Citation: Yu Wang, Caroline A. Brown, Rachel Chen. Industrial production, application, microbial biosynthesis and degradation of furanic compound, hydroxymethylfurfural (HMF)[J]. AIMS Microbiology, 2018, 4(2): 261-273. doi: 10.3934/microbiol.2018.2.261
[1] | Osmar Alejandro Chanes-Cuevas, Adriana Perez-Soria, Iriczalli Cruz-Maya, Vincenzo Guarino, Marco Antonio Alvarez-Perez . Macro-, micro- and mesoporous materials for tissue engineering applications. AIMS Materials Science, 2018, 5(6): 1124-1140. doi: 10.3934/matersci.2018.6.1124 |
[2] | Miguel-Angel Rojas-Yañez, Claudia-Alejandra Rodríguez-González, Santos-Adriana Martel-Estrada, Laura-Elizabeth Valencia-Gómez, Claudia-Lucia Vargas-Requena, Juan-Francisco Hernández-Paz, María-Concepción Chavarría-Gaytán, Imelda Olivas-Armendáriz . Composite scaffolds of chitosan/polycaprolactone functionalized with protein of Mytilus californiensis for bone tissue regeneration. AIMS Materials Science, 2022, 9(3): 344-358. doi: 10.3934/matersci.2022021 |
[3] | Chiara Emma Campiglio, Chiara Marcolin, Lorenza Draghi . Electrospun ECM macromolecules as biomimetic scaffold for regenerative medicine: challenges for preserving conformation and bioactivity. AIMS Materials Science, 2017, 4(3): 638-669. doi: 10.3934/matersci.2017.3.638 |
[4] | Eugen A. Preoteasa, Elena S. Preoteasa, Ioana Suciu, Ruxandra N. Bartok . Atomic and nuclear surface analysis methods for dental materials: A review. AIMS Materials Science, 2018, 5(4): 781-844. doi: 10.3934/matersci.2018.4.781 |
[5] | Misato Kuroyanagi, Yoshimitsu Kuroyanagi . Tissue-engineered products capable of enhancing wound healing. AIMS Materials Science, 2017, 4(3): 561-581. doi: 10.3934/matersci.2017.3.561 |
[6] | Vincenzo Guarino, Tania Caputo, Rosaria Altobelli, Luigi Ambrosio . Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Materials Science, 2015, 2(4): 497-502. doi: 10.3934/matersci.2015.4.497 |
[7] | Raffaele Conte, Anna Di Salle, Francesco Riccitiello, Orsolina Petillo, Gianfranco Peluso, Anna Calarco . Biodegradable polymers in dental tissue engineering and regeneration. AIMS Materials Science, 2018, 5(6): 1073-1101. doi: 10.3934/matersci.2018.6.1073 |
[8] | Qinghua Qin . Applications of piezoelectric and biomedical metamaterials: A review. AIMS Materials Science, 2025, 12(3): 562-609. doi: 10.3934/matersci.2025025 |
[9] | Elena Kossovich . Theoretical study of chitosan-graphene and other chitosan-based nanocomposites stability. AIMS Materials Science, 2017, 4(2): 317-327. doi: 10.3934/matersci.2017.2.317 |
[10] | Sekhar Chandra Ray . Application of graphene/graphene-oxide: A comprehensive review. AIMS Materials Science, 2025, 12(3): 453-513. doi: 10.3934/matersci.2025023 |
It has been known that organic nutrients (e.g., nitrogen and phosphorus), light, and inorganic carbon are the important factors that affect the growth of phytoplankton. However, previous competition theory only focused on the interaction between the species and nutrients/light (see, e.g., [7,9]), and neglected the role of inorganic carbon. This is probably due to the complexities including the biochemistry of carbon acquisition by phytoplankton and the geochemistry of inorganic carbon in the ecosystem [10,20]. In the Supplementary Information of [20], the authors proposed a system of ODEs modeling the competition of the species for inorganic carbon and light in a well-mixed water column. Dissolved CO2 and carbonic acid are regarded as one resource (denoted as "CO2"), and bicarbonate and carbonate ions are regarded as another (denoted as "CARB"). The resources "CO2" and "CARB" are stored internally, and they are substitutable in their effects on algal growth [17,20]. On the other hand, uptake rates also includes self-shading by the phytoplankton population, namely, an increase in population density will reduce light available for photosynthesis, and thereby suppressing further carbon assimilation and population growth [20].
It was known that pH and alkalinity are two main factors in the modeling of inorganic carbon [20]. The consumption terms for "CO2" and "CARB" used in [20] include computations of feedbacks that arise from changes in pH and alkalinity during algal growth. In the recent work [17], the authors ignore these latter feedbacks and assume that the parameters in the system are constants, simplifying the complex processes of "CO2" and "CARB" involved. Incorporating the simplifications used in [17], we modify the model presented in the Supplementary Information of [20] and we shall investigate the following chemostat-type model with internal storage:
$ {dRdt=(R(0)−R)D−fR1(R,Q1)g1(u1,u2)u1−fR2(R,Q2)g2(u1,u2)u2 +γ1(Q1)u1+γ2(Q2)u2−ωrR+ωsS,dSdt=(S(0)−S)D−fS1(S,Q1)g1(u1,u2)u1−fS2(S,Q2)g2(u1,u2)u2+ωrR−ωsS,dQ1dt=fR1(R,Q1)g1(u1,u2)+fS1(S,Q1)g1(u1,u2)−μ1(Q1)Q1−γ1(Q1),du1dt=[μ1(Q1)−D]u1,dQ2dt=fR2(R,Q2)g2(u1,u2)+fS2(S,Q2)g2(u1,u2)−μ2(Q2)Q2−γ2(Q2),du2dt=[μ2(Q2)−D]u2,R(0)≥0, S(0)≥0, ui(0)≥0, Qi(0)≥Qmin,i, i=1,2. $ | (1.1) |
Here
One type of the photosynthetic rate of the species
$ gi(u1,u2)=1zm∫zm0miˆI(z)ai+ˆI(z)dz, $ | (1.2) |
where
$ ˆI(z)=Iinexp(−k0z−k1zu1(t)−k2zu2(t)). $ | (1.3) |
Here we have assumed that the light intensity at each depth is described by Lambert-Beer law [11,14], which states that the amount of light absorbed is proportional to the light intensity (
$ gi(u1,u2)=mi(k0+k1u1+k2u2)zmln(ai+Iinai+ˆI(zm))=miln(IinˆI(zm))ln(ai+Iinai+ˆI(zm)), $ |
where
$ ˆI(zm)=Iinexp(−k0zm−k1zmu1(t)−k2zmu2(t)). $ |
We also note that the other type of the photosynthetic rate
$ gi(u1,u2)=miIai+I, $ | (1.4) |
with
$ I(t)=Iinexp(−k0zm−k1zmu1(t)−k2zmu2(t)). $ |
According to [20], we take the growth rate
$ μi(Qi)=μmax,iQi−Qmin,iQmax,i−Qmin,i, $ |
where
$ μi(Qi)=μ∞,i(1−Qmin,iQi),orμi(Qi)=μ∞,i(Qi−Qmin,i)+Ai+(Qi−Qmin,i)+, $ |
where
According to [6,16], for
$ fHi(H,Qi)=ρHi(Qi)HKHi+H. $ |
Here
$ ρHi(Qi)=ρhighmax,Hi−(ρhighmax,Hi−ρlowmax,Hi)Qi−Qmin,iQmax,i−Qmin,i, $ |
for
$ ρHi(Qi)=ρmax,HiQmax,i−QiQmax,i−Qmin,i. $ |
System (1.1) also includes the fact that carbon is lost by respiration. The respiration rate is proportional to the size of the transient carbon pool [20]:
$ γi(Qi)=γmax,iQi−Qmin,iQmax,i−Qmin,i, $ |
where
In this whole paper, we always assume that the photosynthetic rate
The rest of the paper is organized as follows. Section 2 is devoted to the study of the single population model. In Section 3, we shall investigate the possibility of coexistence of the two competing species system (1.1). A brief discussion section completes this paper.
In this section, we first investigate the extinction and persistence of the single population model. Mathematically, it simply means that we remove equations of
$ {dRdt=(R(0)−R)D−fR(R,Q)G(u)u+γ(Q)u−ωrR+ωsS,dSdt=(S(0)−S)D−fS(S,Q)G(u)u+ωrR−ωsS,dQdt=fR(R,Q)G(u)+fS(S,Q)G(u)−μ(Q)Q−γ(Q),dudt=[μ(Q)−D]u,R(0)≥0, S(0)≥0, u(0)≥0, Q(0)≥Qmin. $ | (2.1) |
The specific growth rate
$ G(u)=1zm∫zm0m˜I(z)a+˜I(z)dz=mln(Iin˜I(zm))ln(a+Iina+˜I(zm)), $ |
where
$ ˜I(z)=Iinexp(−k0z−kzu(t)), 0≤z≤zm, $ |
or
$ G(u)=mIa+I, with I(t)=Iinexp(−k0zm−kzmu(t)). $ |
The feasible domain for system (2.1) takes the form
$ X={(R,S,Q,u)∈R4+:Q≥Qmin}. $ | (2.2) |
Then it is easy to show that
Lemma 2.1. Every solution
Proof. By the continuation theorem, it suffices to prove that the solution of system (2.1) is bounded on finite time intervals. Let
$ Θ(t)=R(t)+S(t)+u(t)Q(t). $ | (2.3) |
Then
$ dΘ(t)dt=(R(0)+S(0)−Θ(t))D. $ | (2.4) |
Thus,
It remains to show that
$ dV(t)dt=dQ(t)dtQ≤G(0)[fR(R(t),Qmin)+fS(S(t),Qmin)]Q≤12G(0)[fR(R(t),Qmin)+fS(S(t),Qmin)][1+Q2]=G(0)[fR(R(t),Qmin)+fS(S(t),Qmin)][12+V]. $ | (2.5) |
Since
From (2.4), it is easy to see that
$ limt→∞Θ(t)=R(0)+S(0), $ | (2.6) |
and hence,
$ \frac{d Q}{dt}\leq G(0)[f_{R}(R^{(0)}+S^{(0)}, Q)+f_{S}(R^{(0)}+S^{(0)}, Q)]+\eta_0-\mu(Q)Q-\gamma(Q), \ t\geq \tau_0. $ |
Then
$ \lim\limits_{t\rightarrow \infty}Q(t)\leq Q^{\eta_0}, $ |
where
$ G(0)[f_{R}(R^{(0)}+S^{(0)}, Q)+f_{S}(R^{(0)}+S^{(0)}, Q)]+\eta_0-\mu(Q)Q-\gamma(Q) = 0. $ |
Thus, solutions of (2.1) are ultimately bounded on
In order to find the species-free equilibrium of system (2.1), which corresponds to the absence of species, we put
$ {dRdt=(R(0)−R)D−ωrR+ωsS,dSdt=(S(0)−S)D+ωrR−ωsS,R(0)≥0, S(0)≥0. $ | (2.7) |
It is easy to see that (2.7) is a cooperative/monotone system (see, e.g., [18]), and
$ (R^{*}, S^{*}): = (\frac{DR^{(0)}+\omega_sR^{(0)}+\omega_sS^{(0)}}{D+\omega_r+\omega_s}, \frac{DS^{(0)}+\omega_rS^{(0)}+\omega_rR^{(0)}}{D+\omega_r+\omega_s}) $ |
is the unique equilibrium for (2.7). For a monotone dynamical system, the unique steady state is globally asymptotically stable if and only if every forward orbit has compact closure (see [13,Theorem D]). By Lemma 2.1 and the above discussions, we have the following results:
Lemma 2.2. The unique equilibrium
From Lemma 2.2, the species-free equilibrium of system (2.1), which we label
$ E_0 = (R, S, Q, u) = (R^{*}, S^{*}, Q^{*}, 0), $ |
where
$ fR(R∗,Q∗)G(0)+fS(S∗,Q∗)G(0)−μ(Q∗)Q∗−γ(Q∗)=0 $ | (2.8) |
The local stability of
$ J0=(−D−ωrωs0−fR(R∗,Q∗)G(0)+γ(Q∗)ωr−D−ωs0−fS(S∗,Q∗)G(0)∂fR(R∗,Q∗)∂RG(0)∂fS(S∗,Q∗)∂SG(0)j33[fR(R∗,Q∗)+fS(S∗,Q∗)]G′(0)000μ(Q∗)−D), $ |
where
$ j33=[∂fR(R∗,Q∗)∂Q+∂fS(S∗,Q∗)∂Q]G(0)−[μ(Q∗)+μ′(Q∗)Q∗]−γ′(Q∗)<0. $ |
It is easy to see that the eigenvalues of
$ ˜J0=(−D−ωrωsωr−D−ωs). $ |
Since
Lemma 2.3.
This subsection is devoted to the investigations of persistence of system (2.1).
Theorem 2.4. Assume that
$ \liminf\limits_{t\rightarrow\infty}u(t)\geq \xi, \ provided~ that\ u^0\neq 0. $ |
Further, system (2.1) admits at least one positive equilibrium
Proof. Recall that
$ X0={(R,S,Q,u)∈X:u>0}, $ |
and
$ ∂X0:=X∖X0:={(R,S,Q,u)∈X:u=0}. $ |
It is easy to see that both
Claim:
Since
$ \lim\limits_{t\rightarrow \infty}(R(t, P), S(t, P)) = (R^{*}, S^{*}). $ |
Then, the equation for
$ \frac{dQ}{dt} = f_{R}(R, Q)G(0)+f_{S}(S, Q)G(0)-\mu(Q)Q-\gamma(Q). $ |
From the theory for asymptotically autonomous semiflows (see, e.g., [19,Corollary 4.3]), it follows that
Let
$ μ(Q)>μ(Q∗)−η1, ∀ |Q−Q∗|<σ1. $ | (2.9) |
Claim:
$ lim supt→∞|Φt(P)−E0|≥σ1, ∀ P∈X0. $ |
Suppose not. Then there exists a
$ \limsup\limits_{t\rightarrow\infty}|\Phi_t(P)-E_0| \lt \sigma_1. $ |
Thus, there exists a
$ |Q(t, P)-Q^{*}| \lt \sigma_1, \ \forall \ t\geq \tau_1. $ |
This and (2.9) imply that
$ \mu(Q(t, P))-D \gt \mu(Q^{*})-D-\eta_1 = \eta_1, \ \forall \ t\geq \tau_1. $ |
From this inequality and the fourth equation of (2.1), we have
$ du(t,P)dt>η1u(t,P), ∀ t≥τ1, $ |
which shows that
Therefore,
$ (\hat{R}, \hat{S}, \hat{Q}, \hat{u})\in \mathbf{X}_0. $ |
Then
$ {(R(0)−ˆR)D−fR(ˆR,ˆQ)g(ˆu)ˆu+γ(ˆQ)ˆu−ωrˆR+ωsˆS=0,(S(0)−ˆS)D−fS(ˆS,ˆQ)g(ˆu)ˆu+ωrˆR−ωsˆS=0. $ | (2.10) |
In view of (2.10), we deduce that
In this subsection, we neglect the effect of respiration and investigate the extinction of system (2.1). Putting the respiration rate to be zero,
$ γ(Q)≡0, ∀ Q≥Qmin. $ | (2.11) |
Then we have the following result:
Theorem 2.5. Suppose
$ limt→∞(R(t),S(t),Q(t),u(t))=(R∗,S∗,Q∗,0). $ |
Proof. For
$ G(0)[fR(R∗,Q)+fS(S∗,Q)]+η−μ(Q)Q=0. $ | (2.12) |
Recall that
$ \lim\limits_{\eta\rightarrow 0}[\mu(Q^{\eta})-D] = \mu(Q^{*})-D\ \mbox{and}\ \frac{-1}{3}[\mu(Q^{*})-D] \gt 0, $ |
we may find an
$ μ(Qη2)−D<[μ(Q∗)−D]+−13[μ(Q∗)−D]=23[μ(Q∗)−D]. $ | (2.13) |
On the other hand, by the continuity, we may find a
$ {fR(R∗+σ2,Q)<fR(R∗,Q)+η22G(0),fS(S∗+σ2,Q)<fS(S∗,Q)+η22G(0),μ(Qη2+σ2)<μ(Qη2)+−13[μ(Q∗)−D] $ | (2.14) |
In view of the assumption (2.11) and the first two equations of system (2.1), it follows that
$ {dRdt≤(R(0)−R)D−ωrR+ωsS,dSdt≤(S(0)−S)D+ωrR−ωsS. $ |
By the comparison arguments and Lemma 2.2, we have
$ \lim\limits_{t\rightarrow \infty}(R(t), S(t))\leq (R^{*}, S^{*}). $ |
Then there exists a
$ R(t)≤R∗+σ2, S(t)≤S∗+σ2, ∀ t≥τ2. $ |
Then it follows from the third equation of (2.1) that
$ dQdt≤G(0)[fR(R∗+σ2,Q)+fS(S∗+σ2,Q)]−μ(Q)Q, ∀ t≥τ2. $ | (2.15) |
In view of the first two inequalities of (2.14) and (2.15), we have
$ dQdt≤G(0)[fR(R∗,Q)+fS(S∗,Q)]+η2−μ(Q)Q, ∀ t≥τ2. $ |
Using the comparison arguments, we have
$ limt→∞Q(t)≤Qη2, $ | (2.16) |
where
$ Q(t)≤Qη2+σ2, ∀ t≥τ3, $ |
and hence,
$ μ(Q(t))≤μ(Qη2+σ2), ∀ t≥τ3. $ | (2.17) |
In view of the third inequality of (2.14) and (2.17), we have
$ μ(Q(t))≤μ(Qη2)+−13[μ(Q∗)−D], ∀ t≥τ3. $ | (2.18) |
By (2.13), (2.18) together with the fourth equation of (2.1), it follows that
$ dudt=[μ(Q(t))−D]u≤13[μ(Q∗)−D]u, ∀ t≥τ3. $ | (2.19) |
Since
$ limt→∞u(t)=0. $ |
Then
$ \lim\limits_{t\rightarrow \infty}(R(t), S(t)) = (R^{*}, S^{*}). $ |
Similarly,
$ \frac{dQ}{dt} = f_{R}(R^{*}, Q)G(0)+f_{S}(S^{*}, Q)G(0)-\mu(Q)Q, $ |
and
In this section, we shall concentrate on the study of coexistence of system (1.1). The subsequent discussions will reveal that two semi-trivial steady-state solutions of system (1.1), corresponds to the presence of one of the species and the absence of the other species, are not necessarily unique. This makes our analysis more difficult. Fortunately, we can adopt the ideas developed in [12,Section 4] to overcome this difficulty.
The trivial steady-state solution of (1.1), labeled
$ \mathcal{E}_0 = (R, S, Q_1, u_1, Q_2, u_2) = (R^{*}, S^{*}, Q_1^{*}, 0, Q_2^{*}, 0), $ |
where
$ fRi(R∗,Q∗i)Gi(0)+fSi(S∗,Q∗i)Gi(0)−μi(Q∗i)Q∗i−γi(Q∗i)=0, i=1,2, $ |
where
In order to determine the semi-trivial steady-state solutions of (1.1), we need the following single population system associated with the growth of species
$ {dRdt=(R(0)−R)D−fRi(R,Qi)Gi(ui)ui+γi(Qi)ui−ωrR+ωsS,dSdt=(S(0)−S)D−fSi(S,Qi)Gi(ui)ui+ωrR−ωsS,dQidt=fRi(R,Qi)Gi(ui)+fSi(S,Qi)Gi(ui)−μi(Qi)Qi−γi(Qi),duidt=[μi(Qi)−D]ui,R(0)≥0, S(0)≥0, ui(0)≥0, Qi(0)≥Qmin,i, i=1,2. $ | (3.1) |
Next, we shall summarize the result of system (3.1). By Theorem 2.4, for
$ \mathcal{E}_1 = (R, S, Q_1, u_1, Q_2, u_2) = (\hat{R}_1, \hat{S}_1, \hat{Q}_1, \hat{u}_1, \hat{Q}_2, 0), $ |
where
$ fR2(ˆR1,Q2)g2(ˆu1,0)+fS2(ˆS1,Q2)g2(ˆu1,0)−μ2(Q2)Q2−γ2(Q2)=0. $ | (3.2) |
Inspired by the arguments in [12,Section 4], we assume that
$ ˆQmin2=inf{ˆQ2(ˆR1,ˆS1,ˆQ1,ˆu1):(ˆR1,ˆS1,ˆQ1,ˆu1)∈A01}. $ | (3.3) |
The other semi-trivial steady-state solution of (1.1), labeled
$ \mathcal{E}_2 = (R, S, Q_1, u_1, Q_2, u_2) = (\check{R}_2, \check{S}_2, \check{Q}_1, 0, \check{Q}_2, \check{u}_2), $ |
where
$ fR1(ˇR2,Q1)g1(0,ˇu2)+fS1(ˇS2,Q1)g1(0,ˇu2)−μ1(Q1)Q1−γ1(Q1)=0. $ |
Similarly, we assume
$ ˇQmin1=inf{ˇQ1(ˇR2,ˇS2,ˇQ2,ˇu2):(ˇR2,ˇS2,ˇQ2,ˇu2)∈A02}. $ | (3.4) |
The feasible domain for system (1.1) takes the form
$ Y={(R,S,Q1,u1,Q2,u2)∈R6+:Q≥Qmin,i, i=1,2}. $ |
Then it is easy to show that
Lemma 3.1. Every solution
Assume that
$ Y0={(R,S,Q1,u1,Q2,u2)∈Y:u1>0 and u2>0}, $ |
and
$ ∂Y0:=Y∖Y0:={(R,S,Q1,u1,Q2,u2)∈Y:u1=0 or u2=0}. $ |
Following the ideas in [12,Section 4], we assume that
$ M1={(ˆR1,ˆS1,ˆQ1,ˆu1,ˆQ2,0)∈Y:(ˆR1,ˆS1,ˆQ1,ˆu1)∈A01 and ˆQ2 is defined by (3.2)}, $ |
and
$ M2={(ˇR2,ˇS2,ˇQ1,0,ˇQ2,ˇu2)∈Y:(ˇR2,ˇS2,ˇQ2,ˇu2)∈A02 and ˇQ1 is defined by (3.4)}. $ |
One can easily to use "the method of proof by contradiction" to deduce the following result:
Lemma 3.2. Let
$ lim supt→∞|Ψ(t)v0−M0|≥δ0, for all v0∈Y0. $ |
Next, we shall use the strategy in [12,Lemma 4.2] to show the following result:
Lemma 3.3. Let
$ lim supt→∞dist(Ψ(t)v0,M1)≥δ1, for all v0∈Y0. $ | (3.5) |
Proof. Let
$ B1={ˆQ2=ˆQ2(ˆR1,ˆS1,ˆQ1,ˆu1):(ˆR1,ˆS1,ˆQ1,ˆu1)∈A01 and ˆQ2 is defined by (3.2)}. $ |
Then
$ \hat{Q}_2^{\min} = \inf\{\hat{Q}_2(\hat{R}_1, \hat{S}_1, \hat{Q}_1, \hat{u}_1):\hat{Q}_2(\hat{R}_1, \hat{S}_1, \hat{Q}_1, \hat{u}_1)\in B_1\}. $ |
Setting
$ \epsilon_1 = \frac{1}{2}[\mu_2(\hat{Q}_2^{\min})-D] \gt 0. $ |
Define
$ \mathcal{G}(\phi) = \mu_2(\phi), \ \phi\in B_1. $ |
We may find a
$ \text{dist}(\mathcal{G}(\phi), \mathcal{G}(B_1)) \lt \epsilon_1, $ |
whenever
$ |\mathcal{G}(\phi)-\mathcal{G}(\phi_*)| = \text{dist}(\mathcal{G}(\phi), \mathcal{G}(B_1)) \lt \epsilon_1. $ |
Thus, we have
$ |μ2(ϕ)−μ2(ϕ∗)|=|G(ϕ)−G(ϕ∗)|<ϵ1, $ |
whenever
Suppose that (3.5) is not true. Then there exists
$ lim supt→∞dist(Ψ(t)v0,M1)<δ1. $ |
This implies that
$ lim supt→∞dist(Q2(t),B1)<δ1 and lim supt→∞|u2(t)|<δ1. $ | (3.7) |
From the first inequality of (3.7), we can choose
$ dist(Q2(t),B1)<δ1, ∀ t≥t1. $ |
By (3.6), it follows that there exists
$ |μ2(Q2(t))−μ2(ϕt∗)|<ϵ1, ∀ t≥t1, $ |
which implies that
$ μ2(Q2(t))−D>μ2(ϕt∗)−D−ϵ1≥μ2(ˆQmin2)−D−ϵ1=ϵ1, ∀ t≥t1. $ |
From the sixth equation of (1.1), we have
$ du2(t)dt=[μ2(Q2(t))−D]u2(t)>ϵ1u2(t), ∀ t≥t1. $ |
We deduce that
By the same arguments in Lemma 3.3, the following result holds:
Lemma 3.4. Let
$ lim supt→∞dist(Ψ(t)v0,M2)≥δ2, for all v0∈Y0. $ |
Now we are in a position to prove the main result of this paper.
Theorem 3.5. Assume that
$ lim inft→∞ui(t)≥ζ, i=1,2. $ |
Furthermore, system (1.1) admits at least one (componentwise) positive equilibrium.
Proof. Recall that
$ M_{\partial}: = \{\mathbf{v}^0 \in \partial \mathbf{Y}_{0}:\Psi(t)\mathbf{v}^0\in \partial \mathbf{Y}_{0}, \forall \ t\geq 0\}, $ |
and
Claim:
For any given
(ⅰ) If
(ⅱ) If
$ (R(t, \mathbf{v}^0), S(t, \mathbf{v}^0), Q_1(t, \mathbf{v}^0), u_1(t, \mathbf{v}^0)) $ |
will eventually enter the global attractor
(ⅲ) If
$ (R(t, \mathbf{v}^0), S(t, \mathbf{v}^0), Q_2(t, \mathbf{v}^0), u_2(t, \mathbf{v}^0)) $ |
will eventually enter the global attractor
The proof of the claim is complete.
By Lemma 3.2, Lemma 3.3 and Lemma 3.4, it follows that for
$ lim supt→∞dist(Ψ(t)v0,Mi)≥δi, for all v0∈Y0. $ |
Note that
$ (\tilde{R}, \tilde{S}, \tilde{Q}_1, \tilde{u}_1, \tilde{Q}_2, \tilde{u}_2)\in \mathbf{Y}_0. $ |
Thus,
In this paper, we study the chemostat-type system (1.1) modeling the interactions of two species competing for "CO2" (dissolved CO2 and carbonic acid), "CARB" (bicarbonate and carbonate ions), and light in a spatially homogeneous water column. Our mathematical model presented in this paper is inspired by the recent works [17,20]. In fact, system (1.1) is a modified version of the model in the Supplementary Information of [20], where the specific growth rate of the competing species
Solutions of both the two-species system (1.1) and its single-species sub-system (2.1) follow mass conservation laws, and are eventually bounded (see Lemma 2.1 and Lemma 3.1). Persistence of a single species depends on the sign of
In Theorem 2.4, we only show that the single-species model (2.1) admits at least one positive equilibrium if the species can persist by using the theory of uniform persistence. The uniqueness and global stability of positive equilibrium for (2.1) are still open if no extra assumptions are imposed. Thus, two semi-trivial steady-state solutions of the two-species system (1.1), corresponds to the presence of one of the species and the absence of the other species, are not necessarily unique. This makes the investigation of coexistence for the two-species system (1.1) more difficult. Inspired by [12,Section 4], we first define two suitable parameters,
Research of F.-B. Wang is supported in part by Ministry of Science and Technology, Taiwan; and National Center for Theoretical Sciences (NCTS), National Taiwan University; and Chang Gung Memorial Hospital (CRRPD3H0011, BMRPD18 and NMRPD5F0543). We would like to express our thanks to Professor Sze-Bi Hsu for the helpful discussions in this paper.
All authors declare no conflicts of interest in this paper.
[1] |
Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited. Green Chem 12: 539–517. doi: 10.1039/b922014c
![]() |
[2] | Werpy T, Petersen G (2004) Top Value Added Chemicals from Biomass, National Renewable Energy Laboratory: Golden, CO. |
[3] |
Zhang D, Dumont MJ (2017) Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural. J Polym Sci Pol Chem 55: 1478–1492. doi: 10.1002/pola.28527
![]() |
[4] |
Deng J, Pan T, Xu Q, et al. (2013) Linked strategy for the production of fuels via formose reaction. Sci Rep 3: 1244. doi: 10.1038/srep01244
![]() |
[5] |
Rosatella AA, Simeonov SP, Frade RFM, et al. (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem 13: 754–741. doi: 10.1039/c0gc00401d
![]() |
[6] |
Cui MS, Deng J, Li XL, et al. (2016) Production of 4-Hydroxymethylfurfural from derivatives of biomass-derived glycerol for chemicals and polymers. ACS Sustain Chem Eng 4: 1707–1714. doi: 10.1021/acssuschemeng.5b01657
![]() |
[7] |
van Putten RJ, van der Waal JC, de Jong ED, et al. (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113: 1499–1597. doi: 10.1021/cr300182k
![]() |
[8] |
Yu IKM, Tsang DCW (2017) Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technol 238: 716–732. doi: 10.1016/j.biortech.2017.04.026
![]() |
[9] |
Qin YZ, Zong MH, Lou WY, et al. (2016) Biocatalytic upgrading of 5-Hydroxymethylfurfural (HMF) with levulinic acid to HMF levulinate in biomass-derived solvents. ACS Sustain Chem Eng 4: 4050–4054. doi: 10.1021/acssuschemeng.6b00996
![]() |
[10] |
Bohre A, Dutta S, Saha B, et al. (2015) Upgrading furfurals to drop-in biofuels: An overview. ACS Sustain Chem Eng 3: 1263–1277. doi: 10.1021/acssuschemeng.5b00271
![]() |
[11] |
Caes BR, Teixeira RE, Knapp KG, et al. (2015) Biomass to furanics: Renewable routes to chemicals and fuels. ACS Sustain Chem Eng 3: 2591–2605. doi: 10.1021/acssuschemeng.5b00473
![]() |
[12] |
Alexandrino K, Millera Á, Bilbao R, et al. (2014) Interaction between 2,5-dimethylfuran and nitric oxide: Experimental and modeling study. Energ Fuel 28: 4193–4198. doi: 10.1021/ef5005573
![]() |
[13] |
Zhong S, Daniel R, Xu H, et al. (2010) Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ignition engine. Energ Fuel 24: 2891–2899. doi: 10.1021/ef901575a
![]() |
[14] | Ray P, Smith C, Simon G, et al. (2017) Renewable green platform chemicals for polymers. Molecules 12: 376. |
[15] |
Burgess SK, Leisen JE, Kraftschik BE, et al. (2014) Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47: 1383–1391. doi: 10.1021/ma5000199
![]() |
[16] |
Papageorgiou GZ, Tsanaktsis V, Bikiaris DN (2014) Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN. Phys Chem Chem Phys 16: 7946–7958. doi: 10.1039/C4CP00518J
![]() |
[17] |
Codou A, Moncel M, van Berkel JG, et al. (2016) Glass transition dynamics and cooperativity length of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate). Phys Chem Chem Phys 18: 16647–16658. doi: 10.1039/C6CP01227B
![]() |
[18] |
Dimitriadis T, Bikiaris DN, Papageorgiou GZ, et al. (2016) Molecular dynamics of poly(ethylene-2,5-furanoate) (PEF) as a function of the degree of crystallinity by dielectric spectroscopy and calorimetry. Macromol Chem Phys 217: 2056–2062. doi: 10.1002/macp.201600278
![]() |
[19] |
Lomelí-Rodríguez M, Martín-Molina M, Jiménez-Pardo M, et al. (2016) Synthesis and kinetic modeling of biomass-derived renewable polyesters. J Polym Sci Pol Chem 54: 2876–2887. doi: 10.1002/pola.28173
![]() |
[20] |
Terzopoulou Z, Tsanaktsis V, Nerantzaki M, et al. (2016) Thermal degradation of biobased polyesters: Kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols. J Anal Appl Pyrol 117: 162–175. doi: 10.1016/j.jaap.2015.11.016
![]() |
[21] |
Baba Y, Hirukawa N, Tanohira N, et al. (2003) Structure-based design of a highly selective catalytic site-directed inhibitor of Ser/Thr protein phosphatase 2B (Calcineurin). J Am Chem Soc 125: 9740–9749. doi: 10.1021/ja034694y
![]() |
[22] | Clark DE, Clark KL, Coleman RA, et al. (2005) Patent No. WO2004067524. |
[23] | Ermakov S, Beletskii A, Eismont O, et al. (2015) Brief review of liquid crystals, In: Liquid Crystals in Biotribology, Springer, 37–56. |
[24] |
Dewar MJS, Riddle RM (1975) Factors influencing the stabilities of nematic liquid crystals. J Am Chem Soc 97: 6658–6662. doi: 10.1021/ja00856a010
![]() |
[25] | Kowalski S, Lukasiewicz M, Duda-Chodak A, et al. (2013) 5-hydroxymethyl-2-furfural (HMF)-heat-induced formation, occurrence in food and biotransformation-a review. Pol J Food Nutr Sci 63: 207–225. |
[26] |
Murkovic M, Bornik MA (2007) Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee. Mol Nutr Food Res 51: 390–394. doi: 10.1002/mnfr.200600251
![]() |
[27] |
Murkovic M, Pichler N (2006) Analysis of 5-hydroxymethylfurfual in coffee, dried fruits and urine. Mol Nutr Food Res 50: 842–846. doi: 10.1002/mnfr.200500262
![]() |
[28] |
Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16: 24–38. doi: 10.1039/C3GC41324A
![]() |
[29] |
Rout PK, Nannaware AD, Prakash O, et al. (2016) Synthesis of hydroxymethylfurfural from cellulose using green processes: A promising biochemical and biofuel feedstock. Chem Eng Sci 142: 318–346. doi: 10.1016/j.ces.2015.12.002
![]() |
[30] |
Mukherjee A, Dumont MJ, Raghavan V (2015) Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass Bioenerg 72: 143–183. doi: 10.1016/j.biombioe.2014.11.007
![]() |
[31] |
Thiyagarajan S, Pukin A, van Haveren J, et al. (2013) Concurrent formation of furan-2,5- and furan-2,4-dicarboxylic acid: unexpected aspects of the Henkel reaction. RSC Adv 3: 15678–15686. doi: 10.1039/C3RA42457J
![]() |
[32] |
Corre C, Song L, O'Rourke S, et al. (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci USA 105: 17510–17515. doi: 10.1073/pnas.0805530105
![]() |
[33] |
Sidda JD, Corre C (2012) Gamma-butyrolactone and furan signaling systems in Streptomyces. Method Enzymol 517: 71–87. doi: 10.1016/B978-0-12-404634-4.00004-8
![]() |
[34] |
Wang Y, Jones MK, Xu H, et al. (2015) Mechanism of the enzymatic synthesis of 4-(Hydroxymethyl)-2-furancarboxaldehyde-phosphate (4-HFC-P) from Glyceraldehyde-3-phosphate catalyzed by 4-HFC-P synthase. Biochemistry 54: 2997–3008. doi: 10.1021/acs.biochem.5b00176
![]() |
[35] |
Miller D, Wang Y, Xu H, et al. (2014) Biosynthesis of the 5-(Aminomethyl)-3-furanmethanol moiety of methanofuran. Biochemistry 53: 4635–4647. doi: 10.1021/bi500615p
![]() |
[36] |
Wang Y, Xu H, Jones MK, et al. (2015) Identification of the final two genes functioning in methanofuran biosynthesis in Methanocaldococcus jannaschii. J Bacteriol 197: 2850–2858. doi: 10.1128/JB.00401-15
![]() |
[37] | Jia J, Schorken U, Lindqvist Y, et al. (1997) Crystal structure of the reduced Schiff-base intermediate complex of transaldolase B from Escherichia coli: mechanistic implications for class I aldolases. Protein Sci 6: 119–124. |
[38] |
Hester G, Brenner-Holzach O, Rossi FA, et al. (1991) The crystal structure of fructose-1,6-bisphosphate aldolase from Drosophila melanogaster at 2.5 A resolution. FEBS Lett 292: 237–242. doi: 10.1016/0014-5793(91)80875-4
![]() |
[39] |
Sygusch J, Beaudry D, Allaire M (1987) Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution. Proc Natl Acad Sci USA 84: 7846–7850. doi: 10.1073/pnas.84.22.7846
![]() |
[40] |
Blom N, Sygusch J (1997) Product binding and role of the C-terminal region in class I D-fructose 1,6-bisphosphate aldolase. Nat Struct Biol 4: 36–39. doi: 10.1038/nsb0197-36
![]() |
[41] |
Izard T, Lawrence MC, Malby RL, et al. (1994) The three-dimensional structure of N-acetylneuraminate lyase from Escherichia coli. Structure 2: 361–369. doi: 10.1016/S0969-2126(00)00038-1
![]() |
[42] |
Kim CG, Yu TW, Fryhle CB, et al. (1998) 3-Amino-5-hydroxybenzoic acid synthase, the terminal enzyme in the formation of the precursor of mC7N units in rifamycin and related antibiotics. J Biol Chem 273: 6030–6040. doi: 10.1074/jbc.273.11.6030
![]() |
[43] |
Kim H, Certa U, Dobeli H, et al. (1998) Crystal structure of fructose-1,6-bisphosphate aldolase from the human malaria parasite Plasmodium falciparum. Biochemistry 37: 4388–4396. doi: 10.1021/bi972233h
![]() |
[44] |
Bobik TA, Morales EJ, Shin A, et al. (2014) Structure of the methanofuran/methanopterin-biosynthetic enzyme MJ1099 from Methanocaldococcus jannaschii. Acta Crystallogr F 70: 1472–1479. doi: 10.1107/S2053230X1402130X
![]() |
[45] |
Heine A, DeSantis G, Luz JG, et al. (2001) Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science 294: 369–374. doi: 10.1126/science.1063601
![]() |
[46] |
Almeida JRM, Röder A, Modig T, et al. (2008) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biot 78: 939–945. doi: 10.1007/s00253-008-1364-y
![]() |
[47] | Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74: 25–33. |
[48] |
Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363: 769–776. doi: 10.1042/bj3630769
![]() |
[49] |
Barciszewski J, Siboska GE, Pedersen BO, et al. (1997) A mechanism for the in vivo formation of N6-furfuryladenine, kinetin, as a secondary oxidative damage product of DNA. FEBS Lett 414: 457–460. doi: 10.1016/S0014-5793(97)01037-5
![]() |
[50] |
Horváth IS, Taherzadeh MJ, Niklasson C, et al. (2001) Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnol Bioeng 75: 540–549. doi: 10.1002/bit.10090
![]() |
[51] | Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol 74: 17–24. |
[52] |
Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing From biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12: 307–331. doi: 10.1016/j.ymben.2010.03.004
![]() |
[53] |
Wang X, Miller EN, Yomano LP, et al. (2011) Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microb 77: 5132–5140. doi: 10.1128/AEM.05008-11
![]() |
[54] | Liu ZL, Blaschek HP (2010) Biomass conversion inhibitors andin situ detoxification, In: Biomass to Biofuels: Strategies for Global Industries, Blackwell Publishing Ltd., 233–259. |
[55] |
Liu ZL, Moon J, Andersh BJ, et al. (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biot 81: 743–753. doi: 10.1007/s00253-008-1702-0
![]() |
[56] | Nieves LM, Panyon LA, Wang X (2015) Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front Bioeng Biotechnol 3: 1–10. |
[57] |
Wierckx N, Koopman F, Ruijssenaars HJ, et al. (2011) Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biot 92: 1095–1105. doi: 10.1007/s00253-011-3632-5
![]() |
[58] |
Zhang J, Zhu Z, Wang X, et al. (2010) Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnol Biofuels 3: 26. doi: 10.1186/1754-6834-3-26
![]() |
[59] |
Trifonova R, Postma J, Ketelaars JJMH, et al. (2008) Thermally treated grass fibers as colonizable substrate for beneficial bacterial inoculum. Microbial Ecol 56: 561–571. doi: 10.1007/s00248-008-9376-9
![]() |
[60] |
López MJ, Nichols NN, Dien BS, et al. (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biot 64: 125–131. doi: 10.1007/s00253-003-1401-9
![]() |
[61] |
Boopathy R, Daniels L (1991) Isolation and characterization of a furfural degrading sulfate-reducing bacterium from an anaerobic digester. Curr Microbiol 23: 327–332. doi: 10.1007/BF02104134
![]() |
[62] | Brune G, Schoberth SM, Sahm H (1983) Growth of a strictly anaerobic bacterium on furfural (2-furaldehyde). Appl Environ Microb 46: 1187–1192. |
[63] |
Koopman F, Wierckx N, de Winde JH, et al. (2010) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci USA 107: 4919–4924. doi: 10.1073/pnas.0913039107
![]() |
[64] |
Dijkman WP, Groothuis DE, Fraaije MW (2014) Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew Chem Int Edit 53: 6515–6518. doi: 10.1002/anie.201402904
![]() |
[65] |
Dijkman WP, Fraaije MW (2014) Discovery and characterization of a 5-Hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. Appl Environ Microb 80: 1082–1090. doi: 10.1128/AEM.03740-13
![]() |
[66] |
Dijkman WP, Binda C, Fraaije MW, et al. (2015) Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase. ACS Catal 5: 1833–1839. doi: 10.1021/acscatal.5b00031
![]() |
[67] | de Jong E, Dam MA, Sipos L, et al. (2012) Furandicarboxylic acid (fdca), a versatile building block for a very interesting class of polyesters, In: Biobased Monomers, Polymers, and Materials, American Chemical Society, 1–13. |
1. | Iriczalli Cruz‐Maya, Vincenzo Guarino, Argelia Almaguer‐Flores, Marco A. Alvarez‐Perez, Alessio Varesano, Claudia Vineis, Highly polydisperse keratin rich nanofibers: Scaffold design and in vitro characterization , 2019, 1549-3296, 10.1002/jbm.a.36699 | |
2. | Vincenzo Guarino, Michele Iafisco, Silvia Spriano, 2020, 9780081025949, 1, 10.1016/B978-0-08-102594-9.00001-2 | |
3. | Irene Bonadies, Francesca Cimino, Vincenzo Guarino, In vitrodegradation of zein nanofibres for propolis release in oral treatments, 2019, 6, 2053-1591, 075407, 10.1088/2053-1591/ab178e | |
4. | Iriczalli Cruz-Maya, Alessio Varesano, Claudia Vineis, Vincenzo Guarino, Comparative Study on Protein-Rich Electrospun Fibers for In Vitro Applications, 2020, 12, 2073-4360, 1671, 10.3390/polym12081671 | |
5. | Iñigo Gaitán-Salvatella, Edgar Oliver López-Villegas, Patricia González-Alva, Fernando Susate-Olmos, Marco Antonio Álvarez-Pérez, Case Report: Formation of 3D Osteoblast Spheroid Under Magnetic Levitation for Bone Tissue Engineering, 2021, 8, 2296-889X, 10.3389/fmolb.2021.672518 | |
6. | Ramona Orlacchio, Simona Zuppolini, Iriczalli Cruz-Maya, Stefania Pragliola, Anna Borriello, Vincenzo Guarino, Rosalba Fittipaldi, Mariateresa Lettieri, Vincenzo Venditto, Polydopamine-Coated Poly-Lactic Acid Aerogels as Scaffolds for Tissue Engineering Applications, 2022, 27, 1420-3049, 2137, 10.3390/molecules27072137 | |
7. | C. Vineis, I. Cruz Maya, S. Mowafi, A. Varesano, D.O. Sánchez Ramírez, M. Abou Taleb, C. Tonetti, V. Guarino, H. El-Sayed, Synergistic effect of sericin and keratin in gelatin based nanofibers for in vitro applications, 2021, 190, 01418130, 375, 10.1016/j.ijbiomac.2021.09.007 | |
8. | Nazirah Hamdan, Alisa Yamin, Shafida Abd Hamid, Wan Khartini Wan Abdul Khodir, Vincenzo Guarino, Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances, 2021, 12, 2079-4983, 59, 10.3390/jfb12040059 | |
9. | Iriczalli Cruz-Maya, Vincenzo Guarino, 3D Scaffolds Fabrication via Bicomponent Microgels Assembly: Process Optimization and In Vitro Characterization, 2022, 13, 2072-666X, 1726, 10.3390/mi13101726 |