Review Topical Sections

Industrial production, application, microbial biosynthesis and degradation of furanic compound, hydroxymethylfurfural (HMF)

  • Received: 18 January 2018 Accepted: 12 March 2018 Published: 21 March 2018
  • Biorefinery is increasingly embraced as an environmentally friendly approach that has the potential to shift current petroleum-based chemical and material manufacture to renewable sources. Furanic compounds, particularly hydroxymethylfurfurals (HMFs) are platform chemicals, from which a variety of value-added chemicals can be derived. Their biomanufacture and biodegradation therefore will have a large impact. Here, we first review the potential industrial production of 4-HMF and 5-HMF, then we summarize the known microbial biosynthesis and biodegradation pathways of furanic compounds with emphasis on the enzymes in each pathway. We especially focus on the structure, function and catalytic mechanism of MfnB (4-(hydroxymethyl)-2-furancarboxyaldehyde-phosphate synthase) and hmfH (HMF oxidase), which catalyze the formation of phosphorylated 4-HMF and the oxidation of 5-HMF to furandicarboxylic acid (2,5-FDCA), respectively. Understanding the structure-function relationship of these enzymes will provide important insights in enzyme engineering, which eventually will find industry applications in mass-production of biobased polymers and other bulk chemicals in future.

    Citation: Yu Wang, Caroline A. Brown, Rachel Chen. Industrial production, application, microbial biosynthesis and degradation of furanic compound, hydroxymethylfurfural (HMF)[J]. AIMS Microbiology, 2018, 4(2): 261-273. doi: 10.3934/microbiol.2018.2.261

    Related Papers:

    [1] Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589
    [2] Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for $ n $-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371
    [3] Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089
    [4] Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103
    [5] Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683
    [6] M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253
    [7] Sarah Elahi, Muhammad Aslam Noor . Integral inequalities for hyperbolic type preinvex functions. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597
    [8] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [9] Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989
    [10] Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via $ n $-polynomial exponential type $ s $-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787
  • Biorefinery is increasingly embraced as an environmentally friendly approach that has the potential to shift current petroleum-based chemical and material manufacture to renewable sources. Furanic compounds, particularly hydroxymethylfurfurals (HMFs) are platform chemicals, from which a variety of value-added chemicals can be derived. Their biomanufacture and biodegradation therefore will have a large impact. Here, we first review the potential industrial production of 4-HMF and 5-HMF, then we summarize the known microbial biosynthesis and biodegradation pathways of furanic compounds with emphasis on the enzymes in each pathway. We especially focus on the structure, function and catalytic mechanism of MfnB (4-(hydroxymethyl)-2-furancarboxyaldehyde-phosphate synthase) and hmfH (HMF oxidase), which catalyze the formation of phosphorylated 4-HMF and the oxidation of 5-HMF to furandicarboxylic acid (2,5-FDCA), respectively. Understanding the structure-function relationship of these enzymes will provide important insights in enzyme engineering, which eventually will find industry applications in mass-production of biobased polymers and other bulk chemicals in future.


    The famous Young's inequality, as a classical result, state that: if $ a, b > 0 $ and $ t\in \lbrack 0, 1] $, then

    $ atb1tta+(1t)b
    $
    (1.1)

    with equality if and only if $ a = b. $ Let $ p, q > 1 $ such that $ 1/p+1/q = 1 $. The inequality (1.1) can be written as

    $ abapp+bqq
    $
    (1.2)

    for any $ a, b\geq 0 $. In this form, the inequality (1.2) was used to prove the celebrated Hölder inequality. One of the most important inequalities of analysis is Hölder's inequality. It contributes wide area of pure and applied mathematics and plays a key role in resolving many problems in social science and cultural science as well as in natural science.

    Theorem 1 (Hölder inequality for integrals [11]). Let $ p > 1 $ and $ 1/p+1/q = 1 $. If $ f\ $and $ g $ are real functions defined on $ \left[a, b\right] $ and if $ \left\vert f\right\vert ^{p}, \left\vert g\right\vert ^{q} $ are integrable functions on $ \left[a, b\right] $ then

    $ ba|f(x)g(x)|dx(ba|f(x)|pdx)1/p(ba|g(x)|qdx)1/q,
    $
    (1.3)

    with equality holding if and only if $ A\left\vert f(x)\right\vert ^{p} = B\left\vert g(x)\right\vert ^{q} $ almost everywhere, where $ A $ and $ B $ are constants.

    Theorem 2 (Hölder inequality for sums [11]). Let $ a = \left(a_{1}, ..., a_{n}\right) $ and $ b = \left(b_{1}, ..., b_{n}\right) $ be two positive n-tuples and $ p, q > 1 $ such that $ 1/p+1/q = 1. $ Then we have

    $ nk=1akbk(nk=1apk)1/p(nk=1bqk)1/q.
    $
    (1.4)

    Equality hold in (1.4) if and only if $ a^{p} $ and $ b^{q} $ are proportional.

    In [10], İşcan gave new improvements for integral ans sum forms of the Hölder inequality as follow:

    Theorem 3. Let $ p > 1 $ and $ \frac{1}{p}+\frac{1}{q} = 1 $. If $ f $ and $ g $ are real functions defined on interval $ \left[a, b\right] $ and if $ \left\vert f\right\vert ^{p} $, $ \left\vert g\right\vert ^{q} $ are integrable functions on $ \left[a, b\right] $ then

    $ ba|f(x)g(x)|dx1ba{(ba(bx)|f(x)|pdx)1p(ba(bx)|g(x)|qdx)1q+(ba(xa)|f(x)|pdx)1p(ba(xa)|g(x)|qdx)1q}
    $
    (1.5)

    Theorem 4. Let $ a = \left(a_{1}, ..., a_{n}\right) $ and $ b = \left(b_{1}, ..., b_{n}\right) $ be two positive n-tuples and $ p, q > 1 $ such that $ 1/p+1/q = 1. $ Then

    $ nk=1akbk1n{(nk=1kapk)1/p(nk=1kbqk)1/q+(nk=1(nk)apk)1/p(nk=1(nk)bqk)1/q}.
    $
    (1.6)

    Let $ E $ be a nonempty set and $ L $ be a linear class of real valued functions on $ E $ having the following properties

    $ L1: $ If $ f, g\in L $ then $ \left(\alpha f+\beta g\right) \in L $ for all $ \alpha, \beta \in \mathbb{R} $;

    $ L2: $ $ 1\in L $, that is if $ f(t) = 1, t\in E, $ then $ f\in L; $

    We also consider positive isotonic linear functionals $ A:L\rightarrow \mathbb{R} $ is a functional satisfying the following properties:

    $ A1: $ $ A\left(\alpha f+\beta g\right) = \alpha A\left(f\right) +\beta $ $ A\left(g\right) $ for $ f, g\in L $ and $ \alpha, \beta \in \mathbb{R}; $

    $ A2: $ If $ f\in L, $ $ f(t)\geq 0 $ on $ E $ then $ A\left(f\right) \geq 0. $

    Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which enjoy a number of convenient properties. Functional versions of well-known inequalities and related results could be found in [1,2,3,4,5,6,7,8,9,11,12].

    Example 1. i.) If $ E = \left[a, b\right] \subseteq \mathbb{R} $ and $ L = L\left[a, b\right], $ then

    $ A(f)=baf(t)dt
    $

    is an isotonic linear functional.

    ii.)If $ E = \left[a, b\right] \times \left[c, d\right] \subseteq \mathbb{R} ^{2} $ and $ L = L\left(\left[a, b\right] \times \left[c, d\right] \right), $ then

    $ A(f)=badcf(x,y)dxdy
    $

    is an isotonic linear functional.

    iii.)If $ \left(E, \Sigma, \mu \right) $ is a measure space with $ \mu $ positive measure on $ E $ and $ L = L(\mu) $ then

    $ A(f)=Efdμ 
    $

    is an isotonic linear functional.

    iv.)If $ E $ is a subset of the natural numbers $ \mathbb{N} $ with all $ p_{k}\geq 0, $ then $ A(f) = \sum_{k\in E}p_{k}f_{k} $ is an isotonic linear functional. For example; If $ E = \left\{ 1, 2, ..., n\right\} $ and $ f:E\rightarrow \mathbb{R}, f(k) = a_{k}, $ then $ A(f) = \sum_{k = 1}^{n}a_{k} $ is an isotonic linear functional. If $ E = \left\{ 1, 2, ..., n\right\} \times \left\{ 1, 2, ..., m\right\} $ and $ f:E\rightarrow \mathbb{R}, f(k, l) = a_{k, l}, $ then $ A(f) = \sum_{k = 1}^{n}\sum_{l = 1}^{m}a_{k, l} $ is an isotonic linear functional.

    Theorem 5 (Hölder's inequality for isotonic functionals [13]). Let $ L $ satisfy conditions $ L1 $, $ L2 $, and $ A $ satisfy conditions $ A1 $, $ A2 $ on a base set $ E $. Let $ p > 1 $ and $ p^{-1}+q^{-1} = 1. $ If $ w, f, g\geq 0 $ on $ E $ and $ wf^{p}, wg^{q}, wfg\in L $ then we have

    $ A(wfg)A1/p(wfp)A1/q(wgq).
    $
    (2.1)

    In the case $ 0 < p < 1 $ and $ A\left(wg^{q}\right) > 0 $ (or $ p < 0 $ and $ A\left(wf^{p}\right) > 0 $), the inequality in (2.1) is reversed.

    Remark 1. i.) If we choose $ E = \left[a, b\right] \subseteq \mathbb{R} $, $ L = L\left[a, b\right] $, $ w = 1 $ on $ E $ and $ A(f) = \int_{a}^{b}\left\vert f(t)\right\vert dt $ in the Theorem 5, then the inequality (2.1) reduce the inequality (1.3).

    ii.) If we choose $ E = \left\{ 1, 2, ..., n\right\}, $ $ w = 1 $ on $ E $, $ f:E\rightarrow \left[0, \infty \right), f(k) = a_{k}, $ and $ A(f) = \sum_{k = 1}^{n}a_{k} $ in the Theorem 5, then the inequality (2.1) reduce the inequality (1.4).

    iii.) If we choose $ E = \left[a, b\right] \times \left[c, d\right], L = L(E) $, $ w = 1 $ on $ E $ and $ A(f) = \int_{a}^{b}\int_{c}^{d}\left\vert f(x, y)\right\vert dxdy $ in the Theorem 5, then the inequality (2.1) reduce the following inequality for double integrals:

    $ badc|f(x,y)||g(x,y)|dxdy(badc|f(x,y)|pdx)1/p(badc|g(x,y)|qdx)1/q.
    $

    The aim of this paper is to give a new general improvement of Hölder inequality for isotonic linear functional. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals.

    Theorem 6. Let $ L $ satisfy conditions $ L1 $, $ L2 $, and $ A $ satisfy conditions $ A1 $, $ A2 $ on a base set $ E $. Let $ p > 1 $ and $ p^{-1}+q^{-1} = 1. $ If $ \alpha, \beta, w, f, g\geq 0 $ on $ E $, $ \alpha wfg, \beta wfg, \alpha wf^{p}, \alpha wg^{q}, \beta wf^{p}, \beta wg^{q}, wfg\in L $ and $ \alpha +\beta = 1 $ on $ E, $ then we have

    i.)

    $ A(wfg)A1/p(αwfp)A1/q(αwgq)+A1/p(βwfq)A1/q(βwgq)
    $
    (3.1)

    ii.)

    $ A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq).
    $
    (3.2)

    Proof. ⅰ.) By using of Hölder inequality for isotonic functionals in (2.1) and linearity of $ A $, it is easily seen that

    $ A(wfg)=A(αwfg+βwfg)=A(αwfg)+A(βwfg)A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq).
    $

    ⅱ.) Firstly, we assume that $ A^{1/p}\left(wf^{p}\right) A^{1/q}\left(wg^{q}\right) \neq 0 $. then

    $ A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)=(A(αwfp)A(wfp))1/p(A(αwgq)A(wgq))1/q+(A(βwfp)A(wfp))1/p(A(βwgq)A(wgq))1/q,
    $

    By the inequality (1.1) and linearity of $ A $, we have

    $ A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)1p[A(αwfp)A(wfp)+A(βwfp)A(wfp)]+1q[A(αwgq)A(wgq)+A(βwgq)A(wgq)]=1.
    $

    Finally, suppose that $ A^{1/p}\left(wf^{p}\right) A^{1/q}\left(wg^{q}\right) = 0 $. Then $ A^{1/p}\left(wf^{p}\right) = 0 $ or $ A^{1/q}\left(wg^{q}\right) = 0 $, i.e. $ A\left(wf^{p}\right) = 0 $ or $ A\left(wg^{q}\right) = 0. $ We assume that $ A\left(wf^{p}\right) = 0 $. Then by using linearity of $ A $ we have,

    $ 0=A(wfp)=A(αwfp+βwfp)=A(αwfp)+A(βwfp).
    $

    Since $ A\left(\alpha wf\right), A\left(\beta wf\right) \geq 0 $, we get $ A\left(\alpha wf^{p}\right) = 0 $ and $ A\left(\beta wf^{p}\right) = 0. $ From here, it follows that

    $ A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)=00=A1/p(wfp)A1/q(wgq).
    $

    In case of $ A\left(wg^{q}\right) = 0, $ the proof is done similarly. This completes the proof.

    Remark 2. The inequality (3.2) shows that the inequality (3.1) is better than the inequality (2.1).

    If we take $ w = 1 $ on $ E $ in the Theorem 6, then we can give the following corollary:

    Corollary 1. Let $ L $ satisfy conditions $ L1 $, $ L2 $, and $ A $ satisfy conditions $ A1 $, $ A2 $ on a base set $ E $. Let $ p > 1 $ and $ p^{-1}+q^{-1} = 1. $ If $ \alpha, \beta, f, g\geq 0 $ on $ E $, $ \alpha fg, \beta fg, \alpha f^{p}, \alpha g^{q}, \beta f^{p}, \beta g^{q}, fg\in L $ and $ \alpha +\beta = 1 $ on $ E $, then we have

    i.)

    $ A(fg)A1/p(αfp)A1/q(αgq)+A1/p(βfq)A1/q(βgq)
    $
    (3.3)

    ii.)

    $ A1/p(αfp)A1/q(αgq)+A1/p(βfp)A1/q(βgq)A1/p(fp)A1/q(gq).
    $

    Remark 3. i.) If we choose $ E = \left[a, b\right] \subseteq \mathbb{R} $, $ L = L\left[a, b\right] $, $ \alpha (t) = \frac{b-t}{b-a}, \beta (t) = \frac{t-a}{ b-a} $ on $ E $ and $ A(f) = \int_{a}^{b}\left\vert f(t)\right\vert dt $ in the Corollary 1, then the inequality (3.3) reduce the inequality (1.5).

    ii.) If we choose $ E = \left\{ 1, 2, ..., n\right\}, $ $ \alpha (k) = \frac{k}{n}, \beta (k) = \frac{n-k}{n} $ on $ E $, $ f:E\rightarrow \left[0, \infty \right), f(k) = a_{k}, $ and $ A(f) = \sum_{k = 1}^{n}a_{k} $ in the Theorem1, then the inequality (3.3) reduce the inequality (1.6).

    We can give more general form of the Theorem 6 as follows:

    Theorem 7. Let $ L $ satisfy conditions $ L1 $, $ L2 $, and $ A $ satisfy conditions $ A1 $, $ A2 $ on a base set $ E $. Let $ p > 1 $ and $ p^{-1}+q^{-1} = 1. $ If $ \alpha _{i}, w, f, g\geq 0 $ on $ E, $ $ \alpha _{i}wfg, \alpha _{i}wf^{p}, \alpha _{i}wg^{q}, wfg\in L, i = 1, 2, ..., m, $ and $ \sum_{i = 1}^{m}\alpha _{i} = 1 $ on $ E, $ then we have

    i.)

    $ A(wfg)mi=1A1/p(αiwfp)A1/q(αiwgq)
    $

    ii.)

    $ mi=1A1/p(αiwfp)A1/q(αiwgq)A1/p(wfp)A1/q(wgq).
    $

    Proof. The proof can be easily done similarly to the proof of Theorem 6.

    If we take $ w = 1 $ on $ E $ in the Theorem 6, then we can give the following corollary:

    Corollary 2. Let $ L $ satisfy conditions $ L1 $, $ L2 $, and $ A $ satisfy conditions $ A1 $, $ A2 $ on a base set $ E $. Let $ p > 1 $ and $ p^{-1}+q^{-1} = 1. $ If $ \alpha _{i}, f, g\geq 0 $ on $ E, $ $ \alpha _{i}fg, \alpha _{i}f^{p}, \alpha _{i}g^{q}, fg\in L, i = 1, 2, ..., m, $ and $ \sum_{i = 1}^{m}\alpha _{i} = 1 $ on $ E, $ then we have

    i.)

    $ A(fg)mi=1A1/p(αifp)A1/q(αigq)
    $
    (3.4)

    ii.)

    $ mi=1A1/p(αifp)A1/q(αigq)A1/p(fp)A1/q(gq).
    $

    Corollary 3 (Improvement of Hölder inequality for double integrals). Let $ p, q > 1 $ and $ 1/p+1/q = 1 $. If $ f\ $and $ g $ are real functions defined on $ E = \left[a, b\right] \times \left[c, d\right] $ and if $ \left\vert f\right\vert ^{p}, \left\vert g\right\vert ^{q}\in L(E) $ then

    $ badc|f(x,y)||g(x,y)|dxdy4i=1(badcαi(x,y)|f(x,y)|pdx)1/p(badcαi(x,y)|g(x,y)|qdx)1/q,
    $
    (3.5)

    where $ \alpha _{1}(x, y) = \frac{\left(b-x\right) \left(d-y\right) }{\left(b-a\right) \left(d-c\right) }, \alpha _{2}(x, y) = \frac{\left(b-x\right) \left(y-c\right) }{\left(b-a\right) \left(d-c\right) }, \alpha _{3}(x, y) = \frac{\left(x-a\right) \left(y-c\right) }{\left(b-a\right) \left(d-c\right) }, , \alpha _{4}(x, y) = \frac{\left(x-a\right) \left(d-y\right) }{ \left(b-a\right) \left(d-c\right) } $ on $ E $

    Proof. If we choose $ E = \left[a, b\right] \times \left[c, d\right] \subseteq \mathbb{R} ^{2} $, $ L = L(E) $, $ \alpha _{1}(x, y) = \frac{\left(b-x\right) \left(d-y\right) }{\left(b-a\right) \left(d-c\right) }, \alpha _{2}(x, y) = \frac{\left(b-x\right) \left(y-c\right) }{\left(b-a\right) \left(d-c\right) }, \alpha _{3}(x, y) = \frac{\left(x-a\right) \left(y-c\right) }{\left(b-a\right) \left(d-c\right) }, \alpha _{4}(x, y) = \frac{\left(x-a\right) \left(d-y\right) }{\left(b-a\right) \left(d-c\right) } $ on $ E $ and $ A(f) = \int_{a}^{b}\int_{c}^{d}\left\vert f(x, y)\right\vert dxdy $ in the Corollary 1, then we get the inequality (3.5).

    Corollary 4. Let $ \left(a_{k, l}\right) $ and $ \left(b_{k, l}\right) $ be two tuples of positive numbers and $ p, q > 1 $ such that $ 1/p+1/q = 1. $ Then we have

    $ nk=1ml=1ak,lbk,l4i=1(nk=1ml=1αi(k,l)apk,l)1/p(nk=1ml=1αi(k,l)bqk,l)1/q,
    $
    (3.6)

    where $ \alpha _{1}(k, l) = \frac{kl}{nm}, \alpha _{2}(k, l) = \frac{\left(n-k\right) l}{nm}, \alpha _{3}(k, l) = \frac{\left(n-k\right) \left(m-l\right) }{nm}, \alpha _{4}(k, l) = \frac{k\left(m-l\right) }{nm} $ on $ E. $

    Proof. If we choose $ E = \left\{ 1, 2, ..., n\right\} \times \left\{ 1, 2, ..., m\right\}, $ $ \alpha _{1}(k, l) = \frac{kl}{nm}, \alpha _{2}(k, l) = \frac{\left(n-k\right) l}{ nm}, \alpha _{3}(k, l) = \frac{\left(n-k\right) \left(m-l\right) }{nm}, \alpha _{4}(k, l) = \frac{k\left(m-l\right) }{nm} $ on $ E $, $ f:E\rightarrow \left[0, \infty \right), f(k, l) = a_{k, l}, $ and $ A(f) = \sum_{k = 1}^{n} \sum_{l = 1}^{m}a_{k, l} $ in the Theorem1, then we get the inequality (3.6).

    In [14], Sarıkaya et al. gave the following lemma for obtain main results.

    Lemma 1. Let $ f:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} $ be a partial differentiable mapping on $ \Delta = \left[a, b\right] \times \left[c, d\right] $ in $ \mathbb{R} ^{2} $with $ a < b $ and $ c < d. $ If $ \frac{\partial ^{2}f}{\partial t\partial s} \in L(\Delta) $, then the following equality holds:

    $ f(a,c)+f(a,d)+f(b,c)+f(b,d)41(ba)(dc)badcf(x,y)dxdy12[1baba[f(x,c)+f(x,d)]dx+1dcdc[f(a,y)+f(b,y)]dy]=(ba)(dc)41010(12t)(12s)2fts(ta+(1t)b,sc+(1s)d)dtds.
    $

    By using this equality and Hölder integral inequality for double integrals, Sar\i kaya et al. obtained the following inequality:

    Theorem 8. Let $ f:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} $ be a partial differentiable mapping on $ \Delta = \left[a, b\right] \times \left[c, d\right] $ in $ \mathbb{R} ^{2} $with $ a < b $ and $ c < d. $ If $ \left\vert \frac{\partial ^{2}f}{\partial t\partial s}\right\vert ^{q}, q > 1, $ is convex function on the co-ordinates on $ \Delta $, then one has the inequalities:

    $ |f(a,c)+f(a,d)+f(b,c)+f(b,d)41(ba)(dc)badcf(x,y)dxdyA|(ba)(dc)4(p+1)2/p[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q,
    $
    (4.1)

    where

    $ A=12[1baba[f(x,c)+f(x,d)]dx+1dcdc[f(a,y)+f(b,y)]dy],
    $

    $ 1/p+1/q = 1 $ and $ f_{st} = \frac{\partial ^{2}f}{\partial t\partial s}. $

    If Theorem 8 are resulted again by using the inequality (3.5), then we get the following result:

    Theorem 9. Let $ f:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} $ be a partial differentiable mapping on $ \Delta = \left[a, b\right] \times \left[c, d\right] $ in $ \mathbb{R} ^{2} $with $ a < b $ and $ c < d. $ If $ \left\vert \frac{\partial ^{2}f}{\partial t\partial s}\right\vert ^{q}, q > 1, $ is convex function on the co-ordinates on $ \Delta $, then one has the inequalities:

    $ |f(a,c)+f(a,d)+f(b,c)+f(b,d)41(ba)(dc)badcf(x,y)dxdyA|(ba)(dc)41+1/p(p+1)2/p{[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q},
    $
    (4.2)

    where

    $ A=12[1baba[f(x,c)+f(x,d)]dx+1dcdc[f(a,y)+f(b,y)]dy],
    $

    $ 1/p+1/q = 1 $ and $ f_{st} = \frac{\partial ^{2}f}{\partial t\partial s}. $

    Proof. Using Lemma 1 and the inequality (3.5), we find

    $ |f(a,c)+f(a,d)+f(b,c)+f(b,d)41(ba)(dc)badcf(x,y)dxdyA|(ba)(dc)41010|12t||12s||fst(ta+(1t)b,sc+(1s))|dtds(ba)(dc)4{(1010ts|12t|p|12s|pdtds)1/p×(1010ts|fst(ta+(1t)b,sc+(1s))|qdtds)1/q+(1010t(1s)|12t|p|12s|pdtds)1/p×(1010t(1s)|fst(ta+(1t)b,sc+(1s))|qdtds)1/q+(1010(1t)s|12t|p|12s|pdtds)1/p×(1010(1t)s|fst(ta+(1t)b,sc+(1s))|qdtds)1/q+(1010(1t)(1s)|12t|p|12s|pdtds)1/p×(1010(1t)(1s)|fst(ta+(1t)b,sc+(1s))|qdtds)1/q}.
    $
    (4.3)

    Since $ \left\vert f_{st}\right\vert ^{q} $ is convex function on the co-ordinates on $ \Delta $, we have for all $ t, s\in \left[0, 1\right] $

    $ |fst(ta+(1t)b,sc+(1s))|qts|fst(a,c)|q+t(1s)|fst(a,d)|q+(1t)s|fst(a,c)|q+(1t)(1s)|fst(a,c)|q
    $
    (4.4)

    for all $ t, s\in \left[0, 1\right]. $ Further since

    $ 1010ts|12t|p|12s|pdtds=1010t(1s)|12t|p|12s|pdtds=1010(1t)s|12t|p|12s|pdtds
    $
    (4.5)
    $ =1010(1t)(1s)|12t|p|12s|pdtds=14(p+1)2,
    $
    (4.6)

    a combination of (4.3) - (4.5) immediately gives the required inequality (4.2).

    Remark 4. Since $ \eta :\left[0, \infty \right) \rightarrow \mathbb{R}, \eta (x) = x^{s}, 0 < s\leq 1, $ is a concave function, for all $ u, v\geq 0 $ we have

    $ η(u+v2)=(u+v2)sη(u)+η(v)2=us+vs2.
    $

    From here, we get

    $ I={[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}2{[6|fst(a,c)|q+3|fst(a,d)|q+6|fst(b,c)|q+3|fst(b,d)|q72]1/q+[3|fst(a,c)|q+6|fst(a,d)|q+3|fst(b,c)|q+6|fst(b,d)|q72]1/q}
    $
    $ 4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q
    $

    Thus we obtain

    $ (ba)(dc)41+1/p(p+1)2/pI(ba)(dc)41+1/p(p+1)2/p4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q}(ba)(dc)4(p+1)2/p{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q}.
    $

    This shows that the inequality (4.2) is better than the inequality (4.1).

    The aim of this paper is to give a new general improvement of Hölder inequality via isotonic linear functional. An important feature of the new inequality obtained here is that many existing inequalities related to the Hölder inequality can be improved. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals. Similar method can be applied to the different type of convex functions.

    This research didn't receive any funding.

    The author declares no conflicts of interest in this paper.

    [1] Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited. Green Chem 12: 539–517. doi: 10.1039/b922014c
    [2] Werpy T, Petersen G (2004) Top Value Added Chemicals from Biomass, National Renewable Energy Laboratory: Golden, CO.
    [3] Zhang D, Dumont MJ (2017) Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural. J Polym Sci Pol Chem 55: 1478–1492. doi: 10.1002/pola.28527
    [4] Deng J, Pan T, Xu Q, et al. (2013) Linked strategy for the production of fuels via formose reaction. Sci Rep 3: 1244. doi: 10.1038/srep01244
    [5] Rosatella AA, Simeonov SP, Frade RFM, et al. (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem 13: 754–741. doi: 10.1039/c0gc00401d
    [6] Cui MS, Deng J, Li XL, et al. (2016) Production of 4-Hydroxymethylfurfural from derivatives of biomass-derived glycerol for chemicals and polymers. ACS Sustain Chem Eng 4: 1707–1714. doi: 10.1021/acssuschemeng.5b01657
    [7] van Putten RJ, van der Waal JC, de Jong ED, et al. (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113: 1499–1597. doi: 10.1021/cr300182k
    [8] Yu IKM, Tsang DCW (2017) Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technol 238: 716–732. doi: 10.1016/j.biortech.2017.04.026
    [9] Qin YZ, Zong MH, Lou WY, et al. (2016) Biocatalytic upgrading of 5-Hydroxymethylfurfural (HMF) with levulinic acid to HMF levulinate in biomass-derived solvents. ACS Sustain Chem Eng 4: 4050–4054. doi: 10.1021/acssuschemeng.6b00996
    [10] Bohre A, Dutta S, Saha B, et al. (2015) Upgrading furfurals to drop-in biofuels: An overview. ACS Sustain Chem Eng 3: 1263–1277. doi: 10.1021/acssuschemeng.5b00271
    [11] Caes BR, Teixeira RE, Knapp KG, et al. (2015) Biomass to furanics: Renewable routes to chemicals and fuels. ACS Sustain Chem Eng 3: 2591–2605. doi: 10.1021/acssuschemeng.5b00473
    [12] Alexandrino K, Millera Á, Bilbao R, et al. (2014) Interaction between 2,5-dimethylfuran and nitric oxide: Experimental and modeling study. Energ Fuel 28: 4193–4198. doi: 10.1021/ef5005573
    [13] Zhong S, Daniel R, Xu H, et al. (2010) Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ignition engine. Energ Fuel 24: 2891–2899. doi: 10.1021/ef901575a
    [14] Ray P, Smith C, Simon G, et al. (2017) Renewable green platform chemicals for polymers. Molecules 12: 376.
    [15] Burgess SK, Leisen JE, Kraftschik BE, et al. (2014) Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47: 1383–1391. doi: 10.1021/ma5000199
    [16] Papageorgiou GZ, Tsanaktsis V, Bikiaris DN (2014) Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN. Phys Chem Chem Phys 16: 7946–7958. doi: 10.1039/C4CP00518J
    [17] Codou A, Moncel M, van Berkel JG, et al. (2016) Glass transition dynamics and cooperativity length of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate). Phys Chem Chem Phys 18: 16647–16658. doi: 10.1039/C6CP01227B
    [18] Dimitriadis T, Bikiaris DN, Papageorgiou GZ, et al. (2016) Molecular dynamics of poly(ethylene-2,5-furanoate) (PEF) as a function of the degree of crystallinity by dielectric spectroscopy and calorimetry. Macromol Chem Phys 217: 2056–2062. doi: 10.1002/macp.201600278
    [19] Lomelí-Rodríguez M, Martín-Molina M, Jiménez-Pardo M, et al. (2016) Synthesis and kinetic modeling of biomass-derived renewable polyesters. J Polym Sci Pol Chem 54: 2876–2887. doi: 10.1002/pola.28173
    [20] Terzopoulou Z, Tsanaktsis V, Nerantzaki M, et al. (2016) Thermal degradation of biobased polyesters: Kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols. J Anal Appl Pyrol 117: 162–175. doi: 10.1016/j.jaap.2015.11.016
    [21] Baba Y, Hirukawa N, Tanohira N, et al. (2003) Structure-based design of a highly selective catalytic site-directed inhibitor of Ser/Thr protein phosphatase 2B (Calcineurin). J Am Chem Soc 125: 9740–9749. doi: 10.1021/ja034694y
    [22] Clark DE, Clark KL, Coleman RA, et al. (2005) Patent No. WO2004067524.
    [23] Ermakov S, Beletskii A, Eismont O, et al. (2015) Brief review of liquid crystals, In: Liquid Crystals in Biotribology, Springer, 37–56.
    [24] Dewar MJS, Riddle RM (1975) Factors influencing the stabilities of nematic liquid crystals. J Am Chem Soc 97: 6658–6662. doi: 10.1021/ja00856a010
    [25] Kowalski S, Lukasiewicz M, Duda-Chodak A, et al. (2013) 5-hydroxymethyl-2-furfural (HMF)-heat-induced formation, occurrence in food and biotransformation-a review. Pol J Food Nutr Sci 63: 207–225.
    [26] Murkovic M, Bornik MA (2007) Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee. Mol Nutr Food Res 51: 390–394. doi: 10.1002/mnfr.200600251
    [27] Murkovic M, Pichler N (2006) Analysis of 5-hydroxymethylfurfual in coffee, dried fruits and urine. Mol Nutr Food Res 50: 842–846. doi: 10.1002/mnfr.200500262
    [28] Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16: 24–38. doi: 10.1039/C3GC41324A
    [29] Rout PK, Nannaware AD, Prakash O, et al. (2016) Synthesis of hydroxymethylfurfural from cellulose using green processes: A promising biochemical and biofuel feedstock. Chem Eng Sci 142: 318–346. doi: 10.1016/j.ces.2015.12.002
    [30] Mukherjee A, Dumont MJ, Raghavan V (2015) Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass Bioenerg 72: 143–183. doi: 10.1016/j.biombioe.2014.11.007
    [31] Thiyagarajan S, Pukin A, van Haveren J, et al. (2013) Concurrent formation of furan-2,5- and furan-2,4-dicarboxylic acid: unexpected aspects of the Henkel reaction. RSC Adv 3: 15678–15686. doi: 10.1039/C3RA42457J
    [32] Corre C, Song L, O'Rourke S, et al. (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci USA 105: 17510–17515. doi: 10.1073/pnas.0805530105
    [33] Sidda JD, Corre C (2012) Gamma-butyrolactone and furan signaling systems in Streptomyces. Method Enzymol 517: 71–87. doi: 10.1016/B978-0-12-404634-4.00004-8
    [34] Wang Y, Jones MK, Xu H, et al. (2015) Mechanism of the enzymatic synthesis of 4-(Hydroxymethyl)-2-furancarboxaldehyde-phosphate (4-HFC-P) from Glyceraldehyde-3-phosphate catalyzed by 4-HFC-P synthase. Biochemistry 54: 2997–3008. doi: 10.1021/acs.biochem.5b00176
    [35] Miller D, Wang Y, Xu H, et al. (2014) Biosynthesis of the 5-(Aminomethyl)-3-furanmethanol moiety of methanofuran. Biochemistry 53: 4635–4647. doi: 10.1021/bi500615p
    [36] Wang Y, Xu H, Jones MK, et al. (2015) Identification of the final two genes functioning in methanofuran biosynthesis in Methanocaldococcus jannaschii. J Bacteriol 197: 2850–2858. doi: 10.1128/JB.00401-15
    [37] Jia J, Schorken U, Lindqvist Y, et al. (1997) Crystal structure of the reduced Schiff-base intermediate complex of transaldolase B from Escherichia coli: mechanistic implications for class I aldolases. Protein Sci 6: 119–124.
    [38] Hester G, Brenner-Holzach O, Rossi FA, et al. (1991) The crystal structure of fructose-1,6-bisphosphate aldolase from Drosophila melanogaster at 2.5 A resolution. FEBS Lett 292: 237–242. doi: 10.1016/0014-5793(91)80875-4
    [39] Sygusch J, Beaudry D, Allaire M (1987) Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution. Proc Natl Acad Sci USA 84: 7846–7850. doi: 10.1073/pnas.84.22.7846
    [40] Blom N, Sygusch J (1997) Product binding and role of the C-terminal region in class I D-fructose 1,6-bisphosphate aldolase. Nat Struct Biol 4: 36–39. doi: 10.1038/nsb0197-36
    [41] Izard T, Lawrence MC, Malby RL, et al. (1994) The three-dimensional structure of N-acetylneuraminate lyase from Escherichia coli. Structure 2: 361–369. doi: 10.1016/S0969-2126(00)00038-1
    [42] Kim CG, Yu TW, Fryhle CB, et al. (1998) 3-Amino-5-hydroxybenzoic acid synthase, the terminal enzyme in the formation of the precursor of mC7N units in rifamycin and related antibiotics. J Biol Chem 273: 6030–6040. doi: 10.1074/jbc.273.11.6030
    [43] Kim H, Certa U, Dobeli H, et al. (1998) Crystal structure of fructose-1,6-bisphosphate aldolase from the human malaria parasite Plasmodium falciparum. Biochemistry 37: 4388–4396. doi: 10.1021/bi972233h
    [44] Bobik TA, Morales EJ, Shin A, et al. (2014) Structure of the methanofuran/methanopterin-biosynthetic enzyme MJ1099 from Methanocaldococcus jannaschii. Acta Crystallogr F 70: 1472–1479. doi: 10.1107/S2053230X1402130X
    [45] Heine A, DeSantis G, Luz JG, et al. (2001) Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science 294: 369–374. doi: 10.1126/science.1063601
    [46] Almeida JRM, Röder A, Modig T, et al. (2008) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biot 78: 939–945. doi: 10.1007/s00253-008-1364-y
    [47] Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74: 25–33.
    [48] Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363: 769–776. doi: 10.1042/bj3630769
    [49] Barciszewski J, Siboska GE, Pedersen BO, et al. (1997) A mechanism for the in vivo formation of N6-furfuryladenine, kinetin, as a secondary oxidative damage product of DNA. FEBS Lett 414: 457–460. doi: 10.1016/S0014-5793(97)01037-5
    [50] Horváth IS, Taherzadeh MJ, Niklasson C, et al. (2001) Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnol Bioeng 75: 540–549. doi: 10.1002/bit.10090
    [51] Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol 74: 17–24.
    [52] Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing From biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12: 307–331. doi: 10.1016/j.ymben.2010.03.004
    [53] Wang X, Miller EN, Yomano LP, et al. (2011) Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microb 77: 5132–5140. doi: 10.1128/AEM.05008-11
    [54] Liu ZL, Blaschek HP (2010) Biomass conversion inhibitors andin situ detoxification, In: Biomass to Biofuels: Strategies for Global Industries, Blackwell Publishing Ltd., 233–259.
    [55] Liu ZL, Moon J, Andersh BJ, et al. (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biot 81: 743–753. doi: 10.1007/s00253-008-1702-0
    [56] Nieves LM, Panyon LA, Wang X (2015) Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front Bioeng Biotechnol 3: 1–10.
    [57] Wierckx N, Koopman F, Ruijssenaars HJ, et al. (2011) Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biot 92: 1095–1105. doi: 10.1007/s00253-011-3632-5
    [58] Zhang J, Zhu Z, Wang X, et al. (2010) Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnol Biofuels 3: 26. doi: 10.1186/1754-6834-3-26
    [59] Trifonova R, Postma J, Ketelaars JJMH, et al. (2008) Thermally treated grass fibers as colonizable substrate for beneficial bacterial inoculum. Microbial Ecol 56: 561–571. doi: 10.1007/s00248-008-9376-9
    [60] López MJ, Nichols NN, Dien BS, et al. (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biot 64: 125–131. doi: 10.1007/s00253-003-1401-9
    [61] Boopathy R, Daniels L (1991) Isolation and characterization of a furfural degrading sulfate-reducing bacterium from an anaerobic digester. Curr Microbiol 23: 327–332. doi: 10.1007/BF02104134
    [62] Brune G, Schoberth SM, Sahm H (1983) Growth of a strictly anaerobic bacterium on furfural (2-furaldehyde). Appl Environ Microb 46: 1187–1192.
    [63] Koopman F, Wierckx N, de Winde JH, et al. (2010) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci USA 107: 4919–4924. doi: 10.1073/pnas.0913039107
    [64] Dijkman WP, Groothuis DE, Fraaije MW (2014) Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew Chem Int Edit 53: 6515–6518. doi: 10.1002/anie.201402904
    [65] Dijkman WP, Fraaije MW (2014) Discovery and characterization of a 5-Hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. Appl Environ Microb 80: 1082–1090. doi: 10.1128/AEM.03740-13
    [66] Dijkman WP, Binda C, Fraaije MW, et al. (2015) Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase. ACS Catal 5: 1833–1839. doi: 10.1021/acscatal.5b00031
    [67] de Jong E, Dam MA, Sipos L, et al. (2012) Furandicarboxylic acid (fdca), a versatile building block for a very interesting class of polyesters, In: Biobased Monomers, Polymers, and Materials, American Chemical Society, 1–13.
  • This article has been cited by:

    1. Ludmila Nikolova, Lars-Erik Persson, Sanja Varošanec, 2025, Chapter 2, 978-3-031-83371-7, 31, 10.1007/978-3-031-83372-4_2
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9847) PDF downloads(1795) Cited by(43)

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog