Loading [MathJax]/jax/output/SVG/jax.js
Commentary Topical Sections

Beyond “autism spectrum disorder”: toward a redefinition of the conceptual foundations of autism

  • This article critically examines the conceptual and clinical frameworks underpinning the understanding of autism, challenging the dominance of the autism spectrum disorder (ASD) label. Since the introduction of ASD in the fifth version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), research has largely emphasized deficit-focused perspectives, aligning autism with intellectual and cognitive disability. Historical accounts by researchers like Sukhareva, Kanner, Asperger, and Frankl, however, depict autism as a complex neurotype characterized by unique strengths, intelligence, creativity, and personality traits. By juxtaposing these foundational insights with the modern pathological framing introduced by Wing and Gould, the article highlights the limitations of ASD in capturing the real nature and definition of autism. A review of autism research trends reveals a persistent bias toward a homogeneous, deficit-oriented model, often excluding perspectives that view autism as a form of cognitive diversity. The article also critiques media representations, which oscillate between stereotypical portrayals and reductive “idiot” and savant depictions, failing to “authentically” represent autism. Advocating for a paradigm shift, it calls for an interdisciplinary approach rooted in biology (research about species and genera), cognitive and evolutionary psychology, ecology, and anthropology (research about alterity and otherness) and challenges the entrenched deficit model. This shift would promote a better understanding of autism, acknowledging it as a neurodevelopmental condition (characterized by distinct cognitive patterns) rather than a disorder (defined by deficits and/or impairments).

    Citation: Kevin Rebecchi. Beyond “autism spectrum disorder”: toward a redefinition of the conceptual foundations of autism[J]. AIMS Medical Science, 2025, 12(2): 193-209. doi: 10.3934/medsci.2025012

    Related Papers:

    [1] R. Citarella, M. Lepore, M. Perrella, C. Calì . Multiple crack propagation by DBEM in a riveted lap-joint. AIMS Materials Science, 2016, 3(4): 1577-1586. doi: 10.3934/matersci.2016.4.1577
    [2] M.A.R. Loja, André Carvalho, Ines C.J. Barbosa . A study on the static behavior of functionally graded I-shaped beams. AIMS Materials Science, 2024, 11(1): 28-57. doi: 10.3934/matersci.2024002
    [3] Ivan Jandrlić, Stoja Rešković, Dušan Ćurčija, Ladislav Lazić, Tin Brlić . Modeling of stress distribution on the basis of the measured values of strain and temperature changes. AIMS Materials Science, 2019, 6(4): 601-609. doi: 10.3934/matersci.2019.4.601
    [4] Bohdan Stasyuk . Interacting cracks 3D analysis using boundary integral equation method. AIMS Materials Science, 2016, 3(4): 1796-1810. doi: 10.3934/matersci.2016.4.1796
    [5] Mordechai Perl, Tomer Saley . The cumulative detrimental impact of pressure and autofrettage on the fatigue life of an externally cracked modern tank gun barrel. AIMS Materials Science, 2019, 6(5): 833-851. doi: 10.3934/matersci.2019.5.833
    [6] G. Sri Harsha, P. Poluraju, Veerendrakumar C. Khed . Computation of shear strength equation for shear deformation of reinforced concrete deep beams using finite element method. AIMS Materials Science, 2021, 8(1): 42-61. doi: 10.3934/matersci.2021004
    [7] Bandar Abdullah Aloyaydi, Subbarayan Sivasankaran, Hany Rizk Ammar . Influence of infill density on microstructure and flexural behavior of 3D printed PLA thermoplastic parts processed by fusion deposition modeling. AIMS Materials Science, 2019, 6(6): 1033-1048. doi: 10.3934/matersci.2019.6.1033
    [8] Enrico Troiani . Analytical evaluation of the Stress Intensity Factor in stiffened sheets with multiple side damage. AIMS Materials Science, 2016, 3(4): 1615-1622. doi: 10.3934/matersci.2016.4.1615
    [9] Pierre Dulieu, Valéry Lacroix . Mutual interaction of stress concentration and stress intensity factor between semi-circular notch and crack. AIMS Materials Science, 2016, 3(4): 1520-1533. doi: 10.3934/matersci.2016.4.1520
    [10] N. Akhtar, S. Hasan . Assessment of the interaction between three collinear unequal straight cracks with unified yield zones. AIMS Materials Science, 2017, 4(2): 302-316. doi: 10.3934/matersci.2017.2.302
  • This article critically examines the conceptual and clinical frameworks underpinning the understanding of autism, challenging the dominance of the autism spectrum disorder (ASD) label. Since the introduction of ASD in the fifth version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), research has largely emphasized deficit-focused perspectives, aligning autism with intellectual and cognitive disability. Historical accounts by researchers like Sukhareva, Kanner, Asperger, and Frankl, however, depict autism as a complex neurotype characterized by unique strengths, intelligence, creativity, and personality traits. By juxtaposing these foundational insights with the modern pathological framing introduced by Wing and Gould, the article highlights the limitations of ASD in capturing the real nature and definition of autism. A review of autism research trends reveals a persistent bias toward a homogeneous, deficit-oriented model, often excluding perspectives that view autism as a form of cognitive diversity. The article also critiques media representations, which oscillate between stereotypical portrayals and reductive “idiot” and savant depictions, failing to “authentically” represent autism. Advocating for a paradigm shift, it calls for an interdisciplinary approach rooted in biology (research about species and genera), cognitive and evolutionary psychology, ecology, and anthropology (research about alterity and otherness) and challenges the entrenched deficit model. This shift would promote a better understanding of autism, acknowledging it as a neurodevelopmental condition (characterized by distinct cognitive patterns) rather than a disorder (defined by deficits and/or impairments).



    Functionally graded materials (FGMs) are a developed type of composite material designed to obtain new specifications. These specifications differ from those of their individual components and exhibit better performance than traditional composites. The difference in the behavior of FGMs compared to homogenous and other composites is due to the change in their microstructural, chemical and material gradients [1].

    Generally, there are two types of gradients in properties that result from their manufacturing method; continuous gradient and stepwise gradient [2,3]. There are various studies in fracture mechanics of FGMs that experimentally and numerically analyze the effect of gradient on the material response. Jin et al. [4] used the concept of crack bridging in FGMs to study the fracture durability and R‑curve. They demonstrated that the value of fracture toughness increased with the crack growth from ceramic‑rich to metal‑rich side when (Alumina‑Nickel) FGM was used Dolbow et al. [5] developed a new method for calculating the mixed‑mode stress intensity factor SIF using the interaction energy integral method. They employed auxiliary stress and displacement fields as asymptotic domains of areas of discontinuity in a homogenous counterpart that had the same elastic properties as those at the FGM crack tip. SIFs were obtained from the domain integrals which were used as a post‑processing in finite element (FE) solution. Butcher et al. [6] prepared an FGM with an elastic modulus that varied spatially. In addition, they used optical interferometry to investigate the crack tip parameters. Rousseau et al. [7,8,9] and Jain et al. [10] studied the fractures in epoxy‑glass FGMs with cracks oriented parallel and perpendicular to the direction of elastic gradient. Optical interferometry was utilized to measure the crack tip deformation in FGM and its homogenous counterpart, which had the same elastic readings in the crack tip. Consequently, two cases were studied: the first one with cracks on the compliant side and the second one on the stiff side. Nakamura et al. [11] submitted a novel method of certain measurement method to estimate the elastic modulus based on the inverse analysis. To simplify the difficulties related to FGM testing, the invers analyses were performed in conjunction with instrumented micro‑indentation, employing Kalman filtering (linear quadratic estimation) to investigate the FGM properties.

    As well Kim et al. [12] developed a finite element (FE) solution for a stationary crack in an FGM with a smooth gradient in elastic properties. They calculated SIF for mode one, mixed‑mode and compared the results which obtained through three different techniques; J‑integral, crack‑closure, and displacement correlation. Kirugulige et al. [13] studied a cracked FGM under dynamic loading condition applying coherent gradient sensing technique that maps the deformation of the crack tip. A homogenous counterpart was used to elucidate the gradient effect. Khazal et al. [14] determined the fracture parameters of stepwise FGMs (0–60%) volume fraction of glass to produce a five‑layer compact tension specimen.

    The digital image correlation (DIC) technique was applied to compute the displacement field at the crack tip. Yao et al. [15] adopted DIC method to compute the first mode SIF in epoxy/glass polymer composites. The crack was oriented along the gradient in elastic properties. SIFs and deformity in crack tip zone were calculated in an FGM on both the stiffer and the compliant sides. Jin et al. [16] utilized the DIC technique to study the fracture parameters in an FGM specimen made of ZrO2/NiCr. They studied the effect of variations in the mechanical properties of ceramic/metal composites which exposed to a quasi‑static mixed‑mode. Yates et al. [17] studied the fatigue fracture problem (Mode I in Aluminum alloy) by applied DIC technique to determine the displacement field. SIFS, T‑stress and crack tip opening angle were computed by employed Williamʼs series. Jones et al. [18] determined mixed mode stress intensity factors in epoxies using digital image correlation. Khazal et al. [19] analyzed the fracture in functionally graded materials where an extended element free Galerkin approach has been used. Additionally, they employed the orthotropic enrichments function to improve the Gauss quadratic accuracy at the crack tip along with the sub‑triangle method. Also, the stress intensity factor was computed using incompatible interaction integral technique. The efficiency of XEFGM has been verified when compared the results with the results from references. Khazal and Saleh [20] Presented the crack propagation analysis of FGMs under mixed‑mode and non‑proportional loading adopting extended element free Galerkin method. SIFs were calculated using the incompatible action integral approach.

    The criterion of maximum hoop stress was used to estimate the crack propagation. Good agreement was observed between the simulation results and the references results that were reported in the literature. Mousa et al. [21] presented a study of fracture behaviors in polyester/glass FGM. This polymer matrix composite manufactured by hand lay‑up technique and subjected to mixed‑mode condition. Experimental and numerical results showed there was an increase in failure load and mode mixity with increasing the crack orientation. Fatima and Rowlands [22] evaluated the SIF in a double edge cracked finite [013/905/013] graphite‑epoxy orthotropic tensile composite using DIC and J integral. They concluded that the presented technique reliable method to estimate SIFs in orthotropic and isotropic materials in comparison with the previous literature. Quanjin et al. [23] employed the DIC technique to investigate the tensile properties in three types of materials which were resin plastic, plastic reinforced with fiber‑glass and aluminum A 1100.

    As well as, Strain gauge measurement and experimental method. The results show that the DIC had higher values than the experimental method. Abshirini et al. [24] studied the fracture of brittle materials (Polymethylmethacrylate PMMA) to examine the capability of the DIC in evaluating the crack tip parameters in the related materials. Golewski [25,26] studied the effect of adding fly ash to concrete to fracture toughness under mode II using compact tension specimen, on the basis of DIC method a new measurement method for crack tip tracking and accurate determination of crack path length were introduced. The crack tip tracking method has been created can be utilized to analyze and estimate the actual length of crack propagation in various materials. Golewski et al. [27] investigated the effect of curing time to concrete with tow additives fly ash and silica fume under mode I, they found that the mechanical properties of concrete enhanced by this additive.

    The present study demonstrates the manufacturing of a continuous functionally graded beam (epoxy/glass FGM) and an experimental investigation of the fracture parameters (T‑stress, and stress intensity factors SIFs). The DIC method was adopted to determine the deformation field at the crack tip in a specimen prepared as a three‑point bending beam. First‑mode SIF and T‑stress were evaluated by processing the deformation data in William's equation applying the least square algorithm. The problem was then numerically verified to confirm the accuracy of the DIC technique results.

    The hand lay‑up method was utilized to produce a continuous functionally graded beam made of epoxy resin matrix reinforced by glass particles. In this method, an acrylic mold with a length, width and thickness of 300 × 90 × 10 mm is placed vertically. A 30% volume fraction of glass spheres with a mean diameter 90 µm was used to create a composite. Epoxy resin (ρ = 1050 kg/m3) consists of a two parts base and hardener with a mixing ratio of 1:2. First, the base was mixed with the hardener in a plastic container and stirred well. At the same time, a mixture of glass powder and epoxy was set. Epoxy resin was arranged by mixing the base and hardener in the required proportion. Subsequently, the glass powder was slowly added in small quantities and was continuously stirred until the whole amount of glass powder was mixed with the epoxy resin. The first step in the pouring process was pouring the pure epoxy resin until it reached half of the mould and then leaving it for certain time. Thereafter, the epoxy‑glass mixture was added to the mould, which was sufficient to completely fill it. Then, the mould was sealed, flipped upside down and kept it in a vertical position; and flipped again before being left to cure at room temperature. Subsequently, the mould was dissociated and the FGM beam was extracted. The percentage of glass volume fraction in this FGM was calculated using Image‑J software to analyses the microscopic images. A portion of the produced beam was cut in the direction of the gradient, then divided into 1.5 × 1 cm piece and examined under microscope (Figure 1).

    Figure 1.  FGM specimen with spatial gradient.

    Standard FGM tensile test samples were machined from the functionally graded beam according to ASTM D638 to extract the elastic properties. Standard dog bone type I was selected where the thickness of the specimen is 7 mm; the overall length is 165 mm, the gauge length is 57 mm, the width of the narrow side is 13 mm, and the fillet radius is 76 mm as shown in Figure 2. The examination process was done by using INSTRON device with test speed 5 mm per min as cleared in Figure 3. Table 1 illustrates the elastic properties of the corresponding volume fractions of glass.

    Figure 2.  Standard tensile test specimens.
    Figure 3.  Tensile test process.
    Table 1.  Elasticity Modulus and Poisson's ratio corresponding to the volume fraction.
    Young's modulus (MPa) Poisson's ratio Volume fraction
    1128 0.39 0.0
    1130 0.34 0.027
    1885 0.32 0.213
    2230 0.31 0.261
    2618 0.3 0.298

     | Show Table
    DownLoad: CSV

    The influence of the volume fraction on the Young's modulus of the produced FGM is shown in Table 1. Furthermore, increasing the volume fraction contributes to an increase in stiffness of relevant sample. As the volume fraction increases, the Poisson's ratio of the manufactured FGM.

    The basic principle of the DIC technique is depends on the comparison of two digital images: one before loading, known as reference; and the other one after deformation known as the deformed. This process was accomplished artificially by applying a white background on the specimen surface and black speckles to create a random pattern the size of the speckles is 3 to 25 pixels and the distance between them is 3 to 20 pixels, as shown in Figure 4. The intensity of light can be specified for each pixel by discretizing the intensity of the specific area into a number range known as grey scale, and then tracing the same small area of the specimen in the reference and deformed images by using a suitable computer program. This small area consists of different pixels and different grey scale is called subset. In this technique, a comparison was performed between each subset in the reference and deformed images to compute the correlation coefficient. The subset size and subset spacing play important roles in determining SIFs [28].

    Figure 4.  Preparation of the specimen by making a speckles pattern.

    The FGM specimen was tested as a three‑point bending beam by applying a first mode loading condition (Figure 5). A 19.3 mm long single‑edge crack was created in the FGM sample on the compliant (epoxy‑rich) side along the gradient direction. The distance between specimen and the lens was 50 cm and the camera was set perpendicular to the specimen, the lens parameters and light location were changed to reach the best contrast and uniform light. All moving components in the mounting system had been locked after determine the final position and orientation. A GOTCH machine was used in the test at grip speed 1 mm/min. An ARTCAM‑320p CCD camera with resolution (2288 × 1700) pixels was employed for imaging, as depicted in Figure 6.

    Figure 5.  Crack in a beam subjected to three‑point bending.
    Figure 6.  Normal mode tests.

    William's methodology was involved to evaluate T‑stress and SIF values from the deformation field in the crack‑tip region. The crack‑tip location had to be identified in advance, because the SIFs values depend on the crack‑tip coordinates that set in the algorithm. The infinite series that represents the displacement field can be written as [17]:

     Mode I {u1=n=1rn22μcn{[κ+n2+(1)n]cosnθ2n2cos(n4)θ2}v1=n=1rn22μcn{[κn2(1)n]sinnθ2+n2sin(n4)θ2}} (1)

    and,

     Mode II {uII=n=1dn{[κ+n2(1)n]sinnθ2n2sin(n4)θ2}vII=n=1dn{[κn2+(1)n]cosnθ2+n2cos(n4)θ2}} (2)

    Where, u, v are the components of the horizontal and vertical displacement, respectively, µ is the rigidity modulus. For plane stress κ = (3 − ν)/ (1 + ν) and for plane strain κ = (3 − 4ν). c and d are constants that had to be calculated, while c1, d1 refer to mode I and mode II SIFs, T‑stress also can be evaluated when n = 2, (r, ɵ) are the crack‑tip polar coordinate. In Eqs 1 and 2, the displacement field can be defined as:

    pn,m=rn2m2μ{[κ+n2+(1)n]cosnθm2n2cos(n4)θm2} (3)
    qn,m=rn2m2μ{[κ+n2(1)n]sinnθm2n2sin(n4)θm2} (4)
    Wn,m=rn2m2μ{[κn2(1)n]sinnθm2+n2sin(n4)θm2} (5)
    Zn,m=rn2m2μ{[κn2+(1)n]cosnθm2+n2cos(n4)θm2} (6)
    {u1umv1vm}=[p1,1pn,1q1,1qn,1p1,mpn,mq1,mqn,mw1,1wn,1z1,1zn,1w1,mwn,mz1,mzn,m]{c1cnd1dn} (7)

    Where m is the index of the data point; pn, m, qn, m, wn, m, and zn, m are the known functions of (r, ɵ). Furthermore, expanding Eqs 1 and 2 using the T‑stress and SIF as shown in the following equations

    u=KI2μr2πcosθ2(κ1+2sin2θ2)+KII2μr2πsinθ2(κ+1+2cos2θ2)+T8μr(κ+1)cosθ (8)
    v=KI2μr2πsinθ2(κ+12cos2θ2)KII2μr2πcosθ2(κ12cos2θ2)+T8μr(κ3)sinθ (9)

    It can be exhibited that:

    KI=c12π,KII=d12π,T=4c2 (10)

    Where KI is SIF for mode I, KII is the SIF for mode II, and T is the T‑stress.

    By adding constants to Eq 7, rigid body motion and translation can be compensated.

    {u1umvmvm}=[1p1,1pn,10q1,1qn,1rsinθ11p1,mpn,m0q1,mqn,mrsinθm0w1,1wn,11z1,1zn,1r1sinθ10w1,mwn,m1z1,mzn,mrmcosθm]{c0c1cnd0d1dnR} (11)

    Where c0, d0 are used to compensate the rigid body translation and R is used to compensate the rigid body rotation.

    Referring to Table 1 plotting volume fraction of glass content with corresponding elastic modulus pointed a direct relationship between them. Figures 7 and 8 Clarify, respectively, that Young's modulus increased while Poisson's ratio decreased as the volume fraction of filler particles increased.

    Figure 7.  Relationships between volume fraction of glass particles and elastic modulus.
    Figure 8.  Relationship between volume fraction of glass particles and Poisson's ratio.

    After calculating the displacement field from DIC test the post processing step must be done to estimate the fracture parameters by considering the area of collected data. These steps were accomplished by applying the displacement infinite series (William's series). The numerical solution of the first mode loading of the FG beam with a 19.3 mm edge crack was performed by ABAQUS program using contour integral approach. C3D8R element type is selected. Mesh configuration, B.C and loading as shown in Figure 9. The X and Y displacement fields of the three‑point bend specimen at 2246.5 N for experimental and numerical results are illustrated in Figure 10.

    Figure 9.  Mesh configuration.
    Figure 10.  Displacement field in X and Y directions at 2245 N obtained with (a), (b) DIC, and (c), (d) FE.

    The main challenge is to build an appropriate proportion of terms in William's equations and the data collection area. During the verification process, the number of terms in William's series increase until the values of T‑stresses and SIFs converge, as depicted in Figure 11. The calculated values of DIC measurements for different numbers of terms are listed in Table 2.

    Figure 11.  Convergence of SIF in terms of the number of terms in William's equation.
    Table 2.  Experimental data of SIF (KⅠ) and T‑stress at different loads and number of terms.
    Load (N) Number
    of terms
    KI (MPam0.5) T‑stress
    (MPa)
    Load (N) Number
    of terms
    KI (MPam0.5) T‑stress
    (MPa)
    569 3 6.927 0.527 1687.32 3 25.75 1.438
    4 6.813 0.510 4 25.382 1.391
    5 6.906 0.448 5 25.666 1.159
    6 6.916 0.430 6 25.741 1.090
    7 6.882 0.325 7 25.686 0.788
    1128 3 16.353 1.019 2246.5 3 37.44 1.929
    4 16.128 0.998 4 36.862 1.824
    5 16.316 0.841 5 37.152 1.661
    6 16.347 0.799 6 37.285 1.547
    7 16.336 0.617 7 37.471 1.142

     | Show Table
    DownLoad: CSV

    Figure 11 clarifies that good verification and stability in SIFs values in terms of the number of terms in William's equation. Tables 3 and 4 illustrate the exprimental and numerical results with relative error between them.

    Table 3.  Relative error between DIC and FE of SIFs results at loads 569–2246.5 N for normal mode loading.
    Load (N) KI (DIC) KI (FE) Relative error %
    569 6.927 6.941 0.202
    1128 16.128 16.193 0.403
    1687.32 25.382 24.841 2.1
    2246.5 36.862 37.486 1.69

     | Show Table
    DownLoad: CSV
    Table 4.  Relative error between DIC and FE of T‑stress results at loads 569–2246.5 N for normal mode loading.
    Load (N) T (DIC) T (FE) Relative error %
    569 0.51 0.583 14
    1128 0.967 0.998 3.1
    1687.32 1.43 1.391 2.8
    2246.5 1.925 1.824 5.5

     | Show Table
    DownLoad: CSV

    The experimental and numerical results for SIF and T‑stress of the epoxy/glass FGM exhibited good agreement.

    The results of this work indicate that the important conclusions can be illustrated as follow:

    (1) The process that adopted in manufacturing continuous FGM was efficient method to produce monotonic variation in elastic moduli. All manufacturing processes were implemented at room temperature.

    (2) The manufacturing of this important FG beam which has a functional gradation in the properties of the material can be used in the analysis of more fracture problems or vibration problems.

    (3) The DIC results based on experimental technique compared with numerical results demonstrated that the DIC approach is successful method of evaluating fracture parameters. The average relative error for SIF (KI) and T‑stress are 1.095%, 6.35% respectively for first mode.

    (4) The DIC results show good stabilization and verification in SIFs during the variation of the number of terms in William's series at different loads.

    (5) Good agreement has been observed between DIC and FE results for SIFs (KI) for first mode.

    (6) The T‑stress values based on experimental and numerical results shows 14% relative error at load 569 N because of the T‑stress was computed from high order terms of displacement field as stated in [14] and [17].

    The authors thank the IBEM lab in the University of Tehran for helping to conduct DIC test.

    The authors confirm that this article content has no conflict of interest.



    Conflict of interest



    The author declares no conflict of interest.

    [1] American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. 5 Eds., American Psychiatric Publishing. https://doi.org/10.1176/appi.books.9780890425596
    [2] American Psychiatric Association (2022) Diagnostic and statistical manual of mental disorders. 5 Eds., text revision. American Psychiatric Publishing. https://doi/book/10.1176/appi.books.9780890425787
    [3] First MB, Yousif LH, Clarke DE, et al. DSM-5-TR: overview of what's new and what's changed. World Psychiatry 21: 218-219. https://doi.org/10.1002/wps.20989
    [4] Salvo MD (2024) Autism Research between Psychology and Neuroscience. Palgrave Macmillan. https://doi.org/10.1007/978-3-031-68338-1
    [5] Baron-Cohen S (2002) The extreme male brain theory of autism. Trends Cogn Sci 6: 248-254. https://doi.org/10.1016/s1364-6613(02)01904-6
    [6] Johnson CP, Myers SM (2007) Identification and evaluation of children with autism spectrum disorders. Pediatrics 120: 1183-1215. https://doi.org/10.1542/peds.2007-2361
    [7] Wing L (1990) What is autism?, In: Ellis, K. Editor, Autism. Therapy in Practice Series. Boston: Springer. https://doi.org/10.1007/978-1-4899-6924-8_1
    [8] Baron-Cohen S (2017) Editorial perspective: neurodiversity—a revolutionary concept for autism and psychiatry. J Child Psychol Psychiatry 58: 744-747. https://doi.org/10.1111/jcpp.12703
    [9] Baron-Cohen S (2020) The Pattern Seekers. Basic Books.
    [10] Baron-Cohen S, Ring HA, Bullmore ET, et al. (2000) The amygdala theory of autism. Neurosci Biobehav Rev 24: 355-364. https://doi.org/10.1016/s0149-7634(00)00011-7
    [11] Frith U, Happé F (1994) Autism: beyond “theory of mind”. Cognition 50: 115-132. https://doi.org/10.1016/0010-0277(94)90024-8
    [12] Hill EL (2004) Executive dysfunction in autism. Trends Cogn Sci 8: 26-32. https://doi.org/10.1016/j.tics.2003.11.003
    [13] Lord C, Elsabbagh M, Baird G, et al. (2018) Autism spectrum disorder. Lancet 392: 508-520. https://doi.org/10.1016/S0140-6736(18)31129-2
    [14] Muhle R, Trentacoste SV, Rapin I (2004) The genetics of autism. Pediatrics 113: e472-e486. https://doi.org/10.1542/peds.113.5.e472
    [15] Baron-Cohen S (2000) Theory of mind and autism: a review. Int Rev Res Ment Retard 23: 169-184. https://doi.org/10.1016/S0074-7750(00)80010-5
    [16] Baron-Cohen S (2009) Autism: the empathizing–systemizing (E-S) theory. Ann N Y Acad Sci 1156: 68-80. https://doi.org/10.1111/j.1749-6632.2009.04467.x
    [17] Baron-Cohen S, Lombardo MV, Auyeung B, et al. (2011) Why are autism spectrum conditions more prevalent in males?. PLoS Biol 9: e1001081. https://doi.org/10.1371/journal.pbio.1001081
    [18] Buescher AV, Cidav Z, Knapp M, et al. (2014) Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatr 168: 721-728. https://doi.org/10.1001/jamapediatrics.2014.210
    [19] Fombonne E (1999) The epidemiology of autism: a review. Psychol Med 29: 769-786. https://doi.org/10.1017/s0033291799008508
    [20] Fombonne E (2003) The prevalence of autism. JAMA 289: 87-89. https://doi.org/10.1001/jama.289.1.87
    [21] Frith U, Mira M (1992) Autism and Asperger syndrome. Focus Autist Behav 7: 13-15. https://doi.org/10.1177/108835769200700302
    [22] Happé F, Ronald A, Plomin R (2006) Time to give up on a single explanation for autism. Nat Neurosci 9: 1218-1220. https://doi.org/10.1038/nn1770
    [23] Lord C, Cook EH, Leventhal BL, et al. (2000) Autism spectrum disorders. Neuron 28: 355-363. https://doi.org/10.1016/s0896-6273(00)00115-x
    [24] Lord C, Brugha TS, Charman T, et al. (2020) Autism spectrum disorder. Nat Rev Dis Primers 6: 5. https://doi.org/10.1038/s41572-019-0138-4
    [25] Lyall K, Croen L, Daniels J, et al. (2017) The changing epidemiology of autism spectrum disorders. Annu Rev Public Health 38: 81-102. https://doi.org/10.1146/annurev-publhealth-031816-044318
    [26] Myers SM, Johnson CP, American Academy of Pediatrics Council on Children with Disabilities (2007) Management of children with autism spectrum disorders. Pediatrics 120: 1162-1182. https://doi.org/10.1542/peds.2007-2362
    [27] Newschaffer CJ, Croen LA, Daniels J, et al. (2007) The epidemiology of autism spectrum disorders. Annu Rev Public Health 28: 235-258. https://doi.org/10.1146/annurev.publhealth.28.021406.144007
    [28] Robertson CE, Baron-Cohen S (2017) Sensory perception in autism. Nat Rev Neurosci 18: 671-684. https://doi.org/10.1038/nrn.2017.112
    [29] Rogers SJ, Vismara LA (2008) Evidence-based comprehensive treatments for early autism. J Clin Child Adolesc Psychol 37: 8-38. https://doi.org/10.1080/15374410701817808
    [30] Scassellati B, Admoni H, Matarić M (2012) Robots for use in autism research. Annu Rev Biomed Eng 14: 275-294. https://doi.org/10.1146/annurev-bioeng-071811-150036
    [31] Simmons DR, Robertson AE, McKay LS, et al. (2009) Vision in autism spectrum disorders. Vision Res 49: 2705-2739. https://doi.org/10.1016/j.visres.2009.08.005
    [32] Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 1: 352-358. https://doi.org/10.1016/s1474-4422(02)00160-6
    [33] Volkmar FR, Lord C, Bailey A, et al. (2004) Autism and pervasive developmental disorders. J Child Psychol Psychiatry 45: 135-170. https://doi.org/10.1046/j.0021-9630.2003.00317.x
    [34] Zeidan J, Fombonne E, Scorah J, et al. (2022) Global prevalence of autism: a systematic review update. Autism Res 15: 778-790. https://doi.org/10.1002/aur.2696
    [35] Bottini SB, Morton HE, Buchanan KA, et al. (2023) Moving from disorder to difference: a systematic review of recent language use in autism research. Autism Adulthood 6: 128-140. https://doi.org/10.1089/aut.2023.0030
    [36] Wing L, Gould J (1979) Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J Autism Dev Disord 9: 11-29. https://doi.org/10.1007/BF01531288
    [37] Sukhareva GE (1926) Die schizoiden Psychopathien im Kindesalter (Schizoid psychopathies in childhood). (Part 1 of 2). Monatsschrift für Psychiatrie und Neurologie 60: 235-247. https://doi.org/10.1159/000190478 (Article in German)
    [38] Sukhareva GE (1926) Die schizoiden Psychopathien im Kindesalter (Schizoid psychopathies in childhood). (Part 2 of 2). Monatsschrift für Psychiatrie und Neurologie 60: 248-261. https://doi.org/10.1159/000316609 (Article in German)
    [39] Sukhareva GE (1927) Die Besonderheiten der schizoiden Psychopathien bei den Madchen (The characteristics of schizoid psychopaths in girls). (Part 1 of 2). Monatsschrift für Psychiatrie und Neurologie 62: 171-185. https://doi.org/10.1159/000166291 (Article in German)
    [40] Sukhareva GE (1927) Die Besonderheiten der schizoiden Psychopathien bei den Madchen (The characteristics of schizoid psychopaths in girls). (Part 2 of 2). Monatsschrift für Psychiatrie und Neurologie 62: 186-200. https://doi.org/10.1159/000323311 (Article in German)
    [41] Rebecchi K (2022) Autistic Children - Grunya Sukhareva. Kindle Direct Publishing.
    [42] Asperger H (1938) Das psychisch abnorme kind (The mentally abnormal child). Wiener Klinische Wochenschrift 51: 1314-1317.
    [43] Asperger H (1944) Die “Autistischen Psychopathen” im Kindesalter (The “Autistic Psychopaths” in childhood), In: Archiv für Psychiatrie und Nervenkrankheiten, 117: 76-136.
    [44] Rebecchi K (2021) Autistic Children - Hans Asperger. Kindle Direct Publishing.
    [45] Rebecchi K (2023) Autism: The Founding Writings of Hans Asperger. Kindle Direct Publishing.
    [46] Rebecchi K (2024) “Early childhood autism, Asperger type”, by H. Asperger (1982). Hist Psychiatry 35: 363-376. https://doi.org/10.1177/0957154X241248261
    [47] Kanner L (1943) Autistic disturbances of affective contact. Nervous Child 2: 217-250.
    [48] Kanner L (1971) Follow-up study of eleven autistic children originally reported in 1943. J Autism Child Schizophr 1: 119-145. https://doi.org/10.1007/bf01537953
    [49] Frankl G (1957) Autism in childhood: an attempt of an analysis (unpublished manuscript). Lawrence, KS: Kenneth Spencer Research Library, The University of Kansas.
    [50] Wing L (1981) Asperger's syndrome: a clinical account. Psychol Med 11: 115-129. https://doi.org/10.1017/s0033291700053332
    [51] Feinstein A (2010) A History of Autism Conversations with the Pioneers. Chichester Wiley-Blackwell.
    [52] Chapman R (2020) The reality of autism: on the metaphysics of disorder and diversity. Philos Psychol 33: 799-819. https://doi.org/10.1080/09515089.2020.1751103
    [53] Fein E (2020) Living on the Spectrum: Autism and Youth in Community. NYU Press.
    [54] Haraway D (1988) Situated knowledges: the science question in feminism as a site of discourse on the privilege of perspective. Feminist Studies 14: 575-599.
    [55] Chapman R (2023) Empire of Normality. Pluto Press.
    [56] Limburg J (2021) Letters To My Weird Sisters. Atlantic Books.
    [57] Evans B (2013) How autism became autism: the radical transformation of a central concept of child development in Britain. Hist Human Sci 26: 3-31. https://doi.org/10.1177/0952695113484320
    [58] Evans B (2027) The metamorphosis of autism. Available from: https://doi.org/10.26530/oapen_625488
    [59] McGrath J (2017) Naming Adult Autism: Culture, Science, Identity. Rowman & Littlefield International.
    [60] Frith U (1991) Autism and Asperger Syndrome. Cambridge University Press.
    [61] Thurm A, Farmer C, Salzman E, et al. (2019) State of the field: differentiating intellectual disability from autism spectrum disorder, In: Stavropoulos, K.K.M., McPartland, J.C., Editors. Front Psychiatry 10: 526. https://doi.org/10.3389/fpsyt.2019.00526
    [62] Blacher J, Baker BL, Moody CT (2022) Autism spectrum disorder versus intellectual disability, In: Stavropoulos, K.K.M., McPartland, J.C., Editors, Differential Diagnosis of Autism Spectrum Disorder. New York: Oxford Academic, 22-43. https://doi.org/10.1093/med-psych/9780197516881.003.0002
    [63] Engel-Yeger B, Hardal-Nasser R, Gal E (2011) Sensory processing dysfunctions as expressed among children with different severities of intellectual developmental disabilities. Res Dev Disabil 32: 1770-1775. https://doi.org/10.1016/j.ridd.2011.03.005
    [64] Mauerberg-deCastro E, Cozzani MV, Polanczyk SD, et al. (2009) Motor perseveration during an “A not B” task in children with intellectual disabilities. Hum Mov Sci 28: 818-832. https://doi.org/10.1016/j.humov.2009.07.010
    [65] van Santen JP, Sproat RW, Hill AP (2013) Quantifying repetitive speech in autism spectrum disorders and language impairment. Autism Res 6: 372-383. https://doi.org/10.1002/aur.1301
    [66] Gellini H, Marczak M (2024) “I always knew I was different”: experiences of receiving a diagnosis of autistic spectrum disorder in adulthood—a meta-ethnographic systematic review. Rev J Autism Dev Disord 11: 620-639. https://doi.org/10.1007/s40489-023-00356-8
    [67] Singer J (1998) Odd people in: the birth of community amongst people on the autistic spectrum. (Bachelor's thesis). University of Technology Sydney.
    [68] Singer J (2017) Neurodiversity: The Birth of an Idea. Independently published.
    [69] Singer J (2019) What is neurodiversity? Reflections on neurodiversity.
    [70] Sinclair J (1999) Don't Mourn for Us. Autistic Rights Movement UK.
    [71] Duchan JF (1985) Autistic behavior: deviant or different. Australian J Hum Commun Disord 13: 3-8. https://doi.org/10.3109/asl2.1985.13.issue-2.01
    [72] Wolfensberger W (1980) Research, empiricism, and the principle of normalization. SRV J 2: 29-35.
    [73] Silberman S (2015) Neurotribes: The Legacy of Autism and the Future of Neurodiversity. Avery.
    [74] Mottron L (2021) A radical change in our autism research strategy is needed: back to prototypes. Autism Res 14: 2213-2220. https://doi.org/10.1002/aur.2494
    [75] Mottron L, Bzdok D (2020) Autism spectrum heterogeneity: fact or artifact?. Mol Psychiatry 25: 3178-3185. https://doi.org/10.1038/s41380-020-0748-y
    [76] Taboas A, Doepke K, Zimmerman C (2022) Preferences for identity-first versus person-first language in a US sample of autism stakeholders. Autism 27: 565-570. https://doi.org/10.1177/13623613221130845
    [77] Miller D, Rees J, Pearson A (2021) “Masking is life”: experiences of masking in autistic and nonautistic adults. Autism Adulthood 3: 330-338. https://doi.org/10.1089/aut.2020.0083
    [78] Cridland EK, Jones SC, Caputi P, et al. (2014) Being a girl in a boys' world: investigating the experiences of girls with autism spectrum disorders during adolescence. J Autism Dev Disord 44: 1261-1274. https://doi.org/10.1007/s10803-013-1985-6
    [79] Roane HS, Fisher WW, Carr JE (2016) Applied behavior analysis as treatment for autism spectrum disorder. J Pediatr 175: 27-32. https://doi.org/10.1016/j.jpeds.2016.04.023
    [80] Carmona-Serrano N, López-Belmonte J, López-Núñez JA, et al. (2020) Trends in autism research in the field of education in web of science: a bibliometric study. Brain Sci 10: 1018. https://doi.org/10.3390/brainsci10121018
    [81] Graff HJ, Berkeley S, Evmenova AS, et al. (2014) Trends in autism research: a systematic journal analysis. Exceptionality 22: 158-172. https://doi.org/10.1080/09362835.2013.865532
    [82] Cage E, Crompton CJ, Dantas S, et al. (2024) What are the autism research priorities of autistic adults in Scotland?. Autism 28: 2179-2190. https://doi.org/10.1177/13623613231222656
    [83] Pellicano E, Dinsmore A, Charman T (2014) What should autism research focus upon? Community views and priorities from the United Kingdom. Autism 18: 756-770. https://doi.org/10.1177/1362361314529627
    [84] Roche L, Adams D, Clark M (2020) Research priorities of the autism community: a systematic review of key stakeholder perspectives. Autism 25: 336-348. https://doi.org/10.1177/1362361320967790
    [85] Garcia E (2021) We're Not Broken. HarperCollins.
    [86] Grinker RR (2015) Reframing the science and anthropology of autism. Cult Med Psychiatry 39: 345-350. https://doi.org/10.1007/s11013-015-9444-9
    [87] Price D (2022) Unmasking Autism: Discovering the New Faces of Neurodiversity. Harmony Books.
    [88] Eyal G, Hart B, Onculer E, et al. (2010) The autism matrix: the social origins of the autism epidemic. Polity Press.
    [89] Mottron L (2016) Is autism a different kind of intelligence? New insights from cognitive neurosciences. Bull Acad Natl Med 200: 423-434. https://doi.org/10.1016/S0001-4079(19)30719-8 (Article in French)
    [90] Mottron L (2024) Si l'autisme n'est pas une maladie, qu'est-ce? (If autism is not a disease, what is it?). Mardaga. (Book in French).
    [91] Grinker RR (2019) Autism, “Stigma,” Disability. Curr Anthropol 61. https://doi.org/10.1086/705748
    [92] Waltz M (2023) Autism: A Social and Medical History. Springer Nature.
    [93] Murray S (2008) Representing Autism: Culture, Narrative, Fascination. Liverpool University Press.
    [94] Nordahl-Hansen A (2017) Atypical: a typical portrayal of autism?. Lancet Psychiatry 4: 837-838. https://doi.org/10.1016/S2215-0366(17)30397-8
    [95] Horn JL (1989) Cognitive diversity: A framework of learning, In: Ackerman, D.P.L., Sternberg R.J., Glaser, R. Editors. Learning and individual differences: Advances in theory and research. W. H. Freeman, 61-116.
    [96] Stich S (1988) Reflective equilibrium, analytic epistemology and the problem of cognitive diversity. Synthese 74: 391-413.
    [97] Corbey R, Leerssen J (1991) Studying alterity: backgrounds and perspectives. In: Alterity, Identity, Image: Selves and Others in Society and Scholarship. Amsterdam: Rodopi.
    [98] Wulf C (2016) Exploring Alterity in a Globalized World. Routledge.
    [99] Schröder P (1938) Kinderpsychiatrie (Child Psychiatry). Monatsschrift für Psychiatrie und Neurologie 99: 267-293. https://doi.org/10.1159/000148673 (Article in German)
    [100] Scheepers F (2021) Mensen zijn ingewikkeld: Een pleidooi voor acceptatie van de werkelijkheid en het loslaten van modeldenken (People are complicated: A plea for acceptance of reality and letting go of model thinking). De Arbeiderspers. (Book in Dutch).
    [101] Plomin R (2018) Blueprint: How DNA Makes Us Who We Are. Allen Lane.
    [102] Rebecchi K (2023) Neurodiversité et autisme: entre handicap et différence, science et idéologie. Revue de la neurodiversité (Neurodiversity and autism: between disability and difference, science and ideology). 1: 25-51. hal-04142256. https://doi.org/10.31234/osf.io/bksxn (Article in French)
    [103] Hyman SE (2021) Psychiatric disorders: grounded in human biology but not natural kinds. Perspect Biol Med 64: 6-28. https://doi.org/10.1353/pbm.2021.0002
    [104] Cosgrove L, Krimsky S (2012) A comparison of DSM-IV and DSM-5 panel members' financial associations with industry: a pernicious problem persists. PLoS Med 9: e1001190. https://doi.org/10.1371/journal.pmed.1001190
    [105] Davis LC, Diianni AT, Drumheller SR, et al. (2024) Undisclosed financial conflicts of interest in DSM-5-TR: cross sectional analysis. BMJ 384: e076902. https://doi.org/10.1136/bmj-2023-076902
    [106] Bervoets J, Hens K (2020) Going beyond the Catch-22 of autism diagnosis and research. The moral implications of (Not) asking “What Is Autism?”. Front Psychol 11: 529193. https://doi.org/10.3389/fpsyg.2020.529193
    [107] Feyerabend P (1975) Against Method: Outline of an Anarchistic Theory of Knowledge. University of Minnesota Press.
    [108] Canguilhem G (2012) On the Normal and the Pathological. Springer Science & Business Media.
    [109] Foucault M (1972) Histoire de la folie à l'âge classique (History of Madness in the Classical Age). Gallimard. (Book in French).
    [110] Frances A (2014) Saving normal: An Insider's Revolt Against Out-of-Control Psychiatric Diagnosis, DSM-5, Big Pharma, and the Medicalization of Ordinary Life. William Morrow Paperbacks.
    [111] Szasz TS (1973) The Second Sin. Anchor Press.
  • This article has been cited by:

    1. Rebai Billel, Contribution to study the effect of (Reuss, LRVE, Tamura) models on the axial and shear stress of sandwich FGM plate (Ti–6A1–4V/ZrO2) subjected on linear and nonlinear thermal loads, 2023, 10, 2372-0484, 26, 10.3934/matersci.2023002
    2. Grzegorz Ludwik Golewski, Mechanical properties and brittleness of concrete made by combined fly ash, silica fume and nanosilica with ordinary Portland cement, 2023, 10, 2372-0484, 390, 10.3934/matersci.2023021
    3. Adel Esmaeili, Bijan Mohammadi, Alireza Yousefi, Fracture parameters and crack initiation Assessment Employing Mixed-mode I/II Fracture Criterion in Laminate Composites Using Digital Image Correlation Method, 2023, 127, 01678442, 104095, 10.1016/j.tafmec.2023.104095
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(557) PDF downloads(37) Cited by(0)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog