Cell Mol Physiol 20: 398-406.
  • 28. Hughey RP, Bruns JB, Kinlough CL, et al. (2004) Epithelial sodium channels are activated by furin-dependent proteolysis. J Biol Chem 279: 18111-18114.    
  • 29. Vallet V, Chraibi A, Gaeggeler HP, et al. (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389: 607-610.    
  • 30. O'Brodovich H, Hannam V, Seear M, et al. (1990) Amiloride impairs lung water clearance in newborn guinea pigs. J Appl Physiol (1985) 68: 1758-1762.
  • 31. Olver RE, Ramsden CA, Strang LB, et al. (1986) The role of amiloride-blockable sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lamb. J Physiol 376: 321-340.
  • 32. Ramsden CA, Markiewicz M, Walters DV, et al. (1992) Liquid flow across the epithelium of the artificially perfused lung of fetal and postnatal sheep. J Physiol 448: 579-597.    
  • 33. Song W, Wei S, Zhou Y, et al. (2010) Inhibition of lung fluid clearance and epithelial Na+ channels by chlorine, hypochlorous acid, and chloramines. J Biol Chem 285: 9716-9728.    
  • 34. Elberson VD, Nielsen LC, Wang H, et al. (2015) Effects of intermittent hypoxia and hyperoxia on angiogenesis and lung development in newborn mice. J Neonatal Perinatal Med 8: 313-322.
  • 35. Frank L (1985) Effects of oxygen on the newborn. Fed Proc 44: 2328-2334.
  • 36. Wilborn AM, Evers LB, Canada AT (1996) Oxygen toxicity to the developing lung of the mouse: role of reactive oxygen species. Pediatr Res 40: 225-232.    
  • 37. Bird AD, McDougall AR, Seow B, et al. (2015) Minireview: Glucococrticoid Regulation of Lung Development: lessons learned from conditional GR knockout mice. Mol Endocrinol 29: 158-171.    
  • 38. Saugstad OD (2003) Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol 8: 39-49.    
  • 39. O'Brodovich HM, Mellins RB (1985) Bronchopulmonary dysplasia. Unresolved neonatal acute lung injury. Am Rev Respir Dis 132: 694-709.
  • 40. Bonikos DS, Bensch KG, Northway WHJ, et al. (1976) Bronchopulmonary dysplasia: the pulmonary pathologic sequel of necrotizing bronchiolitis and pulmonary fibrosis. Hum Pathol 7: 643-666.    
  • 41. Ghanta S, Leeman KT, Christou H (2013) An update on pharmacologic approaches to bronchopulmonary dysplasia. Semin Perinatol 37: 115-123.    

 

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, My N. Helms, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved