Citation: Joseph O. Falkinham. Mycobacterium avium complex: Adherence as a way of life[J]. AIMS Microbiology, 2018, 4(3): 428-438. doi: 10.3934/microbiol.2018.3.428
[1] | Vittoria Raimondi, Alessandro Grinzato . A basic introduction to single particles cryo-electron microscopy. AIMS Biophysics, 2022, 9(1): 5-20. doi: 10.3934/biophy.2022002 |
[2] | Joshua Holcomb, Nicholas Spellmon, Yingxue Zhang, Maysaa Doughan, Chunying Li, Zhe Yang . Protein crystallization: Eluding the bottleneck of X-ray crystallography. AIMS Biophysics, 2017, 4(4): 557-575. doi: 10.3934/biophy.2017.4.557 |
[3] | Stephanie H. DeLuca, Samuel L. DeLuca, Andrew Leaver-Fay, Jens Meiler . RosettaTMH: a method for membrane protein structure elucidation combining EPR distance restraints with assembly of transmembrane helices. AIMS Biophysics, 2016, 3(1): 1-26. doi: 10.3934/biophy.2016.1.1 |
[4] | Adam Redzej, Gabriel Waksman, Elena V Orlova . Structural studies of T4S systems by electron microscopy. AIMS Biophysics, 2015, 2(2): 184-199. doi: 10.3934/biophy.2015.2.184 |
[5] | Riyaz A. Mir, Jeff Lovelace, Nicholas P. Schafer, Peter D. Simone, Admir Kellezi, Carol Kolar, Gaelle Spagnol, Paul L. Sorgen, Hamid Band, Vimla Band, Gloria E. O. Borgstahl . Biophysical characterization and modeling of human Ecdysoneless (ECD) protein supports a scaffolding function. AIMS Biophysics, 2016, 3(1): 195-210. doi: 10.3934/biophy.2016.1.195 |
[6] | Angel Rivera-Calzada, Andrés López-Perrote, Roberto Melero, Jasminka Boskovic, Hugo Muñoz-Hernández, Fabrizio Martino, Oscar Llorca . Structure and Assembly of the PI3K-like Protein Kinases (PIKKs) Revealed by Electron Microscopy. AIMS Biophysics, 2015, 2(2): 36-57. doi: 10.3934/biophy.2015.2.36 |
[7] | Wei Zhang, Sheng Cao, Jessica L. Martin, Joachim D. Mueller, Louis M. Mansky . Morphology and ultrastructure of retrovirus particles. AIMS Biophysics, 2015, 2(3): 343-369. doi: 10.3934/biophy.2015.3.343 |
[8] | Jany Dandurand, Angela Ostuni, Maria Francesca Armentano, Maria Antonietta Crudele, Vincenza Dolce, Federica Marra, Valérie Samouillan, Faustino Bisaccia . Calorimetry and FTIR reveal the ability of URG7 protein to modify the aggregation state of both cell lysate and amylogenic α-synuclein. AIMS Biophysics, 2020, 7(3): 189-203. doi: 10.3934/biophy.2020015 |
[9] | Ta-Chou Huang, Wolfgang B. Fischer . Sequence–function correlation of the transmembrane domains in NS4B of HCV using a computational approach. AIMS Biophysics, 2021, 8(2): 165-181. doi: 10.3934/biophy.2021013 |
[10] | Davide Sala, Andrea Giachetti, Antonio Rosato . Molecular dynamics simulations of metalloproteins: A folding study of rubredoxin from Pyrococcus furiosus. AIMS Biophysics, 2018, 5(1): 77-96. doi: 10.3934/biophy.2018.1.77 |
Means of different types play significant role in different fields of sciences through their applications. For instance it has been observed harmonic means have applications in electrical circuits theory. To be more precise, the total resistance of a set of parallel resistors is just half of harmonic means of the total resistors, for details, see [3]. Recently many researchers have extensively utilized different types of means in theory of convexity. Consequently a number of new and novel extensions of classical convexity have been proposed in the literature. For some recent studies, see [4,5,21,22]. We now recall some preliminary concepts and results pertaining to convexity and for its other extensions.
Definition 1.1 ([18]). ($ AA $-convex functions) A function $ \mathcal{X}:\mathcal{C}\subseteq\mathbb{R}\to\mathbb{R} $ is said to be $ AA $-convex, if
$ (1-\mu)\mathcal{X}(x)+\mu\mathcal{X}(y)\geq \mathcal{X}((1-\mu)x+ty),\quad\forall x,y\in\mathcal{C},\mu\in[0,1], $ |
where $ \mathcal{C} $ is a convex set.
Definition 1.2 ([18]). ($ GG $-convex functions) A function $ \mathcal{X}:\mathcal{G}\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ is said to be $ GG $-convex, if
$ X1−μ(x)Xμ(y)≥X(x1−μyμ),∀x,y∈G,μ∈[0,1], $
|
where $ \mathcal{G} $ is a geometric convex set.
Definition 1.3 ([13]). ($ HH $-convex functions) A function $ \mathcal{X}:\mathcal{H}\subseteq\mathbb{R}_{+}\to\mathbb{R} $ is said to be $ HH $-convex, if
$ X(x)X(y)μX(x)+(1−μ)X(y)≥X(xy(1−μ)x+ty),∀x,y∈H,μ∈[0,1], $
|
where $ \mathcal{H} $ is a harmonic convex set.
For some other useful details, see [18]. Convexity theory also played significant role in the development of theory of inequalities. Many known results are obtained directly using the functions having convexity property. Hermite and Hadamard presented independently a result which now a days known as Hermite-Hadamard's inequality. This result is very simple in nature but very powerful, as it provides us a necessary and sufficient condition for a function to be convex. It reads as: Let $ \mathcal{X}:I\subseteq\mathbb{R}\to\mathbb{R} $ be a convex function, then
$ X(c+d2)≤1d−cd∫cX(x)dx≤X(c)+X(d)2. $
|
Dragomir et al. [8] written a very interesting detailed monograph on Hermite-Hadamard's inequality and its applications. Interested readers may find useful details in it. In recent years several famously known researchers from all over the world have studied the result of Hermite and Hadamard intensively. For more details, see [4,6,7,9,10,17,20]. This result has also been generalized for other classes of convex functions, for instance, see [8,11,12,14,18,22].
Fractional calculus [15,16] has played an important role in various scientific fields since it is a good tool to describe long-memory processes. Sarikaya et al. [24] used the concepts of fractional calculus and obtained new refinements of fractional Hermite-Hadamard like inequalities. This article of Sarikaya et al. opened a new venue of research. Consequently several new generalizations of Hermite-Hadamard's inequality have been obtained using the fractional calculus concepts.
Recently many authors have shown their special interest in utilizing the concepts of quantum calculus for obtaining $ q $-analogues of different integral inequalities. For some basic definitions and recent studies, see [1,2,19,23,25,26]. The main objective of this article is to introduce the notion of $ \mathscr{M} $-convex functions. This class can be viewed as novel extension of the classical definition of convexity. We link this class with Hermite-Hadamard's inequality and obtain several new variants of this famous result. We also obtain the fractional and quantum analogues of the obtained results. We expect that the results of this paper may stimulate further research in this direction.
In this section, we introduce the notions of $ \mathscr{M} $-convex functions, $ \log $-$ \mathscr{M} $-convex and quasi $ \mathscr{M} $-convex functions. First of all for the sake of simplicity, we take $ \mathcal{G} = \sqrt{cd} $ and $ \mathcal{A} = \frac{c+d}{2} $.
Definition 2.1. A function $ \mathcal{X}:D\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ is said to be $ \mathscr{M} $-convex function, if
$ X((1−μ)G+μA)≤(1−μ)X(G)+tX(A),∀c,d∈D,μ∈[0,1]. $
|
Definition 2.2. A function $ \mathcal{X}:D\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ is said to be $ \log $-$ \mathscr{M} $-convex function, if
$ X((1−μ)G+μA)≤X1−μ(G)Xμ(A),∀c,d∈D,μ∈[0,1]. $
|
Definition 2.3. A function $ \mathcal{X}:D\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ is said to be quasi $ \mathscr{M} $-convex function, if
$ X((1−μ)G+μA)≤max{X(G),X(A)},∀c,d∈D,μ∈[0,1]. $
|
We now derive a new auxiliary result which play a key role in the development of our coming results.
Lemma 3.1. Let $ \mathcal{X}:I^{\circ}\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ be a differentiable function on $ I^{\circ} $, $ c, d\in I^{\circ} $ with $ c < d $. If $ \mathcal{X}'\in L[c, d] $, then
$ X(G)+X(A)2−2(√d−√c)2A∫GX(x)dx=(√d−√c)241∫0(1−2μ)X′(μG+(1−μ)A)dμ. $
|
Proof. It suffices to show that
$ 1∫0(1−2μ)X′(μG+(1−μ)A)dμ=2X(G)+X(A)(√d−√c)2−8(√d−√c)4A∫GX(x)dx. $
|
This implies
$ (√d−√c)241∫0(1−2μ)X′(μG+(1−μ)A)dμ=X(G)+X(A)2−2(√d−√c)2A∫GX(x)dx. $
|
This completes the proof.
Now utilizing Lemma 3.1, we derive our next results.
Theorem 3.2. Let $ \mathcal{X}:I^{\circ}\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ be a differentiable function on $ I^{\circ} $, $ c, d\in I^{\circ} $ with $ c < d $ and $ \mathcal{X}'\in L[c, d] $. If $ |\mathcal{X}'| $ is $ \mathscr{M} $-convex function, then
$ |X(G)+X(A)2−2(√d−√c)2A∫GX(x)dx|≤(√d−√c)216[|X′(G)|+|X′(A)|]. $
|
Proof. Using Lemma 3.1, property of the modulus and the fact that $ |\mathcal{X}'| $ is $ \mathscr{M} $-convex function, we have
$ |X(G)+X(A)2−2(√d−√c)2A∫GX(x)dx|≤(√d−√c)241∫0|1−2μ||X′(μG+(1−μ)A)|dμ≤(√d−√c)241∫0|1−2μ|[μ|X′(G)|+(1−μ)|X′(A)|]dμ=(√d−√c)216[|X′(G)|+|X′(A)|]. $
|
This completes the proof.
If we apply Theorem 3.2 for $ \log $-$ \mathscr{M} $-convex functions, then
Theorem 3.3. Let $ \mathcal{X}:I^{\circ}\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ be a differentiable function on $ I^{\circ} $, $ c, d\in I^{\circ} $ with $ c < d $ and $ \mathcal{X}'\in L[c, d] $, If $ |\mathcal{X}'| $ is decreasing and $ \log $-$ \mathscr{M} $-convex function, then
$ |X(G)+X(A)2−2(√d−√c)2A∫GX(x)dx|≤(√d−√c)24[−2+4√w−2w−logw+wlogwlogw2], $
|
where $ w = \frac{|\mathcal{X}'(\mathcal{G})|}{\big|\mathcal{X}'(\mathcal{A})\big|} $.
Theorem 3.4. Let $ \mathcal{X}:I^{\circ}\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ be a differentiable function on $ I^{\circ} $, $ c, d\in I^{\circ} $ with $ c < d $ and $ \mathcal{X}'\in L[c, d] $. If $ |\mathcal{X}'|^{q} $, where $ \frac{1}{p}+\frac{1}{q} = 1 $ is $ \mathscr{M} $-convex function, then
$ |X(G)+X(A)2−2(√d−√c)2A∫GX(x)dx|≤(√d−√c)24(1p+1)1p(|X′(G)|q+|X′(A)|q2)1q. $
|
Proof. Using Lemma 3.1, Holder's inequality and the fact that $ |\mathcal{X}'|^{q} $ is $ \mathscr{M} $-convex functions, we have
$ |X(G)+X(A)2−2(√d−√c)2A∫GX(x)dx|≤(√d−√c)24(1∫0|1−2μ|pdμ)1p(1∫0|X′(μG+(1−μ)A)|dμ)1q≤(√d−√c)24(1p+1)1p(1∫0[μ|X′(G)|q+(1−μ)|X′(A)|q]dμ)1q=(√d−√c)24(1p+1)1p(|X′(G)|q+|X′(A)|q2)1q. $
|
This completes the proof.
Theorem 3.5. Let $ \mathcal{X}:I^{\circ}\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ be a differentiable function on $ I^{\circ} $, $ c, d\in I^{\circ} $ with $ c < d $ and $ \mathcal{X}'\in L[c, d] $. If $ |\mathcal{X}'|^{q} $, where $ q\geq1 $ is $ \mathscr{M} $-convex function, then
$ |X(G)+X(A)2−2(√d−√c)2A∫GX(x)dx|≤(√d−√c)28(|X′(G)|q+|X′(A)|q2)1q. $
|
Proof. Using Lemma 3.1, power mean inequality and the fact that $ |\mathcal{X}'| $ is $ \mathscr{M} $-convex functions, we have
$ |X(G)+X(A)2−2(√d−√c)2A∫GX(x)dx|≤(√d−√c)24(1∫0|1−2μ|dμ)1−1q(1∫0|1−2μ||X′(μG+(1−μ)A)|dμ)1q≤(√d−√c)24(12)1−1q(1∫0|1−2μ|[μ|X′(G)|q+(1−μ)|X′(A)|q]dμ)1q=(√d−√c)28(|X′(G)|q+|X′(A)|q2)1q. $
|
This completes the proof.
In this section, we derive some fractional estimates of Hermite-Hadamard like inequalities using $ \mathscr{M} $-convex functions. Before that we recall basic definition of Riemann-Liouville fractional integrals.
Definition 4.1 ([15]). Let $ {\mathcal{X}}\in L[c, d] $, where $ c\geq 0. $ The Riemann-Liouville integrals $ J_{c+}^{\nu }{\mathcal{X}} $ and $ J_{d-}^{\nu }{\mathcal{X}}, $ of order $ \nu > 0, $ are defined by
$ Jνc+X(x)=1Γ(ν)∫xc(x−μ)ν−1X(μ)dμ, for x>c $
|
and
$ Jνd−X(x)=1Γ(ν)∫dx(μ−x)ν−1X(μ)dμ, for x<d, $
|
respectively. Here, $ \Gamma (\nu) = \int_{0}^{\infty }e^{-\mu}\mu^{\nu -1} \mathrm{d}\mu $ is the Gamma function. We also make the convention
$ J0c+X(x)=J0d−X(x)=X(x). $
|
We now derive a new auxiliary result utilizing the definition of Riemann-Liouville fractional integrals.
Lemma 4.1. Let $ \mathcal{X}:I^{\circ}\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ be a differentiable function. If $ \mathcal{X}'\in L[c, d] $, then
$ X(G)+X(A)2−2α−1Γ(α+1)(√d−√c)2[Jα(A)−X(G)+Jα(G)+X(A)]=(√d−√c)241∫0[(1−μ)α−μα]X′(μG+(1−μ)A)dμ. $
|
Proof. It suffices to show that
$ I=1∫0[(1−μ)α−μα]X′(μG+(1−μ)A)dμ=1∫0(1−μ)αX′(μG+(1−μ)A)dμ−1∫0μαX′(μG+(1−μ)A)dμ=I1−I2. $
|
(4.1) |
Now using change of variable technique and definition of Riemann-Liouville fractional integrals, we have
$ I1=1∫0(1−μ)αX′(μG+(1−μ)A)dμ=2(√d−√c)2X(A)−2α+1Γ(α+1)(√d−√c)2(α+1)1Γ(α)A∫G(x−G)α−1X(x)dx=2(√d−√c)2X(A)−2α+1Γ(α+1)(√d−√c)2(α+1)Jα(A)−X(G). $
|
(4.2) |
Similarly
$ I2=1∫0μαX′(μG+(1−μ)A)dμ=−2(√d−√c)2X(G)+2α+1Γ(α+1)(√d−√c)2(α+1)Jα(G)+X(A). $
|
(4.3) |
Combining (4.1), (4.2) and (4.3) completes the proof. Now using Lemma 4.1, we derive our next results.
Theorem 4.2. Let $ \mathcal{X}:I^{\circ}\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ be a differentiable function and $ \mathcal{X}'\in L[c, d] $. If $ |\mathcal{X}'| $ is $ \mathscr{M} $-convex function, then
$ |X(G)+X(A)2−2α−1Γ(α+1)(√d−√c)2[Jα(A)−X(G)+Jα(G)+X(A)]|≤(√d−√c)24(α+1)(1−12α)[|X′(a)|+|X′(b)|]. $
|
Proof. Using Lemma 4.1 and the property of modulus, we have
$ |X(G)+X(A)2−2α−1Γ(α+1)(√d−√c)2[Jα(A)−X(G)+Jα(G)+X(A)]|≤1∫0(√d−√c)24|(1−μ)α−μα||X′(μG+(1−μ)A)|dμ. $
|
Since it is given that $ |\mathcal{X}'| $ is $ \mathscr{M} $-convex function, so we have
$ |X(G)+X(A)2−2α−1Γ(α+1)(√d−√c)2[Jα(A)−X(G)+Jα(G)+X(A)]|≤1∫0(√d−√c)24|(1−μ)α−μα|[μ|X′(G)|+(1−μ)|X′(A)|]dμ=(√d−√c)24[|X′(G)|1∫0μ|(1−μ)α−μα|dμ+|X′(A)|1∫0(1−μ)|(1−μ)α−μα|dμ]=(√d−√c)24(α+1)(1−12α)[|X′(a)|+|X′(b)|]. $
|
This completes the proof.
In this section, we derive some quantum analogues of Hermite-Hadamard like inequalities using $ \mathscr{M} $-convex functions. Before proceeding, let us recall some basics of quantum calculus. Tariboon et al. [25] defined the $ q $-integral as follows:
Definition 5.1 ([25]). Let $ \mathcal{X}:I\subset\mathbb{R}\rightarrow\mathbb{R} $ be a continuous function. Then $ q $-integral on $ I $ is defined as:
$ ∫xaX(μ)adqμ=(1−q)(x−a)∞∑n=0qnX(qnx+(1−qn)a), $
|
(5.1) |
for $ x\in J $.
The following result will play significant role in main results of the section.
Lemma 5.1 ([25]). Let $ \alpha\in\mathbb{R}\setminus\{-1\} $, then
$ x∫a(μ−a)αadqμ=(1−q1−qα+1)(x−a)α+1. $
|
Lemma 5.2. Let $ \mathcal{X}:I^{\circ}\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ be a $ q $-differentiable function on $ I^{\circ} $, $ c, d\in I^{\circ} $ with $ c < d $. If $ \mathrm{D}_{q}\mathcal{X} $ is an integrable function with $ 0 < q < 1 $, then
$ 2(√d−√c)2A∫GX(μ)dqμ−qf(G)+X(A)1+q=q(√d−√c)22(1+q)1∫0(1−(1+q)μ)Dq((1−μ)G+μA)dqμ. $
|
Proof. It suffices to show that
$ 1∫0(1−(1+q)μ)Dq((1−μ)G+μA)dqμ=2(√d−√c)21∫0(X((1−μ)G+μA)−X((1−qμ)G+qμA)(1−q)μ)dqμ−2(1+q)(√d−√c)21∫0μ(X((1−μ)G+μA)−X((1−qμ)G+qμA)(1−q)μ)dqμ=2(√d−√c)2[∞∑n=0X((1−qn)G+qnA)−∞∑n=0X((1−qn+1)G+qn+1A)]−2(1+q)(√d−√c)2[∞∑n=0qnX((1−qn)G+qnA)−∞∑n=0qnX((1−qn+1)G+qn+1A)]=2(√d−√c)2[X(A)−X(G)]−2(1+q)(√d−√c)2∞∑n=0qnX((1−qn)G+qnA)+2(1+q)q(√d−√c)2∞∑n=1qnX((1−qn)G+qnA)=2(√d−√c)2[X(A)−X(G)]−2(1+q)(√d−√c)2∞∑n=0qnX((1−qn)G+qnA)+2(1+q)q(√d−√c)2[X(A)−X(A)+∞∑n=1qnX((1−qn)G+qnA)]=−2q(√d−√c)2[qf(G)+X(A)]+4(1+q)q(√d−√c)4A∫GX(μ)dqμ. $
|
This completes the proof.
Now using Lemma 5.2, we derive our next results.
Theorem 5.3. Let $ \mathcal{X}:I^{\circ}\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ be a $ q $-differentiable function on $ I^{\circ} $, $ c, d\in I^{\circ} $ with $ c < d $ and $ \mathrm{D}_{q}\mathcal{X} $ is an integrable function with $ 0 < q < 1 $. If $ |\mathrm{D}_{q}\mathcal{X}| $ is $ \mathscr{M} $-convex, then
$ |2(√d−√c)2A∫GX(μ)dqμ−qf(G)+X(A)1+q|≤q(√d−√c)22(1+q)4(1+q+q2){(1+3q2+2q3)|DqX(G)|+(1+4q+q2)|DqX(A)|}. $
|
Proof. Using Lemma 5.2 and the given hypothesis of the theorem, we have
$ |2(√d−√c)2A∫GX(μ)dqμ−qf(G)+X(A)1+q|=|q(√d−√c)22(1+q)1∫0(1−(1+q)μ)DqX((1−μ)G+μA)dqμ|≤q(√d−√c)22(1+q)1∫0|1−(1+q)μ|[(1−μ)|DqX(G)|+μDq|DqX(A)|]dqμ=q(√d−√c)22(1+q){|DqX(G)|1∫0(1−μ)|1−(1+q)μ|dqμ+|DqX(A)|1∫0μ|1−(1+q)μ|dqμ}=q(√d−√c)22(1+q)4(1+q+q2){(1+3q2+2q3)|DqX(G)|+(1+4q+q2)|DqX(A)|}. $
|
This completes the proof.
Theorem 5.4. Let $ \mathcal{X}:I^{\circ}\subseteq\mathbb{R}_{+}\to\mathbb{R}_{+} $ be a $ q $-differentiable function on $ I^{\circ} $, $ c, d\in I^{\circ} $ with $ c < d $ and $ \mathrm{D}_{q}\mathcal{X} $ is an integrable function with $ 0 < q < 1 $. If $ |\mathrm{D}_{q}\mathcal{X}|^{r} $ is $ \mathscr{M} $-convex, where $ r > 1 $, then
$ |2(√d−√c)2A∫GX(μ)dqμ−qf(G)+X(A)1+q|≤q(√d−√c)22(1+q)(2q(1+q)2)1−1r(q(1+3q2+2q3)(1+q)3(1+q+q2)|DqX(G)|r+q(1+4q+q2)(1+q)3(1+q+q2)|DqX(A)|r)1r. $
|
Proof. Using Lemma 5.2, power-mean inequality and the given hypothesis of the theorem, we have
$ |2(√d−√c)2A∫GX(μ)dqμ−qf(G)+X(A)1+q|=|q(√d−√c)22(1+q)1∫0(1−(1+q)μ)DqX((1−μ)G+μA)dqμ|≤q(√d−√c)22(1+q)(1∫0|1−(1+q)μ|dqμ)1−1r×(1∫0|1−(1+q)μ|[(1−μ)|DqX(G)|r+μ|DqX(A)|r]dqμ)1r=q(√d−√c)22(1+q)(2q(1+q)2)1−1r(q(1+3q2+2q3)(1+q)3(1+q+q2)|DqX(G)|r+q(1+4q+q2)(1+q)3(1+q+q2)|DqX(A)|r)1r. $
|
This completes the proof.
In this article, we have introduced the notions of $ \mathscr{M} $-convex functions, $ \log $-$ \mathscr{M} $-convex functions and quasi $ \mathscr{M} $-convex functions. We have discussed these classes in context with integral inequalities of Hermite-Hadamard type. We have also obtained some new fractional and quantum versions of these results. It is worth to mention here that essentially using the techniques of this article one can easily obtain extensions of Iynger type inequalities using the class of quasi $ \mathscr{M} $-convex functions. We hope that the ideas and techniques of this paper will inspire interested readers working in the field.
Authors are thankful to the editor and anonymous referees for their valuable comments and suggestions. First and second authors are thankful for the support of HEC project (No. 8081/Punjab/NRPU/R&D/HEC/2017).
The authors declare no conflicts of interest.
[1] |
Falkinham JO (2009) Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 107: 356–367. doi: 10.1111/j.1365-2672.2009.04161.x
![]() |
[2] |
Prevots DR, Marras TK (2015) Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med 36: 13–34. doi: 10.1016/j.ccm.2014.10.002
![]() |
[3] |
Marras TK, Daley CL (2002) Epidemiology of human and pulmonary infection with nontuberculous mycobacteria. Clin Chest Med 23: 553–567. doi: 10.1016/S0272-5231(02)00019-9
![]() |
[4] |
Prince DS, Peterson DD, Steiner RM, et al. (1989) Infection with Mycobacterium avium complex in patients without predisposing conditions. N Engl J Med 321: 863–868. doi: 10.1056/NEJM198909283211304
![]() |
[5] |
Griffith DE, Aksamit T, Brown-Elliott BA, et al. (2007) An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Resp Crit Care 175: 367–416. doi: 10.1164/rccm.200604-571ST
![]() |
[6] |
Wallace RJ, Zhang Y, Brown-Elliott BA, et al. (2002) Repeat positive cultures in Mycobacterium intracellulare lung disease after macrolide therapy represent new infection in patients with nodular bronchiectasis. J Infect Dis 186: 266–173. doi: 10.1086/341207
![]() |
[7] |
Boyle DP, Zembower TR, Qi C (2016) Relapse versus reinfection of Mycobacterium avium complex pulmonary disease: patient characteristics and macrolide susceptibility. Ann Am Thorac Soc 13: 1956–1961. doi: 10.1513/AnnalsATS.201605-344BC
![]() |
[8] |
Wolinsky E (1995) Mycobacterial lymphadenitis in children: a prospective study of 105 nontuberculous cases with long-term follow up. Clin Infect Dis 20: 954–963. doi: 10.1093/clinids/20.4.954
![]() |
[9] | Iivanainen E, Sallantaus T, Katila MJ, et al. (1999) Mycobacteria in runoff-waters from natural and drained peatlands. J Environ Qual 28: 1226–1234. |
[10] | Falkinham JO, Parker BC, Gruft H (1980) Epidemiology of infection by nontuberculous mycobacteria. I. Geographic distribution in the eastern United States. Am Rev Respir Dis 121: 931–937. |
[11] |
Falkinham JO, Norton CD, LeChevallier MW (2001) Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol 67: 1225–1231. doi: 10.1128/AEM.67.3.1225-1231.2001
![]() |
[12] |
Falkinham JO (2011) Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis 17: 419–424. doi: 10.3201/eid1703.101510
![]() |
[13] | Falkinham JO, Iseman MD, de Haas P, et al. (2008) Mycobacterium avium in a shower linked to pulmonary disease. J Water Health 6: 209–213. |
[14] |
Feazel LM, Baumgartner LK, Peterson KL, et al. (2009) Opportunistic pathogens enriched in showerhead biofilms. P Natl Acad Sci USA 106: 16393–16399. doi: 10.1073/pnas.0908446106
![]() |
[15] |
Falkinham JO (2010) Hospital water filters as a source of Mycobacterium avium complex. J Med Microbiol 59: 1198–1202. doi: 10.1099/jmm.0.022376-0
![]() |
[16] |
Sax H, Bloemberg G, Hasse B, et al. (2015) Prolonged outbreak of Mycobacterium chimaera infection after open-chest heart surgery. Clin Infect Dis 61: 67–75. doi: 10.1093/cid/civ198
![]() |
[17] |
Mullis SN, Falkinham JO (2013) Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J Appl Microbiol 115: 908–914. doi: 10.1111/jam.12272
![]() |
[18] | George KL, Parker BC, Gruft H, et al. (1980) Epidemiology of infection by nontuberculous mycobacteria: II. Growth and survival in natural waters. Am Rev Respir Dis 122: 89–94. |
[19] |
Taylor RM, Norton CD, LeChevallier MW, et al. (2000) Susceptibility of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum to chlorine, chloramine, chlorine dioxide, and ozone. Appl Environ Microbiol 66: 1702–1705. doi: 10.1128/AEM.66.4.1702-1705.2000
![]() |
[20] |
Norton CD, LeChevallier MW, Falkinham JO (2004) Survival of Mycobacterium avium in a model distribution system. Water Res 38: 1457–1466. doi: 10.1016/j.watres.2003.07.008
![]() |
[21] |
Lewis AH, Falkinham JO (2015) Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. Int J Mycobacteriol 4: 25–30. doi: 10.1016/j.ijmyco.2014.11.066
![]() |
[22] |
Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64: 29–63. doi: 10.1146/annurev.bi.64.070195.000333
![]() |
[23] |
Jarlier V, Nikaido H (1994) Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123: 11–18. doi: 10.1111/j.1574-6968.1994.tb07194.x
![]() |
[24] | Falkinham JO, George KL, Parker BC, et al. (1984) In vitro susceptibility of human and environmental isolates of Mycobacterium avium, M. intracellulare, and M. scrofulaceum to heavy metal salts and oxyanions. Antimicrob Agents Ch 25: 137–139. |
[25] |
Chen CI, Griebe T, Srinivasan R, et al. (1993) Effects of various metal substrata on accumulation of Pseudomonas aeruginosa biofilms and the efficacy of monochloramine as a biocide. Biofouling 7: 241–251. doi: 10.1080/08927019309386256
![]() |
[26] |
Ojha A, Anand M, Bhatt A, et al. (2005) GroEL1: A dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123: 861–873. doi: 10.1016/j.cell.2005.09.012
![]() |
[27] |
Ojha AK, Baughn AD, Sambandan D, et al. (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69: 164–174. doi: 10.1111/j.1365-2958.2008.06274.x
![]() |
[28] | De Beer D, Srinivasan R, Stewart PS (1994) Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol 60: 4339–4344. |
[29] | Birmes FS, Wolf T, Kohl TA, et al. (2017) Mycobacterium abscessus subsp. abscessus is capable of degrading Pseudomonas aeruginosa quinolone signals. Front Microbiol 8: 339. |
[30] | Van Oss CJ, Gillman CF, Neumann AW (1975) Phagocytic engulfment and cell adhesiveness as cellular phenomena, New York: Marcel Dekker. |
[31] |
Lequette Y, Boels G, Clarisse M, et al. (2010) Using enzymes to remove biofilms of bacteria isolates sampled in the food-industry. Biofouling 26: 421–431. doi: 10.1080/08927011003699535
![]() |
[32] |
Muñoz-Egea MC, García-Pedrazuela M, Mahillo-Fernandez I, et al. (2016) Effect of antibiotics and antibiofilm agents in the ultrastructure and development of biofilms developed by nonpigmented rapidly growing mycobacteria. Microb Drug Resist 22: 1–6. doi: 10.1089/mdr.2015.0124
![]() |
[33] |
Steed KA, Falkinham JO (2006) Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Appl Environ Microbiol 72: 4007–4100. doi: 10.1128/AEM.02573-05
![]() |
[34] |
Falkinham JO (2007) Growth in catheter biofilms and antibiotic resistance of Mycobacterium avium. J Med Microbiol 56: 250–254. doi: 10.1099/jmm.0.46935-0
![]() |
[35] |
Tortoli E, Rindi L, Garcia MJ, et al. (2004) Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int J Syst Evol Micr 54: 1277–1285. doi: 10.1099/ijs.0.02777-0
![]() |
[36] |
Wallace RJ, Iakhiaeva E, Williams MD, et al. (2013) Absence of Mycobacterium intracellulare and presence of Mycobacterium chimaera in household water and biofilms samples in the United States with Mycobacterium avium complex respiratory disease. J Clin Microbiol 51: 1747–1752. doi: 10.1128/JCM.00186-13
![]() |
[37] |
Kim E, Kinney WH, Ovrutsky AR, et al. (2014) A surface with a biomimetic micropattern reduces colonization of Mycobacterium abscessus. FEMS Microbiol Lett 359: 1–6. doi: 10.1111/1574-6968.12576
![]() |
[38] | Kirschner RA, Parker BC, Falkinham JO (1992) Epidemiology of infection by nontuberculous mycobacteria. X. Mycobacterium avium, M. intracellulare, and M. scrofulaceum in acid, brown-water swamps of the southeastern United States and their association with environmental variables. Am Rev Respir Dis 145: 271–275. |
[39] |
Carter G, Wu M, Drummond DC, et al. (2003) Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J Med Microbiol 52: 747–752. doi: 10.1099/jmm.0.05224-0
![]() |
[40] |
Freeman R, Geier H, Weigel KM, et al. (2006) Roles for cell wall glycopeptidolipid in surface adherence and planktonic dispersal of Mycobacterium avium. Appl Environ Microbiol 72: 7554–7558. doi: 10.1128/AEM.01633-06
![]() |
[41] | Martínez A, Torello S, Kolter R (1999) Sliding motility in mycobacteria. J Bacteriol 181: 7331–7338. |
[42] |
Kelley ST, Theisen U, Angenent LT, et al. (2004) Molecular analysis of shower curtain biofilm microbes. Appl Environ Microbiol 70: 4187–4192. doi: 10.1128/AEM.70.7.4187-4192.2004
![]() |
[43] | Falkinham JO, Williams MD, Kwait R, et al. (2016) Methylobacterium spp. as an indicator for the presence or absence of Mycobacterium spp. Int J Mycobacteriol 5: 240–243. |
[44] |
Muńoz-Egea MC, Ji P, Pruden A, et al. (2017) Inhibition of adherence of Mycobacterium avium to plumbing surface biofilms of Methylobacterium spp. Pathogens 6: 42. doi: 10.3390/pathogens6030042
![]() |
[45] |
Elbein AD, Pan YT, Pastuszak I, et al. (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13: 17R–27R. doi: 10.1093/glycob/cwg047
![]() |
1. | Xuekui Yu, Jonathan Jih, Jiansen Jiang, Z. Hong Zhou, Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150, 2017, 356, 0036-8075, eaam6892, 10.1126/science.aam6892 | |
2. | Hua Jin, Yong-Liang Jiang, Feng Yang, Jun-Tao Zhang, Wei-Fang Li, Ke Zhou, Jue Ju, Yuxing Chen, Cong-Zhao Zhou, Capsid Structure of a Freshwater Cyanophage Siphoviridae Mic1, 2019, 27, 09692126, 1508, 10.1016/j.str.2019.07.003 | |
3. | Joshua M. Hardy, Rhys A. Dunstan, Rhys Grinter, Matthew J. Belousoff, Jiawei Wang, Derek Pickard, Hariprasad Venugopal, Gordon Dougan, Trevor Lithgow, Fasséli Coulibaly, The architecture and stabilisation of flagellotropic tailed bacteriophages, 2020, 11, 2041-1723, 10.1038/s41467-020-17505-w | |
4. | Yanting Tang, An Mu, Yuying Zhang, Shan Zhou, Weiwei Wang, Yuezheng Lai, Xiaoting Zhou, Fengjiang Liu, Xiuna Yang, Hongri Gong, Quan Wang, Zihe Rao, Cryo-EM structure of Mycobacterium smegmatis DyP-loaded encapsulin, 2021, 118, 0027-8424, e2025658118, 10.1073/pnas.2025658118 | |
5. | James M. Polson, Edgar J. Garcia, Alexander R. Klotz, Flatness and intrinsic curvature of linked-ring membranes, 2021, 17, 1744-683X, 10505, 10.1039/D1SM01307F | |
6. | Ning Cui, Feng Yang, Jun-Tao Zhang, Hui Sun, Yu Chen, Rong-Cheng Yu, Zhi-Peng Chen, Yong-Liang Jiang, Shu-Jing Han, Xudong Xu, Qiong Li, Cong-Zhao Zhou, Rebecca Ellis Dutch, Capsid Structure of Anabaena Cyanophage A-1(L) , 2021, 95, 0022-538X, 10.1128/JVI.01356-21 | |
7. | Jing Zheng, Wenyuan Chen, Hao Xiao, Fan Yang, Xiaowu Li, Jingdong Song, Lingpeng Cheng, Hongrong Liu, A Capsid Structure of Ralstonia solanacearum podoviridae GP4 with a Triangulation Number T = 9, 2022, 14, 1999-4915, 2431, 10.3390/v14112431 | |
8. | Jennifer M. Podgorski, Krista Freeman, Sophia Gosselin, Alexis Huet, James F. Conway, Mary Bird, John Grecco, Shreya Patel, Deborah Jacobs-Sera, Graham Hatfull, Johann Peter Gogarten, Janne Ravantti, Simon J. White, A structural dendrogram of the actinobacteriophage major capsid proteins provides important structural insights into the evolution of capsid stability, 2023, 31, 09692126, 282, 10.1016/j.str.2022.12.012 | |
9. | Hao Pang, Fenxia Fan, Jing Zheng, Hao Xiao, Zhixue Tan, Jingdong Song, Biao Kan, Hongrong Liu, Three-dimensional structures of Vibrio cholerae typing podophage VP1 in two states, 2024, 09692126, 10.1016/j.str.2024.10.005 | |
10. | Michael Woodson, Nikolai S. Prokhorov, Seth D. Scott, Wei Zhao, Wei Zhang, Kyung H. Choi, Paul J. Jardine, Marc C. Morais, Phi29 assembly intermediates reveal how scaffold interactions with capsid protein drive capsid construction and maturation, 2025, 11, 2375-2548, 10.1126/sciadv.adk8779 |