Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Compact structures as true non-linear phenomena

1 Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di Roma, via A. Scarpa 16, I–00161, Roma, Italy
2 Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia, Italy
3 Institut de Recherche en Génie Civil et Mécanique, Ecole Centrale de Nantes, 1, rue de la Noë 44321 Nantes, France

$^\dagger$This contribution is part of the Special Issue: Nonlinear models in applied mathematics
  Guest Editor: Giuseppe Maria Coclite
  Link: http://www.aimspress.com/newsinfo/1213.html

Special Issues: Nonlinear models in applied mathematics

Traveling waves of permanent form with compact support are possible in several nonlinear partial nonlinear differential equations and this, mainly, along two pathways: A pure nonlinearity stronger than quadratic in the higher order gradient terms describing the mathematical model of the phenomena or a special inhomogeneity in quadratic gradient terms of the model. In the present note we perform a rigorous analysis of the mathematical structure of compactification via a generalization of a classical theorem by Weierstrass. Our mathematical analysis allows to explain in a rigorous and complete way the presence of compact structures in nonlinear partial differential equations 1 + 1 dimensions.
  Article Metrics

Keywords phase coexistence; interface; compact waves; Weierstrass construction; travelling waves

Citation: Emilio N. M. Cirillo, Giuseppe Saccomandi, Giulio Sciarra. Compact structures as true non-linear phenomena. Mathematics in Engineering, 2019, 1(3): 434-446. doi: 10.3934/mine.2019.3.434


  • 1. Ambrose DM, Simpson G, Wright JD, et al. (2012) Ill-posedness of degenerate dispersive equations. Nonlinearity 25: 2655–2680.    
  • 2. Bray AJ (1994) Theory of phase-ordering kinetics. Adv Phys 43: 357–459.    
  • 3. Chafee N, Infante EF (1974) A bifurcation problem for a nonlinear partial differential equation of parabolic type. Appl Anal 4: 17–37.    
  • 4. Cirillo ENM, Ianiro N, Sciarra G (2010) Phase coexistence in consolidating porous media. Phys Rev E 81: 061121.    
  • 5. Cirillo ENM, Ianiro N, Sciarra G (2011) Phase transition in saturated porous-media: Pore-fluid segregation in consolidation. Phys D 240: 1345–1351.    
  • 6. Cirillo ENM, Ianiro N, Sciarra G (2012) Kink localization under asymmetric double-well potentials. Phys Rev E 86: 041111.    
  • 7. Cirillo ENM, Ianiro N, Sciarra G (2013) Allen-Cahn and Cahn-Hilliard-like equations for dissipative dynamics of saturated porous media. J Mech Phys Solids 61: 629–651.    
  • 8. Cirillo ENM, Ianiro N, Sciarra G (2016) Compacton formation under Allen-Cahn dynamics. Proc R Soc A 472: 20150852.    
  • 9. Cueto-Felgueroso L, Juanes R (2012) Macroscopic phase-field model of partial wetting: Bubbles in a capillary tube. Phys Rev Lett 108: 144502.    
  • 10. Destrade M, Gaeta G, Saccomandi G (2007) Weierstrass' criterion and compact solitary waves. Phys Rev E 75: 047601.    
  • 11. Destrade M, Jordan PM, Saccomandi G (2009) Compact travelling waves in viscoelastic solids. EPL 87: 48001.    
  • 12. Destrade M, G. Saccomandi G (2006) Solitary and compactlike shear waves in the bulk of solids. Phys Rev E 73: 065604.    
  • 13. Destrade M, Saccomandi G (2008) Nonlinear transverse waves in deformed dispersive solids. Wave Motion 45: 325–336.    
  • 14. Durickovic B, Goriely A, Saccomandi G (2009) Compact waves on planar elastic rods. Int J Non-Linear Mech 44: 538–544.    
  • 15. Dusuel S, Michaux P, Remoissenet M (1998) From kinks to compactonlike kinks. Phys Rev E 57: 2320–2326.    
  • 16. Gaeta G, Gramchev T, Walcher S (2007) Compact solitary waves in linearly elastic chains with non-smooth on-site potential. J Phys A 40: 4493–4509.    
  • 17. John F (1974) Formation of singularities in one–dimensional nonlinear wave propagation. Commu Pure Appl Math 27: 377–405.    
  • 18. Pucci E, Saccomandi G (2010) On a special class of nonlinear viscoelastic solids. Math Mech Solids 15: 803–811.    
  • 19. Renardy M, Rogers RC (2004) An Introduction to Partial Differential Equations, Springer.
  • 20. Rogers C, Saccomandi G, Vergori L (2015) Nonlinear elastodynamics of materials with strong ellipticity condition: Carroll-type solutions. Wave Motion 56: 147–164.    
  • 21. Rosenau P (2005) What is... a compacton? Not Am Math Soc 52: 738–739.
  • 22. Rosenau P, Hyman JM (1993) Compactons: Solitons with finite wavelength. Phys Rev Lett 70: 564–567.    
  • 23. Rosenau P, Hyman JM, Stanley M (2007) Multidimensional compactons. Phys Rev Lett 98: 024101.    
  • 24. Rosenau P, Zilburg A (2018) Compactons. J Phys A 51: 343001.    
  • 25. Rubin MB, Rosenau P, Gottlieb O (1995) Continuum model of dispersion caused by an inherent material characteristic length. J Appl Phys 77: 4054–4063.    
  • 26. Saccomandi G (2004) Elastic rods, Weierstrass' theory and special travelling waves solutions with compact support. Int J Non-Linear Mech 39: 331–339.    
  • 27. Saccomandi G, Sgura I (2006) The relevance of nonlinear stacking interactions in simple models of double-stranded DNA. J R Soc Interface 3: 655–667.    
  • 28. Saccomandi G, Vitolo R (2014) On the mathematical and geometrical structure of the determining equations for shear waves in nonlinear isotropic incompressible elastodynamics. J Math Phys 55: 081502.    


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved