Citation: Federerico Filipin, Mónica Feldman, Fernando E. Taragano, María Martelli, Viviana Sánchez, Virginia García, Graciela Tufro, Silvina Heisecke, Cecilia Serrano, Carol Dillon. The Efficacy of Cognitive Stimulation on Depression and Cognition in Elderly Patients with Cognitive Impairment: A Retrospective Cohort Study[J]. AIMS Medical Science, 2016, 3(1): 1-14. doi: 10.3934/medsci.2016.1.1
[1] | Feldberg Carolina, Hermida Paula D, Maria Florencia Tartaglini, Stefani Dorina, Somale Verónica, Allegri Ricardo F . Cognitive Reserve in Patients with Mild Cognitive Impairment: The Importance of Occupational Complexity as a Buffer of Declining Cognition in Older Adults. AIMS Medical Science, 2016, 3(1): 77-95. doi: 10.3934/medsci.2016.1.77 |
[2] | Joann E. Bolton, Elke Lacayo, Svetlana Kurklinsky, Christopher D. Sletten . Improvement in montreal cognitive assessment score following three-week pain rehabilitation program. AIMS Medical Science, 2019, 6(3): 201-209. doi: 10.3934/medsci.2019.3.201 |
[3] | Kevin Rebecchi . Beyond “autism spectrum disorder”: toward a redefinition of the conceptual foundations of autism. AIMS Medical Science, 2025, 12(2): 193-209. doi: 10.3934/medsci.2025012 |
[4] | Yun Ying Ho, Laurence Tan, Chou Chuen Yu, Mai Khanh Le, Tanya Tierney, James Alvin Low . Empathy before entering practice: A qualitative study on drivers of empathy in healthcare professionals from the perspective of medical students. AIMS Medical Science, 2023, 10(4): 329-342. doi: 10.3934/medsci.2023026 |
[5] | Carlos Forner-Álvarez, Ferran Cuenca-Martínez, Rafael Moreno-Gómez-Toledano, Celia Vidal-Quevedo, Mónica Grande-Alonso . Multimodal physiotherapy treatment based on a biobehavioral approach in a patient with chronic low back pain: A case report. AIMS Medical Science, 2024, 11(2): 77-89. doi: 10.3934/medsci.2024007 |
[6] | Wendell C. Taylor, Kevin Rix, Ashley Gibson, Raheem J. Paxton . Sedentary behavior and health outcomes in older adults: A systematic review. AIMS Medical Science, 2020, 7(1): 10-39. doi: 10.3934/medsci.2020002 |
[7] | Nathacha Garcés, Angel Jara, Felipe Montalva-Valenzuela, Claudio Farías-Valenzuela, Gerson Ferrari, Paloma Ferrero-Hernández, Antonio Castillo-Paredes . Motor performance in children and adolescents with attention deficit and hyperactivity disorder: A systematic review. AIMS Medical Science, 2025, 12(2): 247-267. doi: 10.3934/medsci.2025017 |
[8] | Eugenia I. Toki, Polyxeni Fakitsa, Konstantinos Plachouras, Konstantinos Vlachopoulos, Neofytos Kalaitzidis, Jenny Pange . How does noise pollution exposure affect vocal behavior? A systematic review. AIMS Medical Science, 2021, 8(2): 116-137. doi: 10.3934/medsci.2021012 |
[9] | Melissa R. Bowman Foster, Ali Atef Hijazi, Raymond C. Sullivan Jr, Rebecca Opoku . Hydroxyurea and pyridostigmine repurposed for treating Covid-19 multi-systems dysfunctions. AIMS Medical Science, 2023, 10(2): 118-129. doi: 10.3934/medsci.2023010 |
[10] | Heliya Bandehagh, Farnaz Gozalpour, Ali Mousavi, Mahdi Hemmati Ghavshough . Effects of melatonin on the management of multiple sclerosis: A scoping review on animal studies. AIMS Medical Science, 2024, 11(2): 137-156. doi: 10.3934/medsci.2024012 |
Hybrid differential equations have been considered more important and served as special cases of dynamical systems. Dhage and Lakshmikantham [1] were the first to study ordinary hybrid differential equation and studied the existence of solutions for this boundary value problem. In recent years, with the wide study of fractional differential equations, the theory of hybrid fractional differential equations were also studied by several researchers, see [2,3,4,5,6,7,8,9,10] and the references therein.
Zhao et al. [2] studied existence and uniqueness results for the following hybrid differential equations involving Riemann-Liouville fractional derivative
$ D^{q}_{0^{+}}\biggl(\frac{x(t)}{f(t, x(t))}\biggr) = g(t, x(t)), \ \ a.e. t\in J = [0, T] $ |
$ x(0) = 0, $ |
where $ 0 < q < 1, f\in C(J\times R\rightarrow R\backslash \{0\}) $ and $ g\in C(J\times R, R). $
Zidane Baitiche et al. [11] considered the following boundary value problem of nonlinear fractional hybrid differential equations involving Caputo's derivative
$ ^{C}D^{\alpha}_{0^{+}}\biggl(\frac{x(t)}{f(t, x(\mu(t)))}\biggr) = g(t, x(\mu(t))), \ \ t\in I = [0, 1] $ |
$ a\biggl[\frac{x(t)}{f(t, x(\mu(t)))}\biggr]\bigg|_{t = 0}+b\biggl[\frac{x(t)}{f(t, x(\mu(t)))}\biggr]\bigg|_{t = 1} = c, $ |
where $ 0 < \alpha\leq 1, ^{C}D^{\alpha}_{0^{+}} $ is the Caputo fractional derivative. $ f\in C(I\times R \rightarrow R\backslash\{0\}), g\in C(I\times R, R). $
As we all known, the hadamard fractional differential equations are also popular in the literature, see [12,13,14,15,16], so some authors began to study the theory of fractional hybrid differential equation of hadamard type.
Zidane Baitiche et al. [17] studied the existence of solutions for fractional hybrid differential equation of hadamard type with dirichlet boundary conditions
$ _{H}D^{\alpha}\biggl(\frac{x(t)}{f(t, x(t))}\biggr) = g(t, x(t)), \ \ 1 \lt t \lt e, \ 1 \lt \alpha\leq 2, $ |
$ x(1) = 0, \ \ \ x(e) = 0, $ |
where $ 1 < \alpha\leq 2, \ _{H}D^{\alpha} $ is the Hadamard fractional derivative, $ f\in C([1, e]\times R\rightarrow R\backslash \{0\}) $ and $ g\in C([1, e]\times R, R). $
In [18], M. Jamil et al. discussed the existence result for the boundary value problem of hybrid fractional integro-differential equations involving Caputo's derivative given by
$ ^{C}D^{\alpha}\biggl(\frac{^{C}D^{\omega}u(t)-\sum_{i = 1}^{m}I^{\beta_{i}}f_{i}(t, u(t))}{g(t, u(t))}\biggr) = h(t, u(t), I^{\gamma}u(t)), \ \ t\in J = [0, 1], $ |
$ u(0) = 0, \ D^{\omega}u(0) = 0, \ u(1) = \delta u(\eta), \ \ 0 \lt \delta \lt 1, \ \ 0 \lt \eta \lt 1, $ |
where $ ^{C}D^{\alpha} $ is the Caputo fractional derivative of order $ \alpha, \ ^{C}D^{\omega} $ is the Caputo fractional derivative of order $ \omega, \ 0 < \alpha\leq 1, \ 1 < \omega\leq 2. $
In order to analyze fractional differential equations in a generic way, a fractional derivative with respect to another function called $ \varphi $-Caputo derivative was proposed [19].
By mixing idea of the above works, we derived an existence result for the nonlocal boundary value problems of hybrid $ \varphi $-Caputo fractional integro-differential equations
$ CDα φ(CDβ φu(t)−∑mi=1Iωi φfi(t,u(t),Iμ1 φu(t),⋅⋅⋅,Iμn φu(t))g(t,u(t),Iγ1 φu(t),⋅⋅⋅,Iγp φu(t)))=h(t,u(t)),t∈J=[0,1], $ | (1.1) |
$ u(0)=0, CDβ φu(0)=0, u(1)=k∑j=1δju(ξj), $ | (1.2) |
where $ 0 < \alpha\leq 1, \ 1 < \beta\leq 2, \ ^{C}D^{\alpha\ \varphi} $ is the $ \varphi $-Caputo fractional derivative of order $ \alpha, \ ^{C}D^{\beta\ \varphi} $ is the $ \varphi $-Caputo fractional derivative of order $ \beta, $ the function $ \varphi:\ [0, 1]\rightarrow R $ is a strictly increasing function such that $ \varphi\in C^{2}[0, 1] $ with $ \varphi'(x) > 0 $ for all $ x\in [0, 1], \ I^{\mu\ \varphi} $ denote the $ \varphi $-Riemann-Liouville fractional integral of order $ \mu, \ g\in C(J\times R^{p+1}, R\backslash \{0\}), \ h\in C(J\times R, R) $ and $ f_{i}\in C(J\times R^{n+1}, R) $ with $ f_{i}(0, \underbrace{0, \cdot\cdot\cdot, 0}_{n+1}) = 0, \ w_{i} > 0, \ i = 1, 2, \cdot\cdot\cdot, m, \ \mu_{1}, \cdot\cdot\cdot, \mu_{n} > 0 $ and $ \gamma_{1}, \cdot\cdot\cdot, \gamma_{p} > 0, \ 0 < \delta_{j} < 1, \ j = 1, 2, \cdot\cdot\cdot, k, \ 0 < \xi_{1} < \xi_{2} < \cdot\cdot\cdot < \xi_{k} < 1. $
It is notable that the fractional hybrid integro-differential equation presented in this paper is the novel in the sense that the fractional derivative with respect to another function called $ \varphi $-Caputo fractional derivative. Note that the hybrid fractional integro-differential equations involving Caputo's derivative in [18] is a special case of our hybrid $ \varphi $-Caputo fractional integro-differential equations with $ \varphi(t) = t. $ Moreover, all dependent functions $ f_{i} $ and $ g $ in our paper are in the form of multi-term. Furthermore, our problem is more general than the work in [8], as we consider the problem with multi-point boundary conditions, while the authors in [8] only investigated two-point boundary condition.
The organization of this work is as follows. Section 2 contains some preliminary facts that we need in the sequel. In section 3, we present the solution for the hybrid fractional integro-differential equation (1.1), (1.2) and then prove our main existence results. Finally, we illustrate the obtained results by an example.
In the following and throughtout the text, $ a > 0 $ is a real, $ x:[a, b]\rightarrow R $ an integrable function and $ \varphi\in C^{2}[a, b] $ an increasing function such that with $ \varphi'(t)\neq 0 $ for all $ t\in [a, b]. $
Definition 2.1 The $ \varphi $-Riemann-Liouville fractional integral of $ x $ of order $ \alpha $ is defined as follows
$ I^{\alpha\ \varphi}_{a^{+}}x(t): = \frac{1}{\Gamma (\alpha)}\int_{a}^{t}\varphi'(s)(\varphi(t)-\varphi(s))^{\alpha-1}x(s)ds. $ |
Definition 2.2 The $ \varphi $-Riemann-Liouville fractional derivative of $ x $ of order $ \alpha $ is defined as follows
$ D^{\alpha\ \varphi}_{a^{+}}x(t): = \biggl( \frac{1}{\varphi'(t)}\frac{d}{dt}\biggr)^{n}I^{n-\alpha\ \varphi}_{a^{+}}x(t) = \frac{1}{\Gamma (n-\alpha)}\biggl(\frac{1}{\varphi'(t)}\frac{d}{dt}\biggr)^{n}\int_{a}^{t}\varphi'(s)(\varphi(t)-\varphi(s))^{n-\alpha-1}x(s)ds, $ |
here $ n = [\alpha]+1. $
Remark 2.1 Let $ \alpha, \beta > 0, $ then the relation holds
$ I^{\alpha\ \varphi}_{a^{+}}I^{\beta\ \varphi}_{a^{+}}x(t) = I^{\alpha+\beta\ \varphi}_{a^{+}}x(t). $ |
Definition 2.3 Let $ \alpha > 0 $ and $ x\in C^{n-1}[a, b], $ the $ \varphi $-Caputo fractional derivative of $ x $ of order $ \alpha $ is defined as follows
$ ^{C}D^{\alpha\ \varphi}_{a^{+}}x(t): = D^{\alpha\ \varphi}_{a^{+}}\biggl[x(t)-\sum\limits_{k = 0}^{n-1} \frac{x_{\varphi}^{[k]}(a)}{k!} (\varphi(t)-\varphi(a))^{k}\biggr], \ n = [\alpha]+1\ \mbox{for}\ \alpha \not\in N, \ n = \alpha\ \mbox{for} \ \alpha \in N, $ |
where $ x_{\varphi}^{[k]}(t): = \biggl(\frac{1}{\varphi'(t)}\frac{d}{dt}\bigamma)^{k}x(t). $
Theorem 2.1 [20] Let $ x: [a, b]\rightarrow R. $ The following results hold:
1. If $ x\in C[a, b], $ then $ ^{C}D^{\alpha\ \varphi}_{a^{+}}I^{\alpha\ \varphi}_{a^{+}}x(t) = x(t); $
2. If $ x\in C^{n-1}[a, b], $ then
$ I^{\alpha\ \varphi\ C}_{a^{+}} D^{\alpha\ \varphi}_{a^{+}}x(t) = x(t)-\sum\limits_{k = 0}^{n-1} \frac{x_{\varphi}^{[k]}(a)}{k!} (\varphi(t)-\varphi(a))^{k}. $ |
Lemma 2.2 [18] Let $ S $ be a nonempty, convex, closed, and bounded set such that $ S\subseteq E, $ and let $ A:E\rightarrow E $ and $ B:S\rightarrow E $ be two operators which satisfy the following :
$ (H_{1}) \; A $ is contraction;
$ (H_{2}) \; B $ is compact and continuous, and
$ (H_{3}) \; u = Au+Bv, \ \forall v\in S\Rightarrow u\in S. $
Then there exists a solution of the operator equation $ u = Au+Bu. $
Let $ E = C(J, R) $ be a Banach space equipped with the norm
$ \|u\| = \sup\limits_{t\in J}|u(t)|\ \ \ \mbox{and}\ \ (uv)(t) = u(t)v(t), \ \ \forall\ t\in J. $ |
Then $ E $ is a Banach algebra with the above norm and multiplication.
Lemma 3.1 Suppose that $ \alpha, \beta, \omega_{i}, i = 1, 2, \cdot\cdot\cdot, m, \gamma_{i}, i = 1, 2, \cdot\cdot\cdot, p, \mu_{i}, i = 1, 2, \cdot\cdot\cdot, n, \delta_{j}, \xi_{j}, j = 1, 2, \cdot\cdot\cdot, k $ and functions $ g, h, f_{i}, i = 1, 2, \cdot\cdot\cdot, m $ satisfy problem (1.1), (1.2). Then the unique solution of (1.1), (1.2) is given by
$ u(t)=∫t0(φ(t)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds+m∑i=1Iωi+β φfi(t,u(t),Iμ1 φu(t),⋅⋅⋅,Iμn φu(t))+φ(t)−φ(0)k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))[∫10(φ(1)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds+m∑i=1Iωi+β φfi(1,u(1),Iμ1 φu(1),⋅⋅⋅,Iμn φu(1))−k∑j=1δj∫ξj0(φ(ξj)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds−k∑j=1δjm∑i=1Iωi+β φfi(ξj,u(ξj),Iμ1 φu(ξj),⋅⋅⋅,Iμn φu(ξj))], $ | (3.1) |
where
$ Iωi+β φfi(t,u(t),Iμ1 φu(t),⋅⋅⋅,Iμn φu(t))=∫t0(φ(t)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))ds; $ |
$ Iωi+β φfi(1,u(1),Iμ1 φu(1),⋅⋅⋅,Iμn φu(1))=∫10(φ(1)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))ds; $ |
$ Iωi+β φfi(ξj,u(ξj),Iμ1 φu(ξj),⋅⋅⋅,Iμn φu(ξj))=∫ξj0(φ(ξj)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))ds. $ |
Proof. We apply $ \varphi $-Riemann-Liouville fractional integral $ I^{\alpha\ \varphi} $ on both sides of (1.1), by Theorem 2.1, we have
$ \frac{^{C}D^{\beta\ \varphi}u(t)-\sum_{i = 1}^{m}I^{\omega_{i}\ \varphi}f_{i}(t, u(t), I^{\mu_{1}\ \varphi}u(t), \cdot\cdot\cdot, I^{\mu_{n}\ \varphi}u(t))} {g(t, u(t), I^{\gamma_{1}\ \varphi}u(t), \cdot\cdot\cdot, I^{\gamma_{p}\ \varphi}u(t))} = I^{\alpha\ \varphi}h(t, u(t))+c_{0}, $ |
then by $ u(0) = 0, \ ^{C}D^{\beta\ \varphi}u(0) = 0, \ f_{i}(0, \underbrace{0, \cdot\cdot\cdot, 0}_{n+1}) = 0, $ we get $ c_{0} = 0. $ i.e,
$ CDβ φu(t)=g(t,u(t),Iγ1 φu(t),⋅⋅⋅,Iγp φu(t))∫t0(φ(t)−φ(s))α−1Γ(α)φ′(s)h(s,u(s))ds+m∑i=1Iωi φfi(t,u(t),Iμ1 φu(t),⋅⋅⋅,Iμn φu(t)). $ | (3.2) |
Apply again fractional integral $ I^{\beta\ \varphi} $ on both sides of (3.2) and by Theorem 2.1, we get
$ u(t)=∫t0(φ(t)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds+m∑i=1Iωi+β φfi(t,u(t),Iμ1 φu(t),⋅⋅⋅,Iμn φu(t))+c1+c2(φ(t)−φ(0)), $ | (3.3) |
$ u(0) = 0, \ f_{i}(0, \underbrace{0, \cdot\cdot\cdot, 0}_{n+1}) = 0 $ yield $ c_{1} = 0, $ thus equation (3.3) is reduced to
$ u(t)=∫t0(φ(t)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds+m∑i=1Iωi+β φfi(t,u(t),Iμ1 φu(t),⋅⋅⋅,Iμn φu(t))+c2(φ(t)−φ(0)), $ | (3.4) |
specially.
$ u(1)=∫10(φ(1)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds+m∑i=1Iωi+β φfi(1,u(1),Iμ1 φu(1),⋅⋅⋅,Iμn φu(1))+c2(φ(1)−φ(0)), $ |
$ u(ξj)=∫ξj0(φ(ξj)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds+m∑i=1Iωi+β φfi(ξj,u(ξj),Iμ1 φu(ξj),⋅⋅⋅,Iμn φu(ξj))+c2(φ(ξj)−φ(0)), $ |
from $ u(1) = \sum\limits_{j = 1}^{k}\delta_{j}u(\xi_{j}), $ we have
$ c2=1k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))[∫10(φ(1)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds+m∑i=1Iωi+β φfi(1,u(1),Iμ1 φu(1),⋅⋅⋅,Iμn φu(1))−k∑j=1δj∫ξj0(φ(ξj)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds−k∑j=1δjm∑i=1Iωi+β φfi(ξj,u(ξj),Iμ1 φu(ξj),⋅⋅⋅,Iμn φu(ξj))]. $ |
Consequently, we can get the desired result. The proof is completed.
Theorem 3.2 Suppose that functions $ g\in C(J\times R^{p+1}, R\backslash \{0\}), \ h\in C(J\times R, R) $ and $ f_{i}\in C(J\times R^{n+1}, R) $ with $ f_{i}(0, \underbrace{0, \cdot\cdot\cdot, 0}_{n+1}) = 0. $ Furthermore, assume that
$ (C_{1}) $ there exist bounded mapping $ \sigma: [0, 1]\rightarrow R^{+}, \ \lambda: [0, 1]\rightarrow R^{+} $ such that
$ |g(t, k_{1}, k_{2}, \cdot\cdot\cdot, k_{p+1})-g(t, k_{1}^{'}, k_{2}^{'}, \cdot\cdot\cdot, k_{p+1}^{'})|\leq \sigma(t)\sum\limits_{i = 1}^{p+1}|k_{i}-k_{i}^{'}| $ |
for $ t\in J $ and $ (k_{1}, k_{2}, \cdot\cdot\cdot, k_{p+1}), (k_{1}^{'}, k_{2}^{'}, \cdot\cdot\cdot, k_{p+1}^{'})\in R^{p+1}, $ and
$ |h(t, u)-h(t, v)|\leq \lambda(t)|u-v| $ for $ t\in J $ and $ u, v\in R; $
$ (C_{2}) $ there exist $ \phi_{i}, \Omega, \chi\in C(J, R^{+}), i = 1, 2, \cdot\cdot\cdot, m $ such that
$ |f_{i}(t, k_{1}, k_{2}, \cdot\cdot\cdot, k_{n+1})|\leq \phi_{i}(t), \ \forall\ (t, k_{1}, k_{2}, \cdot\cdot\cdot, k_{n+1})\in J\times R^{n+1}, $ |
$ |h(t, u)|\leq \Omega(t), \ \forall\ (t, u)\in J\times R, $ |
$ |g(t, k_{1}, k_{2}, \cdot\cdot\cdot, k_{p+1})|\leq \chi(t), \ \forall\ (t, k_{1}, k_{2}, \cdot\cdot\cdot, k_{p+1})\in J\times R^{p+1}; $ |
$ (C_{3}) $ there exists $ r > 0 $ such that
$ (1+(φ(1)−φ(0))(1+k∑j=1δj)|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|)(χ∗Ω∗(φ(1)−φ(0))αΓ(α+1)(φ(1)−φ(0))βΓ(β+1)+m∑i=1ϕ∗i(φ(1)−φ(0))ωi+βΓ(ωi+β+1))≤r; $ | (3.5) |
$ (χ∗λ∗+Ω∗σ∗p+1∑i=1(φ(1)−φ(0))γiΓ(γi+1))(φ(1)−φ(0))αΓ(α+1)(1+(φ(1)−φ(0))(1+k∑j=1δj)|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|)(φ(1)−φ(0))βΓ(β+1)<1, $ | (3.6) |
where $ \Omega^{*} = \sup\limits_{0\leq t\leq 1}|\Omega(t)|, \ \phi_{i}^{*} = \sup\limits_{0\leq t\leq 1}|\phi_{i}(t)|, \ i = 1, 2, \cdot\cdot\cdot, p, \ \chi^{*} = \sup\limits_{0\leq t\leq 1}|\chi(t)|, \ \lambda^{*} = \sup\limits_{0\leq t\leq 1}|\lambda(t)|, \ \sigma^{*} = \sup\limits_{0\leq t\leq 1}|\sigma(t)|. $
Then the hybrid problem (1.1), (1.2) has at least one solution.
Proof. Define a subset $ S $ of $ E $ as
$ S = \{u\in E :\ \|u\|\leq r\}, $ |
where $ r $ satisfies inequality (3.5). Clearly $ S $ is closed, convex and bounded subset of the Banach space $ E. $ Define two operators $ A:E\rightarrow E $ by
$ Au(t)=∫t0(φ(t)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds+φ(t)−φ(0)k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))∫10(φ(1)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds−(φ(t)−φ(0))k∑j=1δjk∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))∫ξj0(φ(ξj)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds, $ | (3.7) |
$ Bu(t)=m∑i=1∫t0(φ(t)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))ds+φ(t)−φ(0)k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))m∑i=1∫10(φ(1)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))ds−(φ(t)−φ(0))k∑j=1δjk∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))m∑i=1∫ξj0(φ(ξj)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))ds. $ | (3.8) |
Then $ u(t) $ is a solution of problem (1.1), (1.2) if and only if $ u(t) = Au(t)+Bu(t). $ We shall show that the operators $ A $ and $ B $ satisfy all the conditions of Lemma 2.2. We split the proof into several steps.
Step 1. We first show that $ A $ is a contraction mapping. Let $ u(t), v(t)\in S, $ we write
$ G(s)=g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτ−g(s,v(s),Iγ1 φv(s),⋅⋅⋅,Iγp φv(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,v(τ))dτ, $ |
then by $ (C_{1}) $ we have
$ |G(s)|=|g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτ−g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,v(τ))dτ+g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,v(τ))dτ−g(s,v(s),Iγ1 φv(s),⋅⋅⋅,Iγp φv(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,v(τ))dτ|≤|g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))|∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)|h(τ,u(τ))−h(τ,v(τ))|dτ+∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)|h(τ,v(τ))|dτ|g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))−g(s,v(s),Iγ1 φv(s),⋅⋅⋅,Iγp φv(s))|≤χ∗λ∗‖u−v‖(φ(s)−φ(0))αΓ(α+1)+Ω∗(φ(s)−φ(0))αΓ(α+1)σ∗p+1∑i=1(φ(s)−φ(0))γiΓ(γi+1)‖u−v‖≤(χ∗λ∗+Ω∗σ∗p+1∑i=1(φ(1)−φ(0))γiΓ(γi+1))(φ(1)−φ(0))αΓ(α+1)‖u−v‖, $ |
thus we have
$ |Au(t)−Av(t)|≤∫t0(φ(t)−φ(s))β−1Γ(β)φ′(s)G(s)ds+φ(t)−φ(0)|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|∫10(φ(1)−φ(s))β−1Γ(β)φ′(s)G(s)ds+φ(t)−φ(0)|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|k∑j=1δj∫ξj0(φ(ξj)−φ(s))β−1Γ(β)φ′(s)G(s)ds≤(χ∗λ∗+Ω∗σ∗p+1∑i=1(φ(1)−φ(0))γiΓ(γi+1))(φ(1)−φ(0))αΓ(α+1)(1+(φ(1)−φ(0))(1+k∑j=1δj)|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|)(φ(1)−φ(0))βΓ(β+1)‖u−v‖, $ |
which implies
$ ‖Au(t)−Av(t)‖≤[(χ∗λ∗+Ω∗σ∗p+1∑i=1(φ(1)−φ(0))γiΓ(γi+1))(φ(1)−φ(0))αΓ(α+1)(1+(φ(1)−φ(0))(1+k∑j=1δj)|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|)(φ(1)−φ(0))βΓ(β+1)]‖u−v‖, $ |
in view of (3.6), this shows that $ A $ is a contraction mapping.
Step 2. The operator $ B $ is compact and continuous on S.
First, we show that $ B $ is continuous on S. Let $ \{u_{n}\} $ be a sequence of functions in S converging to a function $ u\in S. $ Then by Lebesgue dominated convergence theorem,
$ limn→∞Bun(t)=limn→∞[m∑i=1∫t0(φ(t)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,un(s),Iμ1 φun(s),⋅⋅⋅,Iμn φun(s))ds+φ(t)−φ(0)k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))m∑i=1∫10(φ(1)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,un(s),Iμ1 φun(s),⋅⋅⋅,Iμn φun(s))ds−(φ(t)−φ(0))k∑j=1δjk∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))m∑i=1∫ξj0(φ(ξj)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,un(s),Iμ1 φun(s),⋅⋅⋅,Iμn φun(s))ds].=m∑i=1∫t0(φ(t)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)limn→∞fi(s,un(s),Iμ1 φun(s),⋅⋅⋅,Iμn φun(s))ds+φ(t)−φ(0)k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))m∑i=1∫10(φ(1)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)limn→∞fi(s,un(s),Iμ1 φun(s),⋅⋅⋅,Iμn φun(s))ds−(φ(t)−φ(0))k∑j=1δjk∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))m∑i=1∫ξj0(φ(ξj)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)limn→∞fi(s,un(s),Iμ1 φun(s),⋅⋅⋅,Iμn φun(s))ds=m∑i=1∫t0(φ(t)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φ(s),⋅⋅⋅,Iμn φu(s))ds+φ(t)−φ(0)k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))m∑i=1∫10(φ(1)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))ds−(φ(t)−φ(0))k∑j=1δjk∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))m∑i=1∫ξj0(φ(ξj)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))ds=Bu(t). $ |
This shows that $ B $ is continuous on $ S. $ It is sufficient to show that $ B(S) $ is a uniformly bounded and equicontinuous set in $ E. $
First, we note that
$ |Bu(t)|≤m∑i=1∫t0(φ(t)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)|fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))|ds+φ(t)−φ(0)|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|m∑i=1∫10(φ(1)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)|fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))|ds+(φ(t)−φ(0))k∑j=1δj|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|m∑i=1∫ξj0(φ(ξj)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)|fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))|ds≤m∑i=1ϕ∗i(φ(1)−φ(0))ωi+βΓ(ωi+β+1)+(φ(1)−φ(0))(1+k∑j=1δj)|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|m∑i=1ϕ∗i(φ(1)−φ(0))ωi+βΓ(ωi+β+1)=(1+(φ(1)−φ(0))(1+k∑j=1δj)|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|)m∑i=1ϕ∗i(φ(1)−φ(0))ωi+βΓ(ωi+β+1). $ |
This shows that $ B $ is uniformly bounded on $ S. $
Next, we show that $ B $ is an equicontinuous set in $ E. $ Let $ t_{1}, t_{2}\in J $ with $ t_{1} < t_{2} $ and $ u\in S. $ Then we have
$ |Bu(t2)−Bu(t1)|=|m∑i=1∫t20(φ(t2)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))ds−m∑i=1∫t10(φ(t1)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))ds+φ(t2)−φ(t1)k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))m∑i=1∫10(φ(1)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))ds−(φ(t2)−φ(t1))k∑j=1δjk∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))m∑i=1∫ξj0(φ(ξj)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,u(s),Iμ1 φu(s),⋅⋅⋅,Iμn φu(s))ds|≤m∑i=1ϕ∗iΓ(ωi+β)[|∫t10[(φ(t2)−φ(s))ωi+β−1−(φ(t1)−φ(s))ωi+β−1]φ′(s)ds+∫t2t1[(φ(t2)−φ(s))ωi+β−1φ′(s)ds|+φ(t2)−φ(t1)|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|∫10(φ(1)−φ(s))ωi+β−1φ′(s)ds+(φ(t2)−φ(t1))k∑j=1δj|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|∫ξj0(φ(ξj)−φ(s))ωi+β−1φ′(s)ds]≤m∑i=1ϕ∗iΓ(ωi+β+1)[|(φ(t2)−φ(0))ωi+β−(φ(t1)−φ(0))ωi+β|+φ(t2)−φ(t1)|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|(φ(1)−φ(0))ωi+β+(φ(t2)−φ(t1))k∑j=1δj|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|(φ(ξj)−φ(0))ωi+β]. $ |
Let $ h(t) = (\varphi(t)-\varphi(0))^{\omega_{i}+\beta}. $ Then $ h $ is continuously differentiable function. Consequently, for all $ t_{1}, t_{2}\in [0, 1], $ without loss of generality, let $ t_{1} < t_{2}, $ then there exist positive constants $ M $ such that
$ |h(t_{2})-h(t_{1})| = |h'(\xi)||t_{2}-t_{1}|\leq M|t_{2}-t_{1}|, \ \ \ \xi\in (t_{1}, t_{2}). $ |
On the other hand, for $ \varphi\in C^{'}[0, 1], $ thus there exist positive constants $ N $ such that $ |\varphi(t_{2})-\varphi(t_{1})| = |\varphi'(\xi)||t_{2}-t_{1}|\leq N|t_{2}-t_{1}|, \ \ \ \xi\in (t_{1}, t_{2}), $ from which we deduce
$ |Bu(t_{2})-Bu(t_{1})|\rightarrow 0\ \ \ \ \mbox{as}\ \ t_{2}-t_{1}\rightarrow 0. $ |
Therefore, it follows from the Arzela-Ascoli theorem that $ B $ is a compact operator on $ S. $
Step 3. Next we show that hypothesis $ (H_{3}) $ of Lemma 2.2 is satisfied. Let $ v\in S, $ then we have
$ |u(t)|=|Au(t)+Bv(t)|≤|Au(t)|+|Bv(t)|≤|∫t0(φ(t)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds+φ(t)−φ(0)k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))∫10(φ(1)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds−(φ(t)−φ(0))k∑j=1δjk∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))∫ξj0(φ(ξj)−φ(s))β−1Γ(β)φ′(s)g(s,u(s),Iγ1 φu(s),⋅⋅⋅,Iγp φu(s))∫s0(φ(s)−φ(τ))α−1Γ(α)φ′(τ)h(τ,u(τ))dτds|+|m∑i=1∫t0(φ(t)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,v(s),Iμ1 φv(s),⋅⋅⋅,Iμn φv(s))ds+φ(t)−φ(0)k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))m∑i=1∫10(φ(1)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,v(s),Iμ1 φv(s),⋅⋅⋅,Iμn φv(s))ds−(φ(t)−φ(0))k∑j=1δjk∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))m∑i=1∫ξj0(φ(ξj)−φ(s))ωi+β−1Γ(ωi+β)φ′(s)fi(s,v(s),Iμ1 φv(s),⋅⋅⋅,Iμn φv(s))ds|≤(1+(φ(1)−φ(0))(1+k∑j=1δj)|k∑j=1δj(φ(ξj)−φ(0))−(φ(1)−φ(0))|)(χ∗Ω∗(φ(1)−φ(0))αΓ(α+1)(φ(1)−φ(0))βΓ(β+1)+m∑i=1ϕ∗i(φ(1)−φ(0))ωi+βΓ(ωi+β+1))≤r, $ |
which implies $ \|u\|\leq r $ and so $ u\in S. $
Thus all the conditions of Lemma 2.2 are satisfied and hence the operator equation $ u = Au+Bu $ has a solution in $ S. $ In consequence, the problem (1.1), (1.2) has a solution on $ J. $ This completes the proof.
In this section, we provide an example to illustrate our main result.
Example 4.1 Consider the following hybrid $ \varphi $-Caputo fractional integro-differential equations
$ CD12 t4(CD32 t4u(t)−2∑i=1Iωit4fi(t,u(t),I13t4u(t),I43t4u(t))14t2(|u(t)|1+|u(t)|+|I14t4u(t)|1+|I14t4u(t)|+sinI12t4u(t)))=25cos(t4)(|u(t)||u(t)|+1), t∈J=[0,1], $ | (4.1) |
$ u(0)=0, CD32 t4u(0)=0, u(1)=13u(13), $ | (4.2) |
where
$ 2∑i=1Iωit4fi(t,u(t),I13t4u(t),I43t4u(t))=I13t4(t[|u(t)|1+|u(t)|+sin(I13t4u(t))+cos(I43t4u(t))])+I23t4(t10[|u(t)|1+|u(t)|+arctan(I13t4u(t))+sin(I43t4u(t))]). $ | (4.3) |
We note that $ \alpha = \frac{1}{2}, \beta = \frac{3}{2}, m = 2, n = 2, p = 2, k = 1, \delta = \frac{1}{3}, \xi = \frac{1}{3}, \omega_{1} = \frac{1}{3}, \omega_{2} = \frac{2}{3}, \mu_{1} = \frac{1}{3}, \mu_{2} = \frac{4}{3}, \gamma_{1} = \frac{1}{4}, \gamma_{2} = \frac{1}{2}, \varphi(t) = \frac{t}{4}, $
$ f_{1}(t, u(t), I^{\frac{1}{3} \frac{t}{4}}u(t), I^{\frac{4}{3} \frac{t}{4}}u(t)) = t\biggl[ \frac{|u(t)|}{1+|u(t)|}+\sin(I^{\frac{1}{3} \frac{t}{4}}u(t))+\cos (I^{\frac{4}{3} \frac{t}{4}}u(t))\biggr], $ |
$ f_{2}(t, u(t), I^{\frac{1}{3} \frac{t}{4}}u(t), I^{\frac{4}{3} \frac{t}{4}}u(t)) = \frac{t}{10}\biggl[ \frac{|u(t)|}{1+|u(t)|}+\arctan(I^{\frac{1}{3} \frac{t}{4}}u(t))+\sin (I^{\frac{4}{3} \frac{t}{4}}u(t))\biggr], $ |
$ g(t, u(t), I^{\frac{1}{4} \frac{t}{4}}u(t), I^{\frac{1}{2} \frac{t}{4}}u(t)) = \frac{1}{4}t^{2}\biggl( \frac{|u(t)|}{1+|u(t)|} + \frac{|I^{\frac{1}{4} \frac{t}{4}}u(t)|} {1+|I^{\frac{1}{4} \frac{t}{4}}u(t)|}+\sin I^{\frac{1}{2} \frac{t}{4}}u(t)\biggr), $ |
$ h(t, u(t)) = \frac{2}{5}cos(\frac{t}{4})\biggl( \frac{|u(t)|}{|u(t)|+1}\biggr). $ |
Thus we have
$ |g(t,u(t),I14t4u(t),I12t4u(t))−g(t,v(t),I14t4v(t),I12t4v(t))|≤σ(t)[1+t14Γ(54)+t12Γ(32)]|u(t)−v(t)|=t24[1+t14Γ(54)+t12Γ(32)]|u(t)−v(t)|, $ |
$ |h(t, u(t))-h(t, v(t))| = \frac{2}{5}\cos(\frac{t}{4})|u(t)-v(t)|. $ |
Therefore,
$ \sigma^{*} = \sup\limits_{0\leq t\leq 1}|\sigma(t)| = \sup\limits_{0\leq t\leq 1}\frac{t^{2}}{4}\biggl[1+ \frac{t^{\frac{1}{4}}}{\Gamma(\frac{5}{4})}+\frac{t^{\frac{1}{2}}}{\Gamma(\frac{3}{2})}\biggr] = \frac{1}{4}\biggl(1+ \frac{1}{\Gamma(\frac{5}{4})}+\frac{1}{\Gamma(\frac{3}{2})}\biggr) = \frac{1}{4}\biggl(1+ \frac{1}{0.9064}+\frac{1}{0.8862}\biggr) = 0.8079; $ |
$ \lambda^{*} = \sup\limits_{0\leq t\leq 1}|\lambda(t)| = \sup\limits_{0\leq t\leq 1}\frac{2}{5}\cos(\frac{t}{4}) = 0.4; $ |
$ \phi_{1}^{*} = \sup\limits_{0\leq t\leq 1}|\phi_{1}(t)| = \sup\limits_{0\leq t\leq 1}t(1+1+1) = 3; $ |
$ \phi_{2}^{*} = \sup\limits_{0\leq t\leq 1}|\phi_{2}(t)| = \sup\limits_{0\leq t\leq 1}\frac{t}{10}(1+\frac{\pi}{2}+1) = \frac{1}{10}\times3.57 = 0.357; $ |
$ \Omega^{*} = \sup\limits_{0\leq t\leq 1}|\Omega(t)| = \sup\limits_{0\leq t\leq 1}\frac{2}{5}\cos(\frac{t}{4}) = 0.4; $ |
$ \chi^{*} = \sup\limits_{0\leq t\leq 1}|\chi(t)| = \sup\limits_{0\leq t\leq 1}\frac{t^{2}}{4}(1+1+1) = \frac{3}{4} = 0.75. $ |
Choose $ r > 0.5, $ then we have
$ \biggl(1+\frac{\frac{1}{4}\times \frac{4}{3}}{\frac{2}{9}}\biggr)\biggl[0.75\times0.4\times\frac{(\frac{1}{4})^{\frac{1}{2}}}{\Gamma(\frac{3}{2})} \times\frac{(\frac{1}{4})^{\frac{3}{2}}}{\Gamma(\frac{5}{2})}+3\times\frac{(\frac{1}{4})^{\frac{11}{6}}}{\Gamma(\frac{17}{6})}+0.357 \times\frac{(\frac{1}{4})^{\frac{13}{6}}}{\Gamma(\frac{19}{6})}\biggr] = 0.4016\leq r. $ |
Moreover,
$ \biggl(0.75\times 0.4+0.4\times 0.8079\times \biggl(\frac{(\frac{1}{4})^{\frac{1}{4}}}{\Gamma(\frac{5}{4})}+\frac{(\frac{1}{4})^{\frac{1}{2}}}{\Gamma(\frac{3}{2})}\biggr)\biggr) \frac{(\frac{1}{4})^{\frac{1}{2}}}{\Gamma(\frac{3}{2})}\biggl(1+\frac{\frac{1}{4}\times \frac{4}{3}}{\frac{2}{9}}\biggr)\frac{(\frac{1}{4})^{\frac{3}{2}}}{\Gamma(\frac{5}{2})} = 0.097 \lt 1. $ |
Now, by using Theorem 3.2, it is deduced that the fractional hybrid integro-differential problem (4.1), (4.2) has a solution.
Hybrid fractional integro-differential equations have been considered more important and served as special cases of dynamical systems. In this paper, we introduced a new class of the hybrid $ \varphi $-Caputo fractional integro-differential equations. By using famous hybrid fixed point theorem due to Dhage, we have developed adequate conditions for the existence of at least one solution to the hybrid problem (1.1), (1.2). The respective results have been verified by providing a suitable example.
We express our sincere thanks to the anonymous reviewers for their valuable comments and suggestions. This work is supported by the Natural Science Foundation of Tianjin (No.(19JCYBJC30700)).
The authors declare no conflict of interest in this paper.
[1] | Pagés Larraya F, Grasso L, Marí G (2004) Prevalencia de las demencias del tipo Alzheimer, demencias vasculares y otras demencias del DSM-IV y del ICD-10 en la República Argentina. Rev Neurol Argent 29: 148-153. |
[2] | Raschetti R, Albanese E, Vanacore N, et al. (2007) Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med 4: e338 |
[3] | Clare L, Woods R, Moniz Cook E, et al. (2003) Cognitive rehabilitation and cognitive training for early stage Alzheimer's disease and vascular dementia. Cochrane Database of Syst Rev. |
[4] | Clare L, Woods R (2004) Cognitive training and cognitive rehabilitation for people with early-stage Alzheimer's disease: a review. Neuropsychol Rehabil 14: 385-401. |
[5] | Loewenstein D, Acevedo A, Czaja S, et al. (2004) Cognitive rehabilitation of mildly impaired Alzheimer's disease patients on cholinesterase inhibitors. Am J Geriatr Psychiatry 12: 395-402. |
[6] | Davis R, Massman P, Doody R (2001) Cognitive intervention in Alzheimer Disease: a randomized placebocontrolled study. Alzheimer Dis and Assoc Disord 15: 1-9. |
[7] |
Wilson B (2002) Towards a comprehensive model of cognitive rehabilitation. Neuropsychol Rehabil 12: 97-110. doi: 10.1080/09602010244000020
![]() |
[8] | Woods B, Aguirre E, Spector AE, et al. (2012) Cognitive stimulation to improve cognitive functioning in people with dementia. Cochrane Database of Syst Rev. |
[9] |
Wayne A (2003) Evaluating medication effects outside of clinical trials: new-user designs. Am J Epidemiol 158: 915-920. doi: 10.1093/aje/kwg231
![]() |
[10] |
Hughes P, Berg L, Danziger W, et al. (1982) A new clinical rating scale for the staging of dementia. Br J Psychiatry 140: 566-572. doi: 10.1192/bjp.140.6.566
![]() |
[11] |
Petersen R, Doody R, Kurz A, et al. (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985-1992. doi: 10.1001/archneur.58.12.1985
![]() |
[12] |
Petersen R (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256: 183-194. doi: 10.1111/j.1365-2796.2004.01388.x
![]() |
[13] | American Psychiatric Association (2000) Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR. 4th ed. Washington DC: American Psychiatric Pub. |
[14] |
McKhann G, Drachman D, Folstein M, et al. (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34: 939-944. doi: 10.1212/WNL.34.7.939
![]() |
[15] | Allegri RF, Taragano FE, Krupitzki H, et al. (2010) Role of cognitive reserve in progression from mild cognitive impairment to dementia. Dement Neuropsychol 4:28-34 |
[16] | Rey A (1964) L'examen Clinique En Psychologic. Paris, France: Presses Universitaires de France. |
[17] |
Reitan RM (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8: 271-276. doi: 10.2466/pms.1958.8.3.271
![]() |
[18] | Rey A (1959) Test de copie d'une figure complexe: Manuel. Paris, Les Éditions du Centre de psychologie appliquée. |
[19] | Kaplan EF, Goodglass H, Weintraub S (1983) The Boston Naming Test, 2nd edn. Philadelphia, PA: Lea and Febiger. |
[20] | Butman J, Allegri RF, Harris P, et al. (2000) Fluencia verbal en español. Datos normativos en Argentina. Medicina 60: 561-564. |
[21] | Wechsler D (1997) WAIS III Administration and Scoring Manual. Texas: The Psychological Corporation. |
[22] | Wechsler D (1999) Wechsler Abbreviated Scale of Intelligence (WASI). Texas: The Psychological Corporation. |
[23] |
Zigmond A, Snaith R (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67: 361-370. doi: 10.1111/j.1600-0447.1983.tb09716.x
![]() |
[24] | McNair D, Kahn E (1983) Self assessment of cognitive deficits. En: Crook T, editor. Assessment in geriatric psychopharmacology. New Canaan: Mark Pwley Associates: 137-143. |
[25] | Serrano C, Dillon C, Leis A, et al. (2013) Mild cognitive impairment: risk of dementia according to subtypes. Actas Esp Psiquiatr 41: 330-339. |
[26] |
Petersen R, Smith G, Waring S, et al. (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neuro 56: 303-308. doi: 10.1001/archneur.56.3.303
![]() |
[27] | Huntley J, Gould R, Liu K, et al. (2015) Do cognitive interventions improve general cognition in dementia? A meta-analysis and metaregression. BMJ Open 5. |
[28] |
Spector A, Thorgrimsen L, Woods B (2003) Efficacy of an evidence-based cognitive stimulation therapy programme for people with dementia: randomised controlled trial. Br J Psychiatry 183: 248-254. doi: 10.1192/bjp.183.3.248
![]() |
[29] | NICE (National Institute for health and Clinical Excellence) (2006) Dementia: Supporting people with Dementia and their cares in Health and social care. NICE Clinical Guidline 42. London UK. |
[30] | Rojas G, Villar V, Iturry M, et al. (2013) Efficacy of a cognitive intervention program in patients with mild cognitive impairment. Int Psychogeriatr 5: 825-831. |
[31] |
Jean L, Bergeron M, Thivierge, S, et al. (2010) Cognitive intervention programs for individuals with mild cognitive impairment: systematic review of the literature. Am J Geriatr Psychiatry 18: 281-296. doi: 10.1097/JGP.0b013e3181c37ce9
![]() |
[32] |
Gates N, Sachdev P, Fiatarone Singh M, et al. (2011) Cognitive and memory training in adults at risk of dementia: a systematic review. BMC Geriatrics 11: 55. doi: 10.1186/1471-2318-11-55
![]() |
[33] |
Belleville S, Gilbert B, Fontaine F, et al. (2006) Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: evidence from a cognitive intervention program. Dement Geriatr Cogn Disord 22: 486-499 doi: 10.1159/000096316
![]() |
[34] |
Kurz A, Pohl C, Ramsenthaler M, et al. (2009) Cognitive rehabilitation in patients with mild cognitive impairment. Int J Geriatr Psychiatry 24: 163-168. doi: 10.1002/gps.2086
![]() |
[35] |
Rozzini L, Costardi D, Chilovi BV, et al. (2007) Efficacy of cognitive rehabilitation in parients with mild cognitive impairment treated with cholinesterase inhibitors. Int J Geriatr Psychiatry 22: 356-360. doi: 10.1002/gps.1681
![]() |
[36] |
Talassi E, Guerreschi M, Feriani M, et al. (2007) Effectiveness of a cognitive rehabilitation program in mild dementia and mild cognitive impairment: a case control study. Arch Gerontol Geriatr 44:391-399. doi: 10.1016/j.archger.2007.01.055
![]() |
[37] |
Stern Y (2012) Cognitive Reserve in Ageing and Alzheimer's Disease. Lancet Neurol 11: 1006-1012. doi: 10.1016/S1474-4422(12)70191-6
![]() |
[38] |
Tucker A, Stern Y (2011) Cognitive reserve in aging. Current Alzheimer Res 8: 354-360. doi: 10.2174/156720511795745320
![]() |
[39] |
Deary I, Johnson W (2010) Intelligence and education: causal perceptions drive analytic processes and therefore conclusions. Int J Epidemiol 39:1362-1369. doi: 10.1093/ije/dyq072
![]() |
1. | Mónica Clapp, Angela Pistoia, Fully nontrivial solutions to elliptic systems with mixed couplings, 2022, 216, 0362546X, 112694, 10.1016/j.na.2021.112694 | |
2. | Dario Mazzoleni, Benedetta Pellacci, Calculus of variations and nonlinear analysis: advances and applications, 2023, 5, 2640-3501, 1, 10.3934/mine.2023059 | |
3. | Mónica Clapp, Mayra Soares, Energy estimates for seminodal solutions to an elliptic system with mixed couplings, 2023, 30, 1021-9722, 10.1007/s00030-022-00817-9 | |
4. | Wenjing Chen, Xiaomeng Huang, Spiked solutions for fractional Schrödinger systems with Sobolev critical exponent, 2024, 14, 1664-2368, 10.1007/s13324-024-00878-2 | |
5. | Felipe Angeles, Mónica Clapp, Alberto Saldaña, Exponential decay of the solutions to nonlinear Schrödinger systems, 2023, 62, 0944-2669, 10.1007/s00526-023-02503-9 |