Citation: Jian Zou, Fulton T. Crews. Glutamate/NMDA excitotoxicity and HMGB1/TLR4 neuroimmune toxicity converge as components of neurodegeneration[J]. AIMS Molecular Science, 2015, 2(2): 77-100. doi: 10.3934/molsci.2015.2.77
[1] | Leandro M. Del Pezzo, Nicolás Frevenza, Julio D. Rossi . Convex and quasiconvex functions in metric graphs. Networks and Heterogeneous Media, 2021, 16(4): 591-607. doi: 10.3934/nhm.2021019 |
[2] | M. Silhavý . Ideally soft nematic elastomers. Networks and Heterogeneous Media, 2007, 2(2): 279-311. doi: 10.3934/nhm.2007.2.279 |
[3] | Matthias Erbar, Dominik Forkert, Jan Maas, Delio Mugnolo . Gradient flow formulation of diffusion equations in the Wasserstein space over a Metric graph. Networks and Heterogeneous Media, 2022, 17(5): 687-717. doi: 10.3934/nhm.2022023 |
[4] | Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551 |
[5] | Dimitra Antonopoulou, Georgia Karali . A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8(1): 9-22. doi: 10.3934/nhm.2013.8.9 |
[6] | Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879 |
[7] | Jan Haskovec, Vybíral Jan . Robust network formation with biological applications. Networks and Heterogeneous Media, 2024, 19(2): 771-799. doi: 10.3934/nhm.2024035 |
[8] | Mahdi Jalili . EEG-based functional brain networks: Hemispheric differences in males and females. Networks and Heterogeneous Media, 2015, 10(1): 223-232. doi: 10.3934/nhm.2015.10.223 |
[9] | . Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda . Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks and Heterogeneous Media, 2007, 2(1): 127-157. doi: 10.3934/nhm.2007.2.127 |
[10] | Sergei Avdonin, Julian Edward . An inverse problem for quantum trees with observations at interior vertices. Networks and Heterogeneous Media, 2021, 16(2): 317-339. doi: 10.3934/nhm.2021008 |
Our main goal in this paper is to study convex and quasiconvex functions on a metric graph.
Let us start this introduction by recalling the well-known definitions of convexity and quasiconvexity in the Euclidean space. A function
$ u(\lambda x+(1-\lambda )y)\leq \lambda u(x)+(1-\lambda )u(y). $ |
That is, the value of the function at a point in the segment that joins
A notion weaker than convexity is quasiconvexity. A function
$ u(\lambda x+(1-\lambda )y)\leq \max \left\{ u(x),u(y)\right\}. $ |
An alternative and more geometrical way of defining a quasiconvex function
Notice that whether or not a function is convex depends on the numbers which the function assigns to its level sets, not just on the shape of these level sets. The problem with this is that a monotone transformation of a convex function need not be convex; that is, if
Convex and quasiconvex functions have applications in a wide range of disciplines, for example, mathematical analysis, optimization, game theory, and economics (see [10,23,15,25,26]).
In the Euclidean space
$ \mathop {\min }\limits_{v:|v| = 1} \langle {D^2}u(x)v,v\rangle = 0, $ | (1) |
(for a proof, see Theorem 2 in [21]) and is quasiconvex if and only if it is a viscosity sub-solution to
$ \mathop {\min }\limits_{v:|v|=1,⟨v,∇u(x)⟩=0} \langle {D^2}u(x)v,v\rangle = 0 $ | (2) |
(now we refer to Section 2, Theorem 2.6 and Theorem 2.7, in [4]). Moreover, the convex and the quasiconvex envelope of a boundary datum are solutions to (1) and (2), respectively. For numerical approximations we refer to [2,1].
When one wants to expand the notion of convexity or quasiconvexity to an ambient space beyond the Euclidean setting, the key is to introduce what is a segment in our space. For notions of convexity in discrete settings (like graphs and lattices) we refer to [8,9,13,14,17,18,19,24] and references therein. For viscosity solutions to elliptic equations in finite graphs we refer to [16] and for nonlocal equations related to game theory to [12].
We start gathering some basic facts about metric graphs, see for instance [6] and references therein.
A graph
Assumption 1.1. Throughout this article we assume that all graphs are connected, simple and with bounded degree, that is,
We consider also an orientation to each edge of
Definition 1.2 [See Definition 1.3.1 in [6]] A graph
1. Each edge
2. The lengths of the edges that are reversals of each other are assumed to be equal, that is,
3. A coordinate
4. The relation
For an edge
A sequence of edges
$ d(x,y): = \inf \left\{ {{d_{\rm{e}}}(x,{z_1}) + {d_0}({z_1},{z_2}) + {d_{\overline {\rm{e}} }}({z_2},y):{z_1},{z_2} \in {\rm{V}},{z_1} \in {\rm{e}},{z_2} \in \overline {\rm{e}} } \right\}, $ |
where
The metric graph
Assumption 1.3. We assume that
A function
$ \dfrac{\partial u}{\partial x_{ \mathrm{e}}}( \mathrm{v}) = \left\{ u′e(v)ifv=e−,−u′e(v)ifv=e+ \right. , $ |
that is,
We use the classical notion of convexity.
Definition 1.4. A function
$ u(z) \leq \frac{d(y,z)}{d(x,y)} u(x)+ \frac{d(x,z)}{d(x,y)} u(y), $ |
for any
Remark 1. Note that convexity does not depend on the orientation map
As an example of a
We are interested in the largest convex function that is below a given datum in some subset of the graph. Let
$ u∗f(x):=sup{u(x):u∈C(f)}, $ | (3) |
where
Remark 2. Observe that
Remark 3. When the set
Our first result states when
Theorem 1.5. Let
$ \mathop {\inf }\limits_A f \le u_f^*(x) \le \mathop {\sup }\limits_A f\;\;\;\;\;\;\forall x \in \Gamma . $ |
Next, we show an equation together with a nonlinear coupling at the nodes that characterizes
Our first result is a characterization of convex functions in a metric graph.
Theorem 1.6. A function
$ \begin{array}{l} \begin{array}{*{20}{c}} {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;u'' \ge 0,}&{\;\;\;\;\;\;\;\;on\;the\;edges\;of\;\Gamma } \end{array}\\ mine,¯e∈Ev{∂u∂xe(v)+∂u∂x¯e(v)}≥0,ifv∈Vint. \end{array} $ |
(4) |
Next, we characterize the largest convex function below
Theorem 1.7. Let
$ C = \{ x\in A: u^*_f(x) = f(x) \}. $ |
Then,
$ u″=0,ontheedgesofΓ∖C,mine,¯e∈Ev{∂u∂xe(v)+∂u∂xe(v)}=0,foranynodev∈Γ∖C, $ | (5) |
and therefore
Remark 4. Notice that the result covers the problem for the convex envelope (when
Notice that for a finite metric graph we have a finite number of degrees of freedom for the largest convex function below
The equation (5) in the metric graph is the analogous to (1) in the Euclidean space. In fact, notice that on the edges there is only one direction (and the equation (1) says that the second derivative in that direction is zero) and at a vertex the nonlinear condition says that in the union of two edges that contain the vertex (a direction) the second derivative of
A quantum graph is a metric graph in which we associate a differential law with each edge with a coupling condition on the nodes, see [6]. Quantum graphs (in contrast to more elementary graph models, such as simple unweighted or weighted graphs) are used to model thin tubular structures, so-called graph-like spaces, they are their natural limits, when the radius of a graph-like space tends to zero, see [6]. Remark that our convex envelope is characterized as being affine in each edge (a solution to the linear equation
Now we turn out attention to quasiconvex functions in a metric graph
Definition 1.8. A function
$ u(z) \leq \max \{ u(x) ; u(y)\}, $ |
for any
For
$ u⊛f(x):=sup{u(x):u∈QC(f)}, $ | (6) |
where
$ u_f^*(x)\le u^{\circledast}_f(x) \qquad {\rm{for\;all}}\; x\in\Gamma. $ |
Remark 5. A remark analogous to Remark 3 is also useful here. When the set
For this optimal quasiconvex function
Theorem 1.9. Let
$ \mathop {\inf }\limits_A f \le u_f^{\circledast}(x) \le \mathop {\sup }\limits_A f\;\;\;\;\;\;\forall x \in \Gamma . $ |
Moreover, let the contact set be given by
$ C = \{ x\in A: u^{\circledast}_f (x) = f(x) \}. $ |
then
$ u(x)=max{u(e+);u(e−)},ifx∈e,e∈E∖C,u(v)=minu,w∈Vvu≠wmax{u(u),u(w)}ifv∈V∖C, $ | (7) |
where
As happens in the convex case, for the quasiconvex case, we have a finite number of degrees of freedom. In fact, we have only to obtain the values of
The paper is organized as follows: in Section 2 we deal with the convex case; in Section 3 we prove our results for the quasiconvex case; and, finally, in Section 4 we collect some examples that illustrate our results.
Let us start this section by recalling our definition of a convex function. A function
$ u(z)\leq \frac{d(y,z)}{d(x,y)} u(x)+ \frac{d(x,z)}{d(x,y)} u(y) \qquad {\rm{for\;all}}\;z\in [x,y] . $ |
Remark 6. Let
●
●
● Finally, by Alexandrov's theorem,
We refer to [20] for the proofs of these facts.
Remark 7. Keeping in mind that the only convex functions on a circle are the constants, we have that when
Now, we need to introduce the notion of viscosity sub(super)-solution to the problem
$ u′′=0,ontheedgesofΓmine,¯e∈Ev{∂u∂xe(v)+∂u∂xˉe(v)}=0,ifv∈Vint,u(v)=limx→vu(x),ifv∈Vext. $ | (8) |
Definition 2.1. Let
● For every
$ \varphi^{\prime\prime}(x_0) \ge 0 \, (\le 0); $ |
● For every
$ \dfrac{\partial \varphi}{\partial x_{ \mathrm{e}}}( \mathrm{v}) + \dfrac{\partial \varphi}{\partial x_{\bar{ \mathrm{e}}}}( \mathrm{v}) \geq 0 \,(\leq 0). $ |
A viscosity solution of (8) is a continuous function
Remark 8. The boundary condition in (8) is a direct consequence of the regularity results for convex functions on a metric graph stated in Remark 6.
Our first result is a characterization of convex functions in a metric graph.
Theorem 2.2. A function
Proof of Theorem 2.2. Let us start by assuming that
$ \varphi(x_0) = u(x_0) \leq \frac{1}{2} u(x_0+\epsilon)+ \frac{1}{2} u(x_0-\epsilon) \leq \frac{1}{2} \varphi(x_0+\epsilon)+ \frac{1}{2} \varphi(x_0-\epsilon) $ |
for any
$ \varphi'' (x_0) \geq 0. $ |
Therefore,
We now assume that
$ u(z)>d(y,z)d(y,x)u(x)+d(x,z)d(y,x)u(y). $ | (9) |
We use an idea from [21,Theorem 1]. Let
Now, assume that the convexity does not hold on
$ u(z)>d(y,z)d(y,x)u(x)+d(x,z)d(y,x)u(y) $ | (10) |
for any
$ \varphi_{ \mathrm{e}}(z) = {u(x)−u(v)d(x,v)d(z,v)+u(v)ife−=v,u(v)−u(x)d(x,v)d(z,v)+u(x)ife+=v,, $ |
$ \varphi_{\bar{ \mathrm{e}}}(z) = {u(y)−u(v)d(y,v)d(z,v)+u(v)ifˉe−=v,u(v)−u(y)d(y,v)d(z,v)+u(y)ifˉe+=v, $ |
and
$ \varphi(z) = {φe(z)ifz∈e,φˉe(z)ifz∈ˉe, $ |
we get that
$ \varphi(z) \geq u(z), \qquad\forall z\in [x,y]. $ |
Moreover, by (10) we have
$ ∂φ∂xe(v)+∂φ∂xˉe(v)=u(x)−u(v)d(x,v)+u(y)−u(v)d(y,v)=d(y,v)u(x)+d(x,v)u(y)−d(x,y)u(v)d(x,v)d(y,v)<0. $ |
This gives a contradiction with the fact that
We are now in a position to study the largest convex function that is below of a given datum in some subset of the graph. Recall that for
$ u^*_f (x) : = \sup \left\{u(x) \colon u\in\mathcal{C}(f) \right\}, $ |
where
First, we just observe that
Lemma 2.3. Let
Proof. For any
$ u(z) \leq \frac{d(y,z)}{d(x,y)} u(x) + \frac{d(x,z)}{d(x,y)} u(y) \leq \frac{d(y,z)}{d(x,y)} u^*_f(x) + \frac{d(x,z)}{d(x,y)} u^*_f(y), $ |
for any
Proposition 1. Let
Proof. First, we assume that there is a terminal node
$ u(x) = \left\{ {infy∈A{f(y)}ifx∉(b,v],n(x−b)+infy∈A{f(y)}ifx∈(b,v],} \right. $ |
belongs to
Now, we assume that
$ u({x_0}) = \mathop {\max }\limits_{y \in \Gamma '} u(y): = M > \mathop {\sup }\limits_A f. $ |
Consider the set
Remark 9. The previous proof and the Remark 2 prove that if
$ \mathop {\inf }\limits_A f \le u_f^*(x) \le \mathop {\sup }\limits_A f\;\;\;\;\;\;{\rm{for}}\;{\rm{all}}\;x \in \Gamma . $ |
Throughout the rest of this section, we assume that
Now we prove our result concerning the equation verified by
Theorem 2.4. The function
$ u′′=0,ontheedgesofΓ∖A, $ | (11) |
$ mine,ˉe∈Ev{∂u∂xe(v)+∂u∂xˉe(v)}=0,ifv∈Vint∖A. $ | (12) |
Proof. Since
First case. There exist
$ \varphi'' (x_0) > 0. $ |
Since
$ r(x) : = \varphi(x_0) + \varphi'(x_0)(x-x_0), $ |
and define
Since
$ w(x) = {˜r(x)ifx∈[z1,z2],u∗f(x)ifx∉[z1,z2], $ |
is a convex function and verifies
$ w(x_0) = \varphi(x_0) + \epsilon > u_f^*(x_0), $ |
with
Second case. There exists
$ ∂φ∂xe(v)+∂φ∂xˉe(v)>0. $ | (13) |
Since
By the previous step, we have that
$ u'' = 0\;\;\;{\kern 1pt} {\rm{in}}\;[x,{\rm{v}}] \cup [{\rm{v}},y] \setminus \{ {\rm{v}}\} . $ |
Then
$ ∂u∗f∂xe(v)+∂u∗f∂xˉe(v)≥∂φ∂xe(v)+∂φ∂xˉe(v)>0. $ | (14) |
Let
Using (14) one can pick
$ w(z) = {r(z)forz∈eˉr(z)forz∈ˉeu∗f(z)otherwise $ |
is convex. We have also that
To begin this section, we recall the notion of quasiconvex function. A function
$ u(z)\leq \max\{ u(x), u(y)\} \qquad {\rm{for\;any}}\; z\in [x,y]. $ |
Let
$ u⊛f(x):=sup{u(x):u∈QC(f)}, $ | (15) |
where
Let us first prove that is quasiconvex as happens for convex functions. Again the result is immediate, and we include the proof for completeness.
Lemma 3.1. Let
Proof. For any
$ u(z) \leq \max \{u(x),u(y)\} \leq \max\{u^{\circledast}_f(x),u^{\circledast}_f(y)\}, $ |
for any
Next, we turn our attention to the boundedness of
Proposition 2. Let
Proof. First, assume that
$ u_n(x) = {infAfforx∈Conv(A),nforx∉Conv(A). $ |
The function
$ {S_\alpha }\left( {{u_n}} \right) = \left\{ {x \in \Gamma :{u_n}(x) \le \alpha } \right\} = \left\{ {∅forα<infAf,Conv(A)forα∈[infAf,n),Γforα≥n,} \right. $ |
that are all convex subsets of
Now, we assume that
$ u^{\circledast}_f(x) \le \max \{ f({a_1}),f({a_2})\} \le \mathop {\sup }\limits_A f < \infty , $ |
proving that
For
As we did for convex functions, it can be proved that a function is quasiconvex if and only if it is a viscosity solution to
$ u(x)≤max{u(e+),u(e−)},forx∈e,e∈E, $ | (16) |
$ u(v)≤minu,w∈Vvu≠wmax{u(u),u(w)}forv∈V∖A, $ | (17) |
where
Now we prove our result concerning the equation verified by
Theorem 3.2. Consider a closed set
$ u(x)=max{u(e+),u(e−)},forx∈e∖A,e∈E, $ | (18) |
$ u(v)=minu,w∈Vvu≠wmax{u(u),u(w)}forv∈V∖A, $ | (19) |
where
Proof. We define the function
$ w(x) : = \left\{ u⊛f(x)ifx∈A,max{u⊛f(e+),u⊛f(e−)}ifx∈e∖A,e∈E,minu,w∈Vvu≠wmax{u⊛f(u),u⊛f(w)}ifx=v∈V∖A. \right. $ |
Using that
Let
Case 1.
In this case, either
$ w(z)\le\max\{w(x),w(y)\} . $ |
Case 2.
In that case, either
$ w(z)\le \max\{u^{\circledast}_f(x),u^{\circledast}_f( \mathrm{v})\}, $ |
or else
$ w(z)\le \max\{u^{\circledast}_f(y),u^{\circledast}_f( \mathrm{v})\}, $ |
where here
$ u^{\circledast}_f( \mathrm{v})\le \max\{u^{\circledast}_f(x),u^{\circledast}_f(y)\} \le \max\{w(x),w(y)\}, $ |
and therefore
Case 3.
$ [x,y] = [x, \mathrm{v}_1]\cup[ \mathrm{v}_1, \mathrm{v}_2]\cup\cdots\cup[ \mathrm{v}_n, y], $ |
and
Then
$ w(z) \le \max \{ u^{\circledast}_f( \mathrm{v}_j),u^{\circledast}_f( \mathrm{v}_{j+1}) \} . $ |
Using that
$ \max\{ u^{\circledast}_f( \mathrm{v}_j),u^{\circledast}_f( \mathrm{v}_{j+1}) \} \le \max\{ u^{\circledast}_f(x),u^{\circledast}_f(y) \} \le \max\{ w(x),w(y) \} . $ |
Therefore
Case 4.
Observe that
$ w(x) \ge u^{\circledast}_f( \mathrm{v}) \rm{ and } w(y) \ge u^{\circledast}_f(\bar{ \mathrm{v}}) $ |
where
$ \max \{w(x),w(y)\} \ge \max\{u^{\circledast}_f( \mathrm{v}),u^{\circledast}_f(\bar{ \mathrm{v}})\} \ge w(z) $ |
due to
Case 5.
$ [x,y] = [x, \mathrm{v}_1]\cup\cdots\cup[ \mathrm{v}_{j-1},z]\cup[z, \mathrm{v}_{j+1}]\cup\cdots \cup[ \mathrm{v}_n, y]. $ |
Then,
$ w(z)\le \max\{u^{\circledast}_f( \mathrm{v}_{j-1}),u^{\circledast}_f( \mathrm{v}_{j+1})\}. $ |
Using that
$ \max\{u^{\circledast}_f( \mathrm{v}_{j-1}),u^{\circledast}_f( \mathrm{v}_{j+1})\} \le \max\{u^{\circledast}_f(x),u^{\circledast}_f(y)\} \le \max\{w(x),w(y)\}. $ |
Therefore
To illustrate our results, we include some examples. Recall that the convex and quasiconvex optimal functions do not depend on the orientation of the edges. However, we use the orientation of the edges to parametrize them and then describe a function on the metric graph
In all of our examples we will assume that all edges have the same length
Example 4.1. First, we give an example of a set
< img src="PIC/NHM-1556-1801_2021_4_591-FE51.jpg" > < /img > |
Set
$ \rm{Conv}(A) = \{ \mathrm{v}_1, \mathrm{v}_4, \mathrm{v}_5\} \cup \{ \mathrm{e}_4, \mathrm{e}_5\} \neq \Gamma. $ |
In this example, if we set
$ u^*_f (x) = \left\{ a+b2ifx∈{e1,e2,e3}∪{v1,v2,v3},a+b2+a−b2xifx∈e4,a+b2+b−a2xifx∈e5,f(x)ifx∈A. \right. $ |
Also, in this example, the function
$ u_n(x) = \left\{ min{a,b}x∈Conv(A),nx∈Γ∖Conv(A), \right. $ |
is quasiconvex for every
$ S_{\alpha }(u_n) = \{x\in \Gamma \colon u_n(x)\leq \alpha \} = \left\{ ∅ifα<min{a,b},Conv(A)ifα∈[min{a,b},n),Γifα≥n, \right. $ |
that are all convex subsets of
Example 4.2. Consider the metric graph
< img src="PIC/NHM-1556-1801_2021_4_591-FE56.jpg" > < /img > |
Notice that in this example, there a no terminal nodes. If we fix just one value, say
Now, consider three values at the nodes
$ u^*_f(x) = \left\{ a+(b−a)xifx∈e1,c+(a−c)xifx∈e2,b+(c−b)xifx∈e3,f(x)ifx∈{v1,v2,v3}. \right. $ |
Observe that
For the quasiconvex case, looking for
$ u^{\circledast}_f (x) = \left\{ cifx∈e2∪e3∪{v3},bifx∈e1∪{v2},aifx=v1. \right. $ |
This example can be generalized to the circular graph with
Example 4.3. Let us consider a star-shaped graph as shown in the following figure:
< img src="PIC/NHM-1556-1801_2021_4_591-FE59.jpg" > < /img > |
Then, if for instance, we set
$ u_f^*(x) = \left\{ 12−12xifx∈e1,12+12xifx∈e2,12+32xifx∈e3,12ifx=v3,f(x)ifx∈A. \right. {\rm{and}}\; u^{\circledast}_f(x) = \left\{ 1ifx∈e1∪e2∪{v3},2ifx∈e3,f(x)ifx∈A. \right. $ |
This example can be generalized to a star-shaped graph with
Example 4.4. We consider the graph:
< img src="PIC/NHM-1556-1801_2021_4_591-FE61.jpg" > < /img > |
Let
$ u_f^*(x) = \left\{ 13xifx∈e1,2−53xifx∈e2,13+13xifx∈e3,1−13xifx∈e4,3−73xifx∈e5,13ifx=v2,23ifx=v4,f(x)ifx∈A, \right. \, u^{\circledast}_f(x) = \left\{ 1ifx∈e1∪e3∪e4∪{v2,v4},2ifx∈e2,3ifx∈e5,f(x)ifx∈A. \right. $ |
Example 4.5. Finally, we consider a binary tree of two generations where edges are oriented to the root (see the figure below).
< img src="PIC/NHM-1556-1801_2021_4_591-FE63.jpg" > < /img > |
Let
$ u_f^*(x) = \left\{ 12+12xifx∈e1,32−12xifx∈e2,12xifx∈e3,1−12xifx∈e4,2−12xifx∈e5,3−32xifx∈e6,1ifx=v1,12ifx=v2,32ifx=v3,f(x)ifx∈A, \right. \, u^{\circledast}_f(x) = \left\{ 1ifx∈e3∪e4∪{v2},2ifx∈e1∪e2∪e5∪{v1,v3},3ifx∈e7,f(x)ifx∈A. \right. $ |
This analysis can be extended to larger trees.
[1] |
Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1: 120-129. doi: 10.1038/35040009
![]() |
[2] |
Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443: 796-802. doi: 10.1038/nature05293
![]() |
[3] |
Qin L, Wu X, Block ML, et al. (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55: 453-462. doi: 10.1002/glia.20467
![]() |
[4] |
Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85: 2059-2070. doi: 10.1002/jnr.21325
![]() |
[5] |
Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51: 333-355. doi: 10.1016/j.neuint.2007.03.012
![]() |
[6] | Kostic M, Zivkovic N, Stojanovic I (2013) Multiple sclerosis and glutamate excitotoxicity. Rev Neurosci 24: 71-88. |
[7] |
Morimoto K, Murasugi T, Oda T (2002) Acute neuroinflammation exacerbates excitotoxicity in rat hippocampus in vivo. Exp Neurol 177: 95-104. doi: 10.1006/exnr.2002.7991
![]() |
[8] |
Zou JY, Crews FT (2005) TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 1034: 11-24. doi: 10.1016/j.brainres.2004.11.014
![]() |
[9] |
Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: 191-195. doi: 10.1038/nature00858
![]() |
[10] |
Bell CW, Jiang W, Reich CF, et al. (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291: C1318-1325. doi: 10.1152/ajpcell.00616.2005
![]() |
[11] |
Zou JY, Crews FT (2014) Release of neuronal HMGB1 by Ethanol through decreased HDAC activity activates brain neuroimmune signaling. PloS One 9: e87915. doi: 10.1371/journal.pone.0087915
![]() |
[12] |
Evankovich J, Cho SW, Zhang R, et al. (2010) High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem 285: 39888-39897. doi: 10.1074/jbc.M110.128348
![]() |
[13] |
Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5: 331-342. doi: 10.1038/nri1594
![]() |
[14] |
Andersson U, Tracey KJ (2011) HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 29: 139-162. doi: 10.1146/annurev-immunol-030409-101323
![]() |
[15] | Tang D, Billiar TR, Lotze MT (2012) A Janus tale of two active high mobility group box 1 (HMGB1) redox states. Mol Med 18: 1360-1362. |
[16] |
Janko C, Filipovic M, Munoz LE, et al. (2014) Redox modulation of HMGB1-related signaling. Antioxid Redox Signal 20: 1075-1085. doi: 10.1089/ars.2013.5179
![]() |
[17] | Magna M, Pisetsky DS (2014) The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med 20: 138-146. |
[18] |
Faraco G, Fossati S, Bianchi ME, et al. (2007) High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem 103: 590-603. doi: 10.1111/j.1471-4159.2007.04788.x
![]() |
[19] |
Kim JB, Sig Choi J, Yu YM, et al. (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26: 6413-6421. doi: 10.1523/JNEUROSCI.3815-05.2006
![]() |
[20] |
Lo Coco D, Veglianese P, Allievi E, et al. (2007) Distribution and cellular localization of high mobility group box protein 1 (HMGB1) in the spinal cord of a transgenic mouse model of ALS. Neurosci Lett 412: 73-77. doi: 10.1016/j.neulet.2006.10.063
![]() |
[21] | Crews FT, Qin L, Sheedy D, et al. (2012) High Mobility Group Box 1/Toll-like Receptor Danger Signaling Increases Brain Neuroimmune Activation in Alcohol Dependence. Biol Psychiatry 73: 602-612. |
[22] |
Maroso M, Balosso S, Ravizza T, et al. (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16: 413-419. doi: 10.1038/nm.2127
![]() |
[23] |
Kim SW, Jin Y, Shin JH, et al. (2012) Glycyrrhizic acid affords robust neuroprotection in the postischemic brain via anti-inflammatory effect by inhibiting HMGB1 phosphorylation and secretion. Neurobiol Dis 46: 147-156. doi: 10.1016/j.nbd.2011.12.056
![]() |
[24] |
Ohnishi M, Katsuki H, Fukutomi C, et al. (2011) HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats. Neuropharmacology 61: 975-980. doi: 10.1016/j.neuropharm.2011.06.026
![]() |
[25] |
Okuma Y, Liu K, Wake H, et al. (2014) Glycyrrhizin inhibits traumatic brain injury by reducing HMGB1-RAGE interaction. Neuropharmacology 85: 18-26. doi: 10.1016/j.neuropharm.2014.05.007
![]() |
[26] | Chavan SS, Huerta PT, Robbiati S, et al. (2012) HMGB1 mediates cognitive impairment in sepsis survivors. Molecular medicine 18: 930-937. |
[27] |
Brana C, Benham C, Sundstrom L (2002) A method for characterising cell death in vitro by combining propidium iodide staining with immunohistochemistry. Brain Res Brain Res Protoc 10: 109-114. doi: 10.1016/S1385-299X(02)00201-5
![]() |
[28] |
Noraberg J, Kristensen BW, Zimmer J (1999) Markers for neuronal degeneration in organotypic slice cultures. Brain Res Brain Res Protoc 3: 278-290. doi: 10.1016/S1385-299X(98)00050-6
![]() |
[29] |
Zimmer J, Kristensen BW, Jakobsen B, et al. (2000) Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures. Amino Acids 19: 7-21. doi: 10.1007/s007260070029
![]() |
[30] |
Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20: 83-90. doi: 10.1016/0165-0270(87)90041-0
![]() |
[31] |
Zou JY, Crews FT (2005) TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 1034: 11-24. doi: 10.1016/j.brainres.2004.11.014
![]() |
[32] |
Balosso S, Liu J, Bianchi ME, et al. (2014) Disulfide-Containing High Mobility Group Box-1 Promotes N-Methyl-d-Aspartate Receptor Function and Excitotoxicity by Activating Toll-Like Receptor 4-Dependent Signaling in Hippocampal Neurons. Antioxid Redox Signal 21: 1726-1740. doi: 10.1089/ars.2013.5349
![]() |
[33] | Chenard BL, Menniti FS (1999) Antagonists selective for NMDA receptors containing the NR2B subunit. Curr Pharma Des 5: 381-404. |
[34] |
Kim SW, Lim CM, Kim JB, et al. (2011) Extracellular HMGB1 released by NMDA treatment confers neuronal apoptosis via RAGE-p38 MAPK/ERK signaling pathway. Neurotox Res 20: 159-169. doi: 10.1007/s12640-010-9231-x
![]() |
[35] |
Glass CK, Saijo K, Winner B, et al. (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140: 918-934. doi: 10.1016/j.cell.2010.02.016
![]() |
[36] |
Crews FT, Qin L, Sheedy D, et al. (2013) High mobility group box 1/Toll-like receptor danger signaling increases brain neuroimmune activation in alcohol dependence. Biol Psychiatry 73: 602-612. doi: 10.1016/j.biopsych.2012.09.030
![]() |
[37] |
Kim JB, Lim CM, Yu YM, et al. (2008) Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain. J Neurosci Res 86: 1125-1131. doi: 10.1002/jnr.21555
![]() |
[38] |
Qiu J, Nishimura M, Wang Y, et al. (2008) Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 28: 927-938. doi: 10.1038/sj.jcbfm.9600582
![]() |
[39] | Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7: 369-379. |
[40] |
Kim ID, Shin JH, Lee HK, et al. (2012) Intranasal delivery of HMGB1-binding heptamer peptide confers a robust neuroprotection in the postischemic brain. Neurosci Lett 525: 179-183. doi: 10.1016/j.neulet.2012.07.040
![]() |
[41] |
Sun Q, Wang F, Li W, et al. (2013) Glycyrrhizic acid confers neuroprotection after subarachnoid hemorrhage via inhibition of high mobility group box-1 protein: a hypothesis for novel therapy of subarachnoid hemorrhage. Med Hypotheses 81: 681-685. doi: 10.1016/j.mehy.2013.07.026
![]() |
[42] |
Zhang J, Wu Y, Weng Z, et al. (2014) Glycyrrhizin protects brain against ischemia-reperfusion injury in mice through HMGB1-TLR4-IL-17A signaling pathway. Brain Res 1582: 176-186. doi: 10.1016/j.brainres.2014.07.002
![]() |
[43] | Yang QW, Xiang J, Zhou Y, et al. (2010) Targeting HMGB1/TLR4 signaling as a novel approach to treatment of cerebral ischemia. Front Biosci 2: 1081-1091. |
[44] |
Laird MD, Shields JS, Sukumari-Ramesh S, et al. (2014) High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4. Glia 62: 26-38. doi: 10.1002/glia.22581
![]() |
[45] |
Maroso M, Balosso S, Ravizza T, et al. (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16: 413-419. doi: 10.1038/nm.2127
![]() |
1. | Mohammed Ahrami, Zakaria El Allali, Evans M Harrell II, James B Kennedy, Optimizing the fundamental eigenvalue gap of quantum graphs, 2024, 57, 1751-8113, 385205, 10.1088/1751-8121/ad6410 |