-
AIMS Microbiology, 2018, 4(3): 482-501. doi: 10.3934/microbiol.2018.3.482
Review
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
An overview of the antimicrobial resistance mechanisms of bacteria
Department of Biomedical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
Received: , Accepted: , Published:
References
1. World Health Organization (2014) World Health Statistics 2014.
2. World Health Organization (2015) Global action plan on antimicrobial resistance.
3. Griffith M, Postelnick M, Scheetz M (2012) Antimicrobial stewardship programs: methods of operation and suggested outcomes. Expert Rev Anti-Infe 10: 63–73.
4. Yu VL (2011) Guidelines for hospital-acquired pneumonia and health-care-associated pneumonia: a vulnerability, a pitfall, and a fatal flaw. Lancet Infect Dis 11: 248–252.
5. Goossens H (2009) Antibiotic consumption and link to resistance. Clin Microbiol Infec 15 3:12–15.
6. Pakyz AL, MacDougall C, Oinonen M, et al. (2008) Trends in antibacterial use in US academic health centers: 2002 to 2006. Arch Intern Med 168: 2254–2260.
7. Tacconelli E (2009) Antimicrobial use: risk driver of multidrug resistant microorganisms in healthcare settings. Curr Opin Infect Dis 22: 352–358.
8. Landers TF, Cohen B, Wittum TE, et al. (2012) A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep 127: 4–22.
9. Wegener HC (2012) Antibiotic resistance-Linking human and animal health, In: Improving food safety through a One Health approach, Washington: National Academy of Sciences, 331–349.
10. Centers for Disease Control and Prevention (CDC) (2013) Antibiotic resistance threats in the United States, 2013, U.S, Department of Health and Human Services, CS239559-B.
11. Maragakis LL, Perencevich EN, Cosgrove SE (2008) Clinical and economic burden of antimicrobial resistance. Expert Rev Anti-Infe 6: 751–763.
12. Filice GA, Nyman JA, Lexau C, et al. (2010) Excess costs and utilization associated with methicillin resistance for patients with Staphylococcus aureus infection. Infect Cont Hosp Ep 31: 365–373.
13. Hübner C, Hübner NO, Hopert K, et al. (2014) Analysis of MRSA-attributed costs of hospitalized patients in Germany. Eur J Clin Microbiol 33: 1817–1822.
14. Macedo-Viñas M, De Angelis G, Rohner P, et al. (2013) Burden of methicillin-resistant Staphylococcus aureus infections at a Swiss University hospital: excess length of stay and costs. J Hosp Infect 84: 132–137.
15. Pakyz A, Powell JP, Harpe SE, et al. (2008) Diversity of antimicrobial use and resistance in 42 hospitals in the United States. Pharmacotherapy 28: 906–912.
16. Sandiumenge A, Diaz E, Rodriguez A, et al. (2006) Impact of diversity of antibiotic use on the development of antimicrobial resistance. J Antimicrob Chemoth 57: 1197–1204.
17. Wood TK, Knabel SJ, Kwan BW (2013) Bacterial persister cell formation and dormancy. Appl Environ Microbiol 79: 7116–7121.
18. Keren I, Kaldalu N, Spoering A, et al. (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230: 13–18.
19. Coculescu BI (2009) Antimicrobial resistance induced by genetic changes. J Med Life 2: 114–123.
20. Martinez JL (2014) General principles of antibiotic resistance in bacteria. Drug Discov Today 11: 33–39.
21. Cox G, Wright GD (2013) Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 303: 287–292.
22. Fajardo A, Martinez-Martin N, Mercadillo M, et al. (2008) The neglected intrinsic resistome of bacterial pathogens. PLoS One 3: e1619.
23. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74: 417–433.
24. Reygaert WC (2009) Methicillin-resistant Staphylococcus aureus (MRSA): molecular aspects of antimicrobial resistance and virulence. Clin Lab Sci 22: 115–119.
25. Blázquez J, Couce A, Rodríguez-Beltrán J, et al. (2012) Antimicrobials as promoters of genetic variation. Curr Opin Microbiol 15: 561–569.
26. Chancey ST, Zähner D, Stephens DS (2012) Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol 7: 959–978.
27. Mahon CR, Lehman DC, Manuselis G (2014) Antimicrobial agent mechanisms of action and resistance, In: Textbook of Diagnostic Microbiology, St. Louis: Saunders, 254–273.
28. Blair JM, Richmond GE, Piddock LJ (2014) Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 9: 1165–1177.
29. Kumar A, Schweizer HP (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliver Rev 57: 1486–1513.
30. Lambert PA (2002) Cellular impermeability and uptake of biocides and antibiotics in gram-positive bacteria and mycobacteria. J Appl Microbiol 92: 46S–54S.
31. Bébéar CM, Pereyre S (2005) Mechanisms of drug resistance in Mycoplasma pneumoniae. Curr Drug Targets 5: 263–271.
32. Miller WR, Munita JM, Arias CA (2014) Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti-Infe 12: 1221–1236.
33. Gill MJ, Simjee S, Al-Hattawi K, et al. (1998) Gonococcal resistance to β-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob Agents Ch 42: 2799–2803.
34. Cornaglia G, Mazzariol A, Fontana R, et al. (1996) Diffusion of carbapenems through the outer membrane of enterobacteriaceae and correlation of their activities with their periplasmic concentrations. Microb Drug Resist 2: 273–276.
35. Chow JW, Shlaes DM (1991) Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J Antimicrob Chemoth 28: 499–504.
36. Thiolas A, Bornet C, Davin-Régli A, et al. (2004) Resistance to imipenem, cefepime, and cefpirome associated with mutation in Omp36 osmoporin of Enterobacter aerogenes. Biochem Bioph Res Co 317: 851–856.
37. Mah TF (2012) Biofilm-specific antibiotic resistance. Future Microbiol 7: 1061–1072.
38. Soto SM (2013) Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 4: 223–229.
39. Van Acker H, Van Dijck P, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 22: 326–333.
40. Beceiro A, Tomás M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26: 185–230.
41. Randall CP, Mariner KR, Chopra I, et al. (2013) The target of daptomycin is absent form Escherichia coli and other gram-negative pathogens. Antimicrob Agents Ch 57: 637–639.
42. Yang SJ, Kreiswirth BN, Sakoulas G, et al. (2009) Enhanced expression of dltABCD is associated with development of daptomycin nonsusceptibility in a clinical endocarditis isolate of Staphylococcus aureus. J Infect Dis 200: 1916–1920.
43. Mishra NN, Bayer AS, Weidenmaier C, et al. (2014) Phenotypic and genotypic characterization of daptomycin-resistant methicillin-resistant Staphylococcus aureus strains: relative roles of mprF and dlt operons. PLoS One 9: e107426.
44. Stefani S, Campanile F, Santagati M, et al. (2015) Insights and clinical perspectives of daptomycin resistance in Staphylococcus aureus: a review of the available evidence. Int J Antimicrob Agents 46: 278–289.
45. Kumar S, Mukherjee MM, Varela MF (2013) Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. Int J Bacteriol.
46. Roberts MC (2003) Tetracycline therapy: update. Clin Infect Dis 36: 462–467.
47. Roberts MC (2004) Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol 28: 47–62.
48. Hawkey PM (2003) Mechanisms of quinolone action and microbial response. J Antimicrob Chemoth 1: 28–35.
49. Redgrave LS, Sutton SB, Webber MA, et al. (2014) Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22: 438–445.
50. Huovinen P, Sundström L, Swedberg G, et al. (1995) Trimethoprim and sulfonamide resistance. Antimicrob Agents Ch 39: 279–289.
51. Vedantam G, Guay GG, Austria NE, et al. (1998) Characterization of mutations contributing to sulfathiazole resistance in Escherichia coli. Antimicrob Agents Ch 42: 88–93.
52. Blair JM, Webber MA, Baylay AJ, et al. (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13: 42–51.
53. Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Update 13: 151–171.
54. Robicsek A, Strahilevitz J, Jacoby GA, et al. (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12: 83–88.
55. Schwarz S, Kehrenberg C, Doublet B, et al. (2004) Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28: 519–542.
56. Pfeifer Y, Cullik A, Witte W (2010) Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol 300: 371–379.
57. Bush K, Bradford PA (2016) β-Lactams and β-lactamase inhibitors: an overview. CSH Perspect Med 6: a02527.
58. Bush K, Jacoby GA (2010) Updated functional classification of β-lactamases. Antimicrob Agents Ch 54: 969–976.
59. Schultsz C, Geerlings S (2012) Plasmid-mediated resistance in Enterobacteriaceae. Drugs 72: 1–16.
60. Bush K (2013) Proliferation and significance of clinically relevant β-lactamases. Ann NY Acad Sci 1277: 84–90.
61. Reygaert WC (2013) Antimicrobial resistance mechanisms of Staphylococcus aureus, In: Microbial pathogens and strategies for combating them: science, technology and education, Spain: Formatex, 297–310.
62. Toth M, Antunes NT, Stewart NK, et al. (2016) Class D β-lactamases do exist in Gram-positive bacteria. Nat Chem Biol 12: 9–14.
63. Jacoby GA (2009) AmpC β-lactamases. Clin Microbiol Rev 22: 161–182.
64. Thomson KS (2010) Extended-spectrum-β-lactamase, AmpC, and carbapenemase issues. J Clin Microbiol 48: 1019–1025.
65. Lahlaoui H, Khalifa ABH, Mousa MB (2014) Epidemiology of Enterobacteriaceae producing CTX-M type extended spectrum β-lactamase (ESBL). Med Maladies Infect 44: 400–404.
66. Bevan ER, Jones AM, Hawkey PM (2017) Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemoth 72: 2145–2155.
67. Bajaj P, Singh NS, Virdi JS (2016) Escherichia coli β-lactamases: what really matters. Front Microbiol 7: 417.
68. Friedman ND, Tomkin E, Carmeli Y (2016) The negative impact of antibiotic resistance. Clin Microbiol Infect 22: 416–422.
69. Zhanel GG, Lawson CD, Adam H, et al. (2013) Ceftazidime-Avibactam: a novel cephalosporin/β-lactamase inhibitor combination. Drugs 73: 159–177.
70. Bush K (2018) Game changers: new β-lactamase inhibitor combinations targeting antibiotic resistance in gram-negative bacteria. ACS Infect Dis 4: 84–87.
71. Docquier JD, Mangani S (2018) An update on β-lactamase inhibitor discovery and development. Drug Resist Update 36: 13–29.
72. Villagra NA, Fuentes JA, Jofré MR, et al. (2012) The carbon source influences the efflux pump-mediated antimicrobial resistance in clinically important Gram-negative bacteria. J Antimicrob Chemoth 67: 921–927.
73. Piddock LJ (2006) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19: 382–402.
74. Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39: 162–176.
75. Tanabe M, Szakonyi G, Brown KA, et al. (2009) The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochem Bioph Res Co 380: 338–342.
76. Jo I, Hong S, Lee M, et al. (2017) Stoichiometry and mechanistic implications of the MacAB-TolC tripartite efflux pump. Biochem Bioph Res Co 494: 668–673.
77. Jonas BM, Murray BE, Weinstock GM (2001) Characterization of emeA, a norA homolog and multidrug resistance efflux pump, in Enterococcus faecalis. Antimicrob Agents Ch 45: 3574–3579.
78. Truong-Bolduc QC, Dunman PM, Strahilevitz J, et al. (2005) MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 187: 2395–2405.
79. Kourtesi C, Ball AR, Huang YY, et al. (2013) Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation. Open Microbiol J 7: 34–52.
80. Costa SS, Viveiros M, Amaral L, et al. (2013) Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J 7: 59–71.
81. Lubelski J, Konings WN, Driessen AJ (2007) Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 71: 463–476.
82. Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64: 672–693.
83. Kuroda T, Tsuchiya T (2009) Multidrug efflux transporters in the MATE family. BBA-Proteins Proteom 1794: 763–768.
84. Rouquette-Loughlin, C, Dunham SA, Kuhn M, et al. (2003) The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol 185: 1101–1106.
85. Bay DC, Rommens KL, Turner RJ (2008) Small multidrug resistance proteins: a multidrug transporter family that continues to grow. BBA-Biomembranes 1778: 1814–1838.
86. Yerushalmi H, Lebendiker M, Schuldiner S (1995) EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J Biol Chem 270: 6856–6863.
87. Collu F, Cascella M (2013) Multidrug resistance and efflux pumps: insights from molecular dynamics simulations. Curr Top Med Chem 13: 3165–3183.
88. Martinez JL, Sánchez MB, Martinez-Solano L, et al. (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33: 430–449.
89. Deak D, Outterson K, Powers JH, et al. (2016) Progress in the fight against multidrug-resistant bacteria? A review of U.S. Food and Drug Administration-approved antibiotics, 2010-2015. Ann Intern Med 165: 363–372.
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)