Citation: Xinqi Dong, E-Shien Chang, Stephanie Bergren. The Prevalence of Musculoskeletal Symptoms among Chinese older Adults in the Greater Chicago Area—Findings from the PINE Study[J]. AIMS Medical Science, 2014, 1(2): 87-102. doi: 10.3934/medsci.2014.2.87
[1] | Zhen Jin, Guiquan Sun, Huaiping Zhu . Epidemic models for complex networks with demographics. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295 |
[2] | Wenzhang Huang, Maoan Han, Kaiyu Liu . Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences and Engineering, 2010, 7(1): 51-66. doi: 10.3934/mbe.2010.7.51 |
[3] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
[4] | Jinzhe Suo, Bo Li . Analysis on a diffusive SIS epidemic system with linear source and frequency-dependent incidence function in a heterogeneous environment. Mathematical Biosciences and Engineering, 2020, 17(1): 418-441. doi: 10.3934/mbe.2020023 |
[5] | Pengfei Liu, Yantao Luo, Zhidong Teng . Role of media coverage in a SVEIR-I epidemic model with nonlinear incidence and spatial heterogeneous environment. Mathematical Biosciences and Engineering, 2023, 20(9): 15641-15671. doi: 10.3934/mbe.2023698 |
[6] | Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141 |
[7] | Ruixia Zhang, Shuping Li . Analysis of a two-patch SIS model with saturating contact rate and one- directing population dispersal. Mathematical Biosciences and Engineering, 2022, 19(11): 11217-11231. doi: 10.3934/mbe.2022523 |
[8] | James M. Hyman, Jia Li . Epidemic models with differential susceptibility and staged progression and their dynamics. Mathematical Biosciences and Engineering, 2009, 6(2): 321-332. doi: 10.3934/mbe.2009.6.321 |
[9] | Maoxing Liu, Jie Zhang, Zhengguang Li, Yongzheng Sun . Modeling epidemic in metapopulation networks with heterogeneous diffusion rates. Mathematical Biosciences and Engineering, 2019, 16(6): 7085-7097. doi: 10.3934/mbe.2019355 |
[10] | Cruz Vargas-De-León, Alberto d'Onofrio . Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences and Engineering, 2017, 14(4): 1019-1033. doi: 10.3934/mbe.2017053 |
In this paper, we are concerned with the following susceptible-infected-susceptible(SIS) model
$ {St=(dSSx−a′(x)S)x−β(x)SIS+I+γ(x)I, 0<x<L, t>0,It=(dIIx−a′(x)I)x+β(x)SIS+I−γ(x)I, 0<x<L, t>0,dSSx−a′(x)S=dIIx−a′(x)I=0, x=0,L, t>0,S(x,0)=S0(x), I(x,0)=I0(x),0<x<L. $ | (1.1) |
Here $ S(x, t) $ and $ I(x, t) $ denote the density of susceptible and infected individuals in a given spatial interval $ (0, L) $, $ d_S $ and $ d_I $ are positive constants which stand for the diffusion coefficients for the susceptible and infected populations, $ a'(x) $ is a smooth nonnegative function which represents the advection speed rate, while $ \beta(x) $ and $ \gamma(x) $ represent the rates of disease transmission and recovery at location x, which are Hölder continuous functions on $ (0, L) $. In addition, $ S_0(x) $ and $ I_0(x) $ are continuous and satisfy
$ (A1)\qquad \quad S_0(x)\geq 0\ {\rm and}\ I_0(x)\geq 0\ {\rm for}\ x\in (0, L), \quad \int_0^L I_0(x)dx > 0. $ |
We would like to give the survey of some results on SIS model. In [1], Allen et al. investigated a discrete SIS model, in [2], they also proposed the SIS model with no advection in a given spatial region $ \Omega $, where they dealt with the existence, uniqueness and asymptotic behaviors of the endemic equilibrium as the diffusion rate of the susceptible individuals approaches to zero. Many authors also considered the SIS reaction–diffusion model, including the global stability of the endemic equilibrium, the effects of large and small diffusion rates of the susceptible and infected population on the persistence and extinction of the disease, discuss how the disease vanish or spreading in high-risk or low-risk domain, and so on. For the dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, we can see[3]. For A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, we can see [4]. For Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, we can see[5], For Concentration profile of endemic equilibrium of a reaction- diffusion-advection SIS epidemic model, we can see [6]. For the varying total population enhances disease persistence, we can see [7]; For the asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model, we can see [8]. For the global stability of the steady states of an SIS epidemic reaction-diffusion model, we can see [9]. For the asymptotic profile of the positive steady state for an SIS epidemic reaction- diffusion model: effects of epidemic risk and population movement, we can see [10]; For reaction-diffusion SIS epidemic model in a time-periodic environment, we can see [11]. For the global dynamics and traveling waves for a periodic and diffusive chemostat model with two nutrients and one microorganism, we can see [12]. For more information about dynamical systems in population biology, we also can refer to see [13] and the references therein. Recently, Cui and Lou studied (1.1) when $ a'(x)\equiv q $ for $ x\in [0, L] $ in [14], that is, it is a constant advection. Besides establishing the asymptotic stability of the unique disease-free equilibrium(DFE) when $ \mathcal{R}_0 < 1 $ and the existence of the endemic equilibrium when $ \mathcal{R}_0 > 1 $, they found that the DFE changes its stability at most once as $ d_I $ varies from zero to infinity, which is strong contrast with the case of no advection. Since (1.1) has vary advection, an natural and interesting question is whether we can establish the similar results on (1.1) to those in the case of no advection or not.
Since the functions $ a'(x) $, $ \beta(x) $, $ \gamma(x) $, $ S_0(x) $ and $ I_0(x) $ are continuous in $ (0, L) $, by the standard theory for a system of semilinear parabolic equations, (1.1) is locally wellposedness in $ (0, T_{\max}) $. Noticing (A1), by the maximum principle, $ S(x, t) $ and $ I(x, t) $ are positive and bounded for $ x\in [0, L] $ and $ t\in (0, T_{\max}) $. Hence, by the results in [15], $ T_{\max} = \infty $ and (1.1) posses a unique classical solution $ (S(x, t), I(x, t)) $ for all time.
It is easy to verify that
$ ∫L0[S(x,t)+I(x,t)]dx=∫L0[S(x,0)+I(x,0)]dx:=N>0,t>0. $ | (1.2) |
Inspired by [2] and [14], we say that $ (0, L) $ is a low-risk domain if $ \int_0^L\beta(x)dx < \int_0^L\gamma(x)dx $ and high-risk domain if $ \int_0^L\beta(x)dx > \int_0^L\gamma(x)dx $.
The corresponding equilibrium system of (1.1) is
$ {(dS˜Sx−a′(x)˜S)x−β(x)˜S˜I˜S+˜I+γ(x)˜I=0, 0<x<L,(dI˜Ix−a′(x)˜I)x+β(x)˜S˜I˜S+˜I−γ(x)˜I=0, 0<x<L,dS˜Sx−a′(x)˜S=dI˜Ix−a′(x)˜I=0, x=0,L. $ | (1.3) |
The half trivial solution $ (\tilde{S}(x), 0) $ of (1.3) is called a disease-free equilibrium(DFE), while the solution $ (\tilde{S}(x), \tilde{I}(x)) $ of (1.3) is called endemic equilibrium(EE) if $ \tilde{I}(x) > 0 $ for some $ x\in (0, L) $.
We also introduce the following basic reproduction number as those in literatures [2] and [14]. We also can refer to [16] and see the definition and the computation of the basic reproduction ratio $ R_0 $ in models for infectious diseases in heterogeneous populations, refer to [17] and see reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, see basic reproduction numbers for reaction-diffusion epidemic models [18].
$ R0=supφ∈H1((0,L)),φ≠0{∫L0β(x)ea(x)dIφ2dxdI∫L0ea(x)dIφ2xdx+∫L0γ(x)ea(x)dIφ2dx}. $ | (1.4) |
Our first result is concerned with the qualitative properties for $ \mathcal{R}_0 $.
Theorem 1.1. Let $ \hat{\mathcal{R}}_0 $ be the basic reproduction number when $ a(x)\equiv 0 $ which was introduced in [2]. Then the following conclusions hold.
(1) For any given $ a'(x) > 0 $, $ \mathcal{R}_0\rightarrow \frac{\beta(L)}{\gamma(L)} $ as $ d_I\rightarrow 0 $ and $ \mathcal{R}_0\rightarrow \frac{\int_0^L\beta(x)dx}{\int_0^L\gamma(x)dx} $ as $ d_I\rightarrow +\infty $;
(2) For any given $ d_I > 0 $, $ \mathcal{R}_0\rightarrow \hat{\mathcal{R}}_0 $ as $ \max_{x\in [0, L]}a'(x)\rightarrow 0 $ and $ \mathcal{R}_0\rightarrow \frac{\beta(L)}{\gamma(L)} $ as $ \min_{x\in [0, L]}a'(x)\rightarrow +\infty $;
(3) If $ \beta(x) > (<) \gamma(x) $ on $ [0, L] $, then $ \mathcal{R}_0 > (<1) $ for any given $ d_I > 0 $ and $ a'(x) > 0 $.
Our second result deals with the stability of DFE, which will extend those of [2] and [14].
Theorem 1.2. The DFE is unstable if $ \mathcal{R}_0 > 1 $ while it is globally asymptotically stable if $ \mathcal{R}_0 < 1 $.
We will analyze (1.1) under the following assumptions on $ \beta(x) $ and $ \gamma(x) $:
(C1) $ \beta(0)-\gamma(0) < 0 < \beta(L)-\gamma(L) $, i.e., $ \beta(x)-\gamma(x) $ changes sign from negative to positive,
or
(C2) $ \beta(0)-\gamma(0) > 0 > \beta(L)-\gamma(L) $, i.e., $ \beta(x)-\gamma(x) $ changes sign from positive to negative.
In the point view of biological,
(C1) all lower-risk sites are located at the upstream and all high-risk sites are at the downstream,
or
(C2) all high-risk sites are distributed at the upstream and lower-risk sites are at the downstream.
To state other results, in convenience, let $ q = \max_{x\in [0, L]}a'(x) $ and denote $ a(x) = q\tilde{a}(x) $ sometimes in the sequels.
We can get further properties of $ \mathcal{R}_0 $ when $ \int_0^L \beta(x)dx > \int_0^L \gamma(x)dx $.
Theorem 1.3. Assume that $ \int_0^L \beta(x)dx > \int_0^L \gamma(x)dx $. Denote $ \mathcal{R}_0 = \mathcal{R}_0(d_I, q) $.
(i) If (C1) holds, then the DFE is unstable for any $ q > \min_{x\in [0, L]}a'(x) > 0 $ and $ d_I > 0 $;
(ii) If (C2) holds, then there exists a unique curve in $ d_I $–$ q $ plane
$ \Gamma_1 = \{(d_I, \rho_1(d_I)): \mathcal{R}_0(d_I, \rho_1(d_I)) = 1, \quad d_I\in (0, +\infty)\} $ |
with the function $ \rho_1 = \rho_1(d_I): (0, +\infty)\rightarrow (0, +\infty) $ satisfying
$ \lim\limits_{d_I\rightarrow 0+} \rho_1(d_I) = 0, \quad \lim\limits_{d_I\rightarrow +\infty} \frac{\rho_1(d_I)}{d_I} = \theta_1, $ |
and such that for every $ d_I > 0 $, the DFE is unstable for $ 0 < \min_{x\in [0, L]}a'(x) < q < \rho_1(d_I) $ and it is globally and asymptotically stable for $ q > \min_{x\in [0, L]}a'(x) > \rho_1(d_I) $.
Here $ \theta_1 $ is the unique positive solution of
$ \int_0^L [\beta(x)-\gamma(x)]e^{\theta_1 \tilde{a}(x)}dx = 0. $ |
Similarly, we can get further properties of $ \mathcal{R}_0 $ when $ \int_0^L \beta(x)dx < \int_0^L \gamma(x)dx $.
Theorem 1.4. Assume that $ \int_0^L \beta(x)dx < \int_0^L \gamma(x)dx $. Let $ d^*_I $ is the unique positive root of the equation $ \hat{\mathcal{R}}_0 = 1 $, where $ \hat{\mathcal{R}}_0 $ was introduced in [2].
(1) If (C1) holds, then the DFE is unstable for any $ q > \min_{x\in [0, L]}a'(x) > 0 $ and $ d_I\in (0, d^*_I] $, while for $ d_I\in (d^*_I, +\infty) $ there exists a unique curve in $ d_I $–$ q $ plane
$ \Gamma_2 = \{(d_I, \rho_2(d_I)): \mathcal{R}_0(d_I, \rho_2(d_I)) = 1, \quad d_I\in (d^*_I, +\infty)\} $ |
with the monotone function $ \rho_2 = \rho_2(d_I): (d^*_I, +\infty)\rightarrow (0, +\infty) $ satisfying
$ \lim\limits_{d_I\rightarrow d^*_I+} \rho_2(d_I) = 0, \quad \lim\limits_{d_I\rightarrow +\infty} \frac{\rho_2(d_I)}{d_I} = \theta_2, $ |
and such that the DFE is unstable for $ 0 < \min_{x\in [0, L]}a'(x) < q < \rho_2(d_I) $ and it is globally asymptotically stable for $ q > \min_{x\in [0, L]}a'(x) > \rho_2(d_I) $.
Here $ \theta_2 $ is the unique positive solution of
$ \int_0^L [\beta(x)-\gamma(x)]e^{\theta_2 \tilde{a}(x)}dx = 0. $ |
(2) If (C2) holds, then for $ d_I\in (0, d^*_I) $, there exists a unique curve in $ d_I-q $ plane
$ \Gamma_3 = \{(d_I, \rho_3(d_I)): \mathcal{R}_0(d_I, \rho_3(d_I)) = 1, \quad d_I\in (0, d^*_I)\} $ |
with the function $ \rho_3 = \rho_3(d_I): (0, d^*_I)\rightarrow (0, +\infty) $ satisfying
$ \lim\limits_{d_I\rightarrow 0+} \rho_3(d_I) = 0, \quad \lim\limits_{d_I\rightarrow d^*_I-} \rho_3(d_I) = 0, $ |
and such that the DFE is unstable for $ 0 < \min_{x\in [0, L]}a'(x) < q < \rho_3(d_I) $ and it is globally and asymptotically stable for $ q > \min_{x\in [0, L]}a'(x) > \rho_3(d_I) $, while for $ d_I\in (d^*_I, +\infty) $, the DFE is globally and asymptotically stable for any $ q > \min_{x\in [0, L]}a'(x) > 0 $.
The following theorem deals with the existence of $ EE $.
Theorem 1.5. Assume that $ \beta(x)-\gamma(x) $ changes sign once in $ (0, L) $. If $ \mathcal{R}_0 > 1 $, then problem (1.3) possesses at least one EE.
The last theorem will consider the results on (1.1) when $ \beta(x)-\gamma(x) $ changes sign twice in $ (0, L) $.
Theorem 1.6. Assume that $ \beta(x)-\gamma(x) $ changes sign twice in $ (0, L) $.
(1) If $ \int_0^L \beta(x)dx > \int_0^L \gamma(x)dx $ and $ \beta(L) < \gamma(L) $, then there exists some positive constant $ \Lambda $ which is independent of $ d_I $ and $ q $ such that for every $ d_I > \Lambda $, we can find a positive constant $ Q $ which depends on $ d_I $ such that $ \mathcal{R}_0 > 1 $ when $ 0 < \min_{x\in [0, L]}a'(x) < q < Q $ and $ \mathcal{R}_0 < 1 $ when $ q > Q $.
(2) If $ \int_0^L \beta(x)dx > \int_0^L \gamma(x)dx $ and $ \beta(L) > \gamma(L) $, then there exists some positive constant $ \Lambda $ which is independent of $ d_I $ and $ q $ such that for every $ d_I > \Lambda $ one of the following conclusions holds:
(i) $ \mathcal{R}_0 > 1 $ for any $ q > \min_{x\in [0, L]}a'(x) > 0 $;
(ii) There exists a positive constant $ \hat{Q} $ which is independent of $ d_I $ and satisfies that $ \mathcal{R}_0 > 1 $ for $ q\neq \hat{Q} $ and $ \mathcal{R}_0 = 1 $ when $ q = \hat{Q} $;
(iii) There exist two positive constants $ Q_2 > Q_1 $ both depending on $ d_I $ such that $ \mathcal{R}_0 > 1 $ when $ q\in (0, Q_1)\cup (Q_2, +\infty) $ while $ \mathcal{R}_0 < 1 $ when $ q\in (Q_1, Q_2) $.
(3) If $ \int_0^L \beta(x)dx < \int_0^L \gamma(x)dx $ and $ \beta(L) > \gamma(L) $, then there exists some positive constant $ \Lambda > d^*_I $ which is independent of $ d_I $ and $ q $ such that for every $ d_I > \Lambda $, we can find a positive constant $ Q $ which depends on $ d_I $ such that $ \mathcal{R}_0 < 1 $ when $ 0 < \min_{x\in [0, L]}a'(x) < q < Q $ and $ \mathcal{R}_0 > 1 $ when $ q > Q $.
(4) If $ \int_0^L \beta(x)dx < \int_0^L \gamma(x)dx $ and $ \beta(L) < \gamma(L) $, then there exists some positive constant $ \Lambda > d^*_I $ which is independent of $ d_I $ and $ q $ such that for every $ d_I > \Lambda $ one of the following conclusions holds:
(iv) $ \mathcal{R}_0 < 1 $ for any $ q > \min_{x\in [0, L]}a'(x) > 0 $;
(v) There exists a positive constant $ \hat{Q} $ which is independent of $ d_I $ and satisfies that $ \mathcal{R}_0 < 1 $ for $ q\neq \hat{Q} $ and $ \mathcal{R}_0 = 1 $ when $ q = \hat{Q} $;
(vi) There exist two positive constants $ Q_2 > Q_1 $ both depending on $ d_I $ and satisfy that $ \mathcal{R}_0 < 1 $ when $ q\in (0, Q_1)\cup (Q_2, +\infty) $ while $ \mathcal{R}_0 > 1 $ when $ q\in (Q_1, Q_2) $.
The rest of this paper is organized as follows. In Section 2, we give the proofs of Theorem 1.1 and Theorem 1.2. In Section 3, we will prove Theorem 1.3. In Section 4, we will prove Theorem 1.4. In Section 5, we will prove Theorem 1.5. In Section 6, we will prove Theorem 1.6.
In this section, we first give some qualitative properties of $ \mathcal{R}_0 $, then we deal with the stability of DFE, and we can finish the proofs of Theorem 1.1 and Theorem 1.2.
By the definition of $ \mathcal{R}_0 $, there exits some positive function $ \Phi(x)\in C^2([0, L]) $ such that
$ {−[dIΦx−a′(x)Φ]x+γ(x)Φ=1R0β(x)Φ,0<x<L,dIΦx(0)−a′(0)Φ(0)=0,dIΦx(L)−a′(L)Φ(L)=0. $ | (2.1) |
Letting $ \varphi(x) = e^{-\frac{a(x)}{d_I}}\Phi(x) $, we have
$ {−dIφxx−a′(x)φx+γ(x)φ=1R0β(x)φ,0<x<L,φx(0)=0,φx(L)=0. $ | (2.2) |
Linearizing (1.1) around $ (\hat{S}, 0) $ and letting $ \bar{\xi}(x, t) = S(x, t)-\hat{S}(x, t) $, $ \bar{\eta}(x, t) = I(x, t) $, we have
$ {ˉξt=(dSˉξx−a′(x)ˉξ)x−[β(x)−γ(x)]ˉη,0<x<L, t>0,ˉηt=(dIˉηx−a′(x)ˉη)x+[β(x)−γ(x)]ˉη,0<x<L, t>0. $ |
For the linear system, seeking for the solution which is separation of variables, i.e., $ \bar{\xi}(x, t) = e^{-\lambda t}\xi(x) $ and $ \bar{\eta}(x, t) = e^{-\lambda t}\eta(x) $, we have
$ {(dSξx−a′(x)ξ)x−[β(x)−γ(x)]η+λξ=0,0<x<L,(dIηx−a′(x)η)x+[β(x)−γ(x)]η+λη=0,0<x<L, $ | (2.3) |
subject to boundary conditions
$ {dSξx(0)−a′(0)ξ(0)=0,dSξx(L)−a′(L)ξ(L)=0,dSηx(0)−a′(0)η(0)=0,dSηx(L)−a′(L)η(L)=0. $ | (2.4) |
By the conservation of total population, we need to impose that
$ ∫L0[ξ(x)+η(x)]dx=0. $ | (2.5) |
Noticing that the second equation of (2.3) is independent of $ \xi $, letting $ \zeta(x) = e^{-\frac{a(x)}{d_I}}\eta(x) $, we only need to consider the following eigenvalue problem
$ {dIζxx+a′(x)ζx+[β(x)−γ(x)]ζ(x)+λζ(x)=0,0<x<L,ζx(0)=ζx(L)=0. $ | (2.6) |
By the results of [19], all the eigenvalues are real, the smallest eigenvalue $ \lambda_1(d_I, q) $ is simple, and its corresponding eigenfunction $ \phi_1 $ can be chosen positive.
We will show a fact below.
Lemma 2.1.1. For any $ d_I $ and $ q > \min_{x\in [0, L]}a'(x) > 0 $, $ \lambda_1(d_I, q) < 0 $ if $ \mathcal{R}_0 > 1 $, $ \lambda_1(d_I, q) = 0 $ if $ \mathcal{R}_0 = 1 $ and $ \lambda_1(d_I, q) > 0 $ if $ \mathcal{R}_0 < 1 $.
Proof. Note that $ (\lambda_1(d_I, q), \phi_1) $ satisfies
$ {−dI(ϕ1)xx−a′(x)(ϕ1)x+[γ(x)−β(x)]ϕ1(x)=λ1(dI,q)ϕ1(x), 0<x<L,(ϕ1)x(0)=(ϕ1)x(L)=0. $ | (2.7) |
Multiplying (2.1) by $ e^{\frac{a(x)}{d_I}}\phi_1 $ and (2.7) by $ e^{\frac{a(x)}{d_I}}\Phi $, integrating by parts in $ (0, L) $, and subtracting the resulting equations, we get
$ \int_0^L(\frac{1}{\mathcal{R}_0}-1)\beta(x)\Phi(x)\phi_1(x)dx = \int_0^L\lambda_1(d_I, q)\Phi(x)\phi_1(x)dx. $ |
Using the mean value theorem of integrating, we have
$ (\frac{1}{\mathcal{R}_0}-1)\beta(x_1)\Phi(x_1)\phi_1(x_1) = \lambda_1(d_I, q)\Phi(x_2)\phi_1(x_2) $ |
for some $ 0\leq x_1\leq L $ and $ 0\leq x_2\leq L $. Using $ \beta(x_1)\Phi(x_1)\phi_1(x_1) > 0 $ and $ \Phi(x_2)\phi_1(x_2) > 0 $, we know that
$ (\frac{1}{\mathcal{R}_0}-1)\quad {\rm has\ the\ same\ sign\ of}\quad \lambda_1(d_I, q), $ |
which implies the conclusions are true.
Lemma 2.1.2. If $ \frac{d_I}{q}\rightarrow 0 $ and $ \frac{d_I}{q^2}\rightarrow 0 $, $ \tilde{a}'(x) > \delta > 0 $ for some constant $ \delta $, then $ \mathcal{R}_0\rightarrow \frac{\beta(L)}{\gamma(L)} $.
Proof. Let $ w(x) = e^{-\frac{q}{d_I}A\tilde{a}(x)}\Phi(x) $, where $ \Phi(x) $ is the solution of (2.1), $ A $ is a constant which will be chosen later. It is easy to verify that $ w $ satisfies
$ { [q2A(A−1)dI(˜a′(x))2+q(A−1)˜a″(x)+1R0β(x)−γ(x)]w=−dIwxx+(1−2A)a′(x)wx,0<x<L, t>0,dIwx(0)=a′(0)(1−A)w(0),dIwx(L)=a′(L)(1−A)w(L). $ | (2.8) |
First we chose $ A = 1+\frac{C_1d_I}{q^2} $, where $ C_1 $ is a positive constant to be chosen later. Then (2.8) becomes
$ { [C1(1+C1dIq2)(˜a′(x))2+q(1+C1dIq2)˜a″(x)+1R0β(x)−γ(x)]w=−dIwxx−(1+2C1dIq2)a′(x)wx,0<x<L, t>0,dIwx(0)=−C1dIq˜a′(0)w(0),dIwx(L)=−C1dIq˜a′(L)w(L). $ |
Assume that $ w(x_*) = \min_{x\in [0, L]} w(x) $. We will show that $ x_* = L $ below. $ w_x(0) < 0 $ implies that $ x_*\neq 0 $. If $ x_*\in (0, L) $, then $ w_{xx}(x_*)\geq 0 $ and $ w_x(x_*) = 0 $, (2.9) means that
$ [C_1(1+\frac{C_1d_I}{q^2})(\tilde{a}'(x_*))^2+q(1+\frac{C_1d_I}{q^2})\tilde{a}''(x_*)+\frac{1}{\mathcal{R}_0}\beta(x_*)-\gamma(x_*)]\leq 0 $ |
Taking $ C_1 = Kq $ with $ K $ large enough, we can get a contradiction. Therefore, $ x_* = L $ and $ w(x)\geq w(L) $ for $ x\in [0, L] $, which implies that
$ Φ(x)Φ(L)≥e−qdI(1+C1dIq2)[˜a(L)−˜a(x)]. $ | (2.9) |
Next, we chose $ A = 1-\frac{C_2d_I}{q^2} $, where $ C_2 $ is a positive constant to be chosen later. Then (2.8) becomes
$ { [C2(1−C2dIq2)(˜a′(x))2+q(1−C2dIq2)˜a″(x)+1R0β(x)−γ(x)]w=−dIwxx−(1−2C2dIq2)a′(x)wx,0<x<L, t>0,dIwx(0)=C2dIq˜a′(0)w(0),dIwx(L)=C2dIq˜a′(L)w(L). $ |
Assume that $ w(x^*) = \max_{x\in [0, L]} w(x) $. We will show that $ x^* = L $ below. $ w_x(0) > 0 $ implies that $ x^*\neq 0 $. If $ x^*\in (0, L) $, then $ w_{xx}(x^*)\geq 0 $ and $ w_x(x^*) = 0 $, (2.10) means that
$ [C_2(1-\frac{C_2d_I}{q^2})(\tilde{a}'(x^*))^2+q(1-\frac{C_2d_I}{q^2})\tilde{a}''(x^*)+\frac{1}{\mathcal{R}_0}\beta(x^*)-\gamma(x^*)]\leq 0 $ |
Taking $ C_2 = K'q $ with $ K' $ large enough, we can get a contradiction. Therefore, $ x^* = L $ and $ w(x)\leq w(L) $ for $ x\in [0, L] $, which implies that
$ Φ(x)Φ(L)≤e−qdI(1−C2dIq2)[˜a(L)−˜a(x)]. $ | (2.10) |
Dividing (2.1) by $ \Phi(L) $ and integrating the result in $ (0, L) $, we have
$ ∫L0γ(x)Φ(x)Φ(L)dx=1R0∫L0β(x)Φ(x)Φ(L)dx. $ | (2.11) |
Letting $ y = \frac{q[\tilde{a}(L)-\tilde{a}(x)]}{d_I} $, i.e., $ x = \tilde{a}^{-1}[\tilde{a}(L)-\frac{d_Iy}{q}] $, we have
$ e−(1+C1dIq)y≤Φ(˜a−1[˜a(L)−dIyq])Φ(L)≤e−(1−C2dIq)y $ | (2.12) |
and
$ ∫q[˜a(L)−˜a(0)]dI0γ(˜a−1[˜a(L)−dIyq])Φ(˜a−1[˜a(L)−dIyq])˜a′(˜a−1[˜a(L)−dIyq])Φ(L)dy=1R0∫q[˜a(L)−˜a(0)]dI0β(˜a−1[˜a(L)−dIyq])Φ(˜a−1[˜a(L)−dIyq])˜a′(˜a−1[˜a(L)−dIyq])Φ(L)dy. $ | (2.13) |
Using (2.12), by Lebesgue dominant convergence theorem, then passing to the limit in (2.13), we get
$ limdI/q→0,dI/q2→0R0=limdI/q→0,dI/q2→0∫q[˜a(L)−˜a(0)]dI0β(˜a−1[˜a(L)−dIyq])Φ(˜a−1[˜a(L)−dIyq])˜a′(˜a−1[˜a(L)−dIyq])Φ(L)dy∫q[˜a(L)−˜a(0)]dI0γ(˜a−1[˜a(L)−dIyq])Φ(˜a−1[˜a(L)−dIyq])˜a′(˜a−1[˜a(L)−dIyq])Φ(L)dy=∫∞0β(L)˜a′(L)e−ydy∫∞0γ(L)˜a′(L)e−ydy=β(L)γ(L). $ | (2.14) |
We have the following corollary.
Corollary 2.1.1. The following statements hold.
(i) Given $ d_I > 0 $, $ \mathcal{R}_0\rightarrow \hat{\mathcal{R}}_0 $ as $ q\rightarrow 0 $;
(ii) Given $ d_I > 0 $, $ \mathcal{R}_0\rightarrow \frac{\beta(L)}{\gamma(L)} $ as $ q\rightarrow +\infty $;
(iii) Given $ q > 0 $, $ \mathcal{R}_0\rightarrow \frac{\beta(L)}{\gamma(L)} $ as $ d_I\rightarrow 0 $;
(iv) Given $ q > 0 $, $ \mathcal{R}_0\rightarrow \frac{\int_0^L\beta(x)dx}{\int_0^L\gamma(x)dx} $ as $ d_I\rightarrow +\infty $.
Proof. (i) For any fixed $ \varphi\in H^1((0, L)) $, $ \varphi\neq 0 $, we have
$ \lim\limits_{q\rightarrow 0}\frac{d_I\int_0^Le^{\frac{a(x)}{d_I}}\varphi_x^2dx +\int_0^L\gamma(x)e^{\frac{a(x)}{d_I}}\varphi^2dx}{\int_0^L\beta(x)e^{\frac{a(x)}{d_I}}\varphi^2dx} = \frac{d_I\int_0^L\varphi_x^2dx +\int_0^L\gamma(x)\varphi^2dx}{\int_0^L\beta(x)\varphi^2dx}. $ |
Taking $ \inf_{\varphi\in H^1((0, L)), \varphi\neq 0} $ both sides, we have $ \frac{1}{\mathcal{R}_0}\rightarrow \frac{1}{\hat{\mathcal{R}}_0} $ as $ q\rightarrow 0 $.
(ii) and (iii) are the direct conclusions of Lemma 2.2.
(iv) By the definition of $ \frac{1}{\mathcal{R}_0} $, for $ \varphi\equiv 1 $, we have
$ \frac{1}{\mathcal{R}_0}\leq \frac{\int_0^L\gamma(x)e^{\frac{a(x)}{d_I}}dx}{\int_0^L\beta(x)e^{\frac{a(x)}{d_I}}dx}\leq \frac{\max\limits_{x\in [0, L]}\gamma(x)}{\min\limits_{x\in [0, L]}\beta(x)}, $ |
which implies that $ \frac{1}{\mathcal{R}_0} $ is uniformly bounded for $ d_I > 0 $, passing to a subsequence if necessary, it has a finite limit $ \frac{1}{\bar{\mathcal{R}}_0} $ as $ d_I\rightarrow \infty $.
On the other hand, by the standard elliptic regularity and the Sobolev embedding theorem, $ \Phi $ is uniformly bounded for all $ d_I\geq 1 $. Dividing both sides of (2.1) by $ d_I $ and letting $ d_I\rightarrow +\infty $, we have $ \Phi_{xx}\rightarrow 0 $ for $ x\in (0, L) $ and $ \Phi_x(0)\rightarrow 0 $, $ \Phi_x(L)\rightarrow 0 $. Consequently, there exists a positive constant $ \bar{\Phi} $ such that $ \Phi(x)\rightarrow \bar{\Phi} $ as $ d_I\rightarrow +\infty $. Integrating (2.1) by parts over $ (0, L) $, we can get
$ qdI∫L0e−a(x)dI[dIΦx−a′(x)Φ(x)]dx+∫L0e−a(x)dIγ(x)Φ(x)dx=1R0∫L0e−a(x)dIβ(x)Φ(x)dx. $ |
Letting $ d_I\rightarrow +\infty $, we obtain $ \bar{\mathcal{R}}_0 = \frac{\int_0^L\beta(x)dx}{\int_0^L\gamma(x)dx} $.
Lemma 2.1.3. The following statements hold.
(i) If $ \beta(x) > \gamma(x) $ on $ [0, L] $, then $ \mathcal{R}_0 > 1 $ for any $ d_I > 0 $ and $ q > \min_{x\in [0, L]}a'(x) > 0 $;
(i) If $ \beta(x) < \gamma(x) $ on $ [0, L] $, then $ \mathcal{R}_0 < 1 $ for any $ d_I > 0 $ and $ q > \min_{x\in [0, L]}a'(x) > 0 $.
Proof. (i) If $ \beta(x) > \gamma(x) $ on $ [0, L] $, by the definition of $ \frac{1}{\mathcal{R}_0} $, for $ \varphi\equiv1 $, we have
$ \frac{1}{\mathcal{R}_0}\leq \frac{\int_0^L\gamma(x)e^{\frac{a(x)}{d_I}}dx}{\int_0^L\beta(x)e^{\frac{a(x)}{d_I}}dx} < 1, $ |
i.e., $ \mathcal{R}_0 > 1 $.
(ii) Subtracting both sides of (2.2) by $ \beta(x)\varphi $, multiplying by $ e^{\frac{a(x)}{d_I}}\varphi $, we have
$ −dIφxxea(x)dIφ−a′(x)φxea(x)dIφ+[γ(x)−β(x)]ea(x)dIφ2=(1R0−1)β(x)ea(x)dIφ2. $ |
Integrating it by parts over $ (0, L) $, using $ \varphi_x(0) = \varphi_x(L) = 0 $, we obtain
$ d_I\int_0^Le^{\frac{a(x)}{d_I}}(\varphi_x)^2dx+\int_0^L[\gamma(x)-\beta(x)]e^{\frac{a(x)}{d_I}}\varphi^2dx = (\frac{1}{\mathcal{R}_0}-1)\int_0^L\beta(x)e^{\frac{a(x)}{d_I}}\varphi^2dx. $ |
Since $ \beta(x) < \gamma(x) $ on $ [0, L] $, the left side of the above equality is positive, and
$ (\frac{1}{\mathcal{R}_0}-1)\int_0^L\beta(x)e^{\frac{a(x)}{d_I}}\varphi^2dx > 0, $ |
which implies that $ \mathcal{R}_0 < 1 $.
Proof. Theorem 1.1 is the direct results of Lemma 2.1.2, Corollary 2.1.1 and Lemma 2.1.3.
Next we will consider the stability of DFE.
Lemma 2.1.4. The DFE is stable if $ \mathcal{R}_0 < 1 $, while it is unstable if $ \mathcal{R}_0 > 1 $.
Proof. 1. Assume contradictorily the DFE is unstable if $ \mathcal{R}_0 < 1 $. Then we can find $ (\lambda, \xi, \eta) $ which is a solution of (2.3)–(2.4) subject to (2.5), with at least one of $ \xi $ and $ \eta $ is not identical zero, and $ \Re(\lambda)\leq 0 $. Suppose that $ \eta\equiv 0 $, then $ \xi\not\equiv 0 $ on $ [0, L] $. Using (2.3)–(2.4), we have
$ {−(dSξx−a′(x)ξ)x=λξ,0<x<L,dSξx(0)−a′(0)ξ(0)=0,dSξx(L)−a′(L)ξ(L)=0. $ | (2.15) |
It is easy to see that $ \lambda $ is real and nonnegative, and therefore $ \lambda = 0 $. We find that $ \xi = \xi_0e^{\frac{q}{d_I}\tilde{a}(x)} $, where $ \xi_0 $ is some constant to be determined later. By (1.2), we impose that $ \int_0^L[\xi(x)+\eta(x)]dx = 0 $, $ \xi_0 = 0 $, i.e., $ \xi\equiv 0 $ on $ [0, L] $. This is a contradiction. Then we conclude that $ \eta\equiv 0 $ on $ [0, L] $. From (2.6), $ \lambda $ must be real and $ \lambda\leq 0 $. Since $ \lambda_1(d_I, q) $ is the principal eigenvalue, then $ \lambda_1(d_I, q)\leq \lambda\leq 0 $. Lemma 2.1 implies that $ \mathcal{R}_0\geq 1 $, which is a contradiction. Then we conclude that if $ (\lambda, \xi, \eta) $ is a solution of (2.3)–(2.4), with at least one of $ \xi $ and $ \eta $ not identical zero on $ [0, L] $, then $ \Re(\lambda) > 0 $. This proves the linear stability of the DFE.
2. Suppose that $ \mathcal{R}_0 > 1 $. Since $ (\lambda_1(d_I, q), \phi_1) $ is the principal eigen-pair of (2.6), $ (\lambda_1(d_I, q), e^{\frac{a(x)}{d_I}}\phi_1) $ satisfies
$ {[dI(ϕ1)x−a′(x)ϕ1]x+[β(x)−γ(x)]ϕ1+λ1(dI,q)ϕ1=0,0<x<L,dI(ϕ1)x−a′(x)ϕ1=0,x=0, L. $ |
By the result of Lemma 2.1.1, $ \lambda_1(d_I, q) < 0 $. On the other hand,
$ {(dSξx−a′(x)ξ)x+λξ=[β(x)−γ(x)]ea(x)dIϕ1,0<x<L,dSξx(0)−a′(0)ξ(0)=0,dSξx(L)−a′(L)ξ(L)=0. $ | (2.16) |
There exists a unique solution $ \xi_1 $ of (2.16). And (2.5) becomes
$ \int_0^L[\xi_1(x)+e^{\frac{a(x)}{d_I}}\phi_1(x)]dx = 0, $ |
which implies that (2.3)–(2.4) has a solution $ (\lambda_1(d_I, q), \xi_1, e^{\frac{a(x)}{d_I}}\phi_1(x)) $ satisfying $ \lambda_1(d_I, q) < 0 $ and $ e^{\frac{a(x)}{d_I}}\phi_1(x) > 0 $ in $ (0, L) $. Therefore, the DFE is linearly unstable.
Lemma 2.1.5. If $ \mathcal{R}_0 < 1 $, then $ (S, I)\rightarrow (\hat{S}, 0) $ in $ C([0, L]) $ as $ t\rightarrow +\infty $.
Proof. If $ \mathcal{R}_0 < 1 $, letting $ u(x, t) = Me^{-\lambda_1(d_I, q)t}e^{\frac{a(x)}{d_I}}\phi_1(x) $, then we have
$ {ut=[dIux−a′(x)u]x+[β(x)−γ(x)]u,0<x<L,t>0,dIux(0,t)−a′(0)u(0,t)=0,dIux(L,t)−a′(L)u(L,t)=0, t>0. $ |
Here $ (\lambda_1(d_I, q), \phi_1) $ is the principal eigen-pair, $ \lambda_1(d_I, q) > 0 $ and $ \phi_1(x) > 0 $ on $ [0, L] $. $ M $ is large enough such that $ I(x, 0)\leq u(x, 0) $ for every $ x\in (0, L) $. Noticing that
$ {It=[dIIx−a′(x)I]x+[β(x)−γ(x)]I,0<x<L,t>0,dIux(0,t)−a′(0)u(0,t)=0,dIux(L,t)−a′(L)u(L,t)=0, t>0. $ |
By the comparison principle, we have $ I(x, t)\leq u(x, t) $ for every $ x\in (0, L) $ and $ t\geq 0 $. Obviously, $ u(x, t)\rightarrow 0 $ for every $ x\in (0, L) $ as $ t\rightarrow \infty $, which implies that $ I(x, t)\rightarrow 0 $ for every $ x\in (0, L) $ as $ t\rightarrow \infty $.
Now we will show that $ S\rightarrow \hat{S} $ as $ t\rightarrow +\infty $. Since
$ S_t = (d_S S_x-a'(x)S)_x-\beta(x)\frac{SI}{S+I}+\gamma(x)I, \ 0 < x < L, \ t > 0, $ |
we have
$ |S_t-(d_S S_x-a'(x)S)_x|\leq (\|\beta\|_{\infty}+\|\gamma\|_{\infty})I\leq Ce^{-\lambda_1(d_I, q)t}, $ |
for $ 0 < x < L $, $ t > 0 $. Noticing that
$ \lim\limits_{t\rightarrow +\infty} e^{-\lambda_1(d_I, q)t}\rightarrow 0 $ |
as $ t\rightarrow +\infty $, we know that there exists a positive function $ \tilde{S}(x) $ such that
$ \lim\limits_{t\rightarrow +\infty} S(x, t) = \tilde{S}(x), \quad \int_0^L \tilde{S}(x)dx = N. $ |
Therefore, $ \lim_{t\rightarrow +\infty} S(x, t) = \tilde{S}(x) = \hat{S}(x) $.
Proof. Theorem 1.2 is the direct results of Lemma 2.1.4 and Lemma 2.1.5.
In this section, we will study further properties of $ \mathcal{R}_0 $ in the case of $ \beta(x)-\gamma(x) $ changing sign once.
Lemma 2.2.1. Assume that $ \phi_1 $ is a positive eigenfunction corresponding to $ \mathcal{R}_0 = 1 $, $ \beta(x)-\gamma(x) $ changes sign once in $ (0, L) $. If assumption (C1)(or (C2)) holds, then $ (\phi_1)_x > 0 $(or $ (\phi_1)_x < 0 $) in $ (0, L) $.
Proof. If $ \beta(x)-\gamma(x) $ changes sign once in $ (0, L) $ and assumption (C1) holds, then there exists some $ x_0\in (0, L) $ such that $ \beta(x)-\gamma(x) < 0 $ in $ (0, x_0) $, $ \beta(x_0) = \gamma(x_0) $ and $ \beta(x)-\gamma(x) > 0 $ in $ (x_0, L) $.
By the definition of $ \phi_1 $, we have
$ {−dI(ϕ1)xx−a′(x)(ϕ1)x=[β(x)−γ(x)]ϕ1,0<x<L,(ϕ1)x(0)=(ϕ1)x(L)=0. $ | (2.17) |
Multiplying (2.17) by $ e^{\frac{a(x)}{d_I}} $, we obtain
$ -d_I(e^{\frac{a(x)}{d_I}}(\phi_1)_{x})_x = [\beta(x)-\gamma(x)]e^{\frac{a(x)}{d_I}}\phi_1. $ |
Under the assumptions on $ \beta(x) $ and $ \gamma(x) $, we can obtain $ (e^{\frac{a(x)}{d_I}}(\phi_1)_{x})_x > 0 $ in $ (0, x_0) $, $ (e^{\frac{a(x)}{d_I}}(\phi_1)_{x})_x = 0 $ at $ x_0 $ and $ (e^{\frac{a(x)}{d_I}}(\phi_1)_{x})_x < 0 $ in $ (x_0, L) $. That is, $ e^{\frac{a(x)}{d_I}}(\phi_1)_{x} $ is strictly increasing in $ (0, x_0) $ and strictly decreasing in $ (x_0, L) $. Noticing that $ (\phi_1)_x(0) = (\phi_1)_x(L) = 0 $, we can get $ e^{\frac{a(x)}{d_I}}(\phi_1)_{x} > 0 $ in $ (0, L) $. So $ (\phi_1)_x > 0 $ in $ (0, L) $.
Similarly, if $ \beta(x)-\gamma(x) $ changes sign once in $ (0, L) $ and assumption (C2) holds, $ (\phi_1)_x < 0 $ in $ (0, L) $. We omit the details here.
Now we prove two general lemmas below.
For any continuous function $ m(x) $ on $ [0, L] $, define
$ F(\eta) = \int_0^L\tilde{a}'(x)e^{\eta \tilde{a}(x)}m(x)dx, \quad 0\leq \eta < \infty. $ |
Lemma 2.2.2. Assume that $ m(x)\in C^1([0, L]) $ and $ m(L) > 0 $(or $ m(L) < 0 $). Then there exists some positive constant $ M $ such that $ F(\eta) > 0 $(or $ F(\eta) < 0 $) for any $ \eta > M $.
Proof. Since $ m'(x) $ and $ \tilde{a}'(x) $ is uniformly bounded independent of $ \eta $, we have
$ limη→+∞ηe−η˜a(L)F(η)=limη→+∞∫L0η˜a′(x)e−η[˜a(x)−˜a(L)]m(x)dx=m(L)−limη→+∞(m(0)eη[˜a(0)−˜a(L)]+∫L0m′(x)eη[˜a(x)−˜a(L)]dx)=m(L)−limη→+∞(m(0)eη[˜a(0)−˜a(L)]+∫L0m′(x)e˜a′(ξ)[x−L]dx)=m(L)>0(<0). $ |
Therefore, there exists some positive constant $ M $ such that $ F(\eta) > 0(<0) $ for $ \eta > M $.
Lemma 2.2.3. Assume that $ m(x) $ changes sign once in $ (0, L) $. Then
(i) If $ m(L) > 0 $ and $ \int_0^L \tilde{a}'(x)m(x)dx > 0 $, then $ F(\eta) > 0 $ for any $ \eta > 0 $;
(ii) If $ m(L) < 0 $ and $ \int_0^L \tilde{a}'(x)m(x)dx < 0 $, then $ F(\eta) < 0 $ for any $ \eta > 0 $;
(iii) If $ m(L) > 0 $ and $ \int_0^L \tilde{a}'(x)m(x)dx < 0 $, then there exists a unique $ \eta_1\in (0, +\infty) $ such that $ F(\eta_1) = 0 $ and $ F'(\eta_1) > 0 $;
(iv) If $ m(L) < 0 $ and $ \int_0^L \tilde{a}'(x)m(x)dx > 0 $, then there exists a unique $ \eta_1\in (0, +\infty) $ such that $ F(\eta_1) = 0 $ and $ F'(\eta_1) < 0 $.
Proof. We only prove part (i) and part (iii). The proofs of part (ii) and part (iv) are similar.
(i) If $ m(L) > 0 $ and $ m(x) $ changes sign once in $ (0, L) $, then there exists $ x_1\in (0, L) $ such that $ m(x) < 0 $ for $ x\in (0, x_1) $ and $ m(x) > 0 $ for $ x\in (x_1, L) $. Since $ \tilde{a}(x) $ is increasing, we have $ m(x)[\tilde{a}(x)-\tilde{a}(x_1)] > 0 $ for $ x\in (0, L) $ and $ x\neq x_1 $. And
$ [e−˜a(x1)ηF(η)]′=e−˜a(x1)η[F′(η)−˜a(x1)F(η)]=e−˜a(x1)η∫L0[˜a(x)−˜a(x1)]m(x)˜a′(x)eη˜a(x)dx>0, $ | (2.18) |
which implies that $ e^{-\tilde{a}(x_1)\eta}F(\eta) $ is strictly increasing in $ \eta\in (0, \infty) $, $ e^{-\tilde{a}(x_1)\eta}F(\eta) > F(0) = \int_0^L\tilde{a}'(x)m(x)dx > 0 $. Consequently, $ F(\eta) > 0 $ for any $ \eta > 0 $. Here the prime notation denotes differentiation by $ \eta $. Part (i) is proved.
(iii) $ \int_0^L\tilde{a}'(x)m(x)dx < 0 $ means that $ F(0) < 0 $, while, by the result of Lemma 2.2.2, $ m(L) > 0 $ means that $ F(\eta) > 0 $ for $ \eta > M $ with $ M $ large enough. By continuity, there at least exists a positive root for $ F(\eta) = 0 $. But $ e^{-\tilde{a}(x_1)\eta}F(\eta) $ is increasing in $ \eta\in (0, \infty) $, so $ F(\eta) = 0 $ only has a unique positive root $ \eta_1 $. By (2.18), we have $ F'(\eta_1) > a(x_1)F(\eta_1) = 0 $. Part (iii) is proved.
In this section, we consider the stability of DFE. First we have
Lemma 2.3.1. Assume that $ \beta(x)-\gamma(x) $ changes sign once in $ (0, L) $ and $ \int_0^L\beta(x)dx > \int_0^L\gamma(x)dx $.
(i) If $ \beta(x) $ and $ \gamma(x) $ satisfy (C1), then $ \mathcal{R}_0 > 1 $ for $ d_I > 0 $ and $ q > \min_{x\in [0, L]}a'(x) > 0 $;
(ii) If $ \beta(x) $ and $ \gamma(x) $ satisfy (C2), then for every $ d_I > 0 $, there exists a unique $ \bar{q} = \bar{q}(d_I) $ such that $ \mathcal{R}_0 > 1 $ for $ 0 < \min_{x\in [0, L]}a'(x) < q < \bar{q} $, $ \mathcal{R}_0 = 1 $ for $ q = \bar{q} $ and $ \mathcal{R}_0 < 1 $ for $ q > \bar{q} $.
Proof. (i) Subtracting both sides of (2.2) by $ \beta(x)\varphi $, multiplying by $ \frac{e^{\frac{a(x)}{d_I}}}{\varphi} $, we have
$ [−dIφxx−a′(x)φx]ea(x)dIφ+[γ(x)−β(x)]ea(x)dI=(1R0−1)β(x)ea(x)dI. $ |
Integrating it by parts over $ (0, L) $, using $ \varphi_x(0) = \varphi_x(L) = 0 $, we obtain
$ d_I\int_0^L\frac{e^{\frac{a(x)}{d_I}}(\varphi_x)^2}{\varphi^2}dx+\int_0^L[\beta(x)-\gamma(x)]e^{\frac{a(x)}{d_I}}dx = (1-\frac{1}{\mathcal{R}_0})\int_0^L\beta(x)e^{\frac{a(x)}{d_I}}dx. $ |
Using Lemma 2.2.3(i) with $ m(x) = \frac{[\beta(x)-\gamma(x)]}{\tilde{a}'(x)} $, $ \int_0^L[\beta(x)-\gamma(x)]e^{\frac{a(x)}{d_I}}dx > 0 $, and
$ (1-\frac{1}{\mathcal{R}_0})\int_0^L\beta(x)e^{\frac{a(x)}{d_I}}\varphi^2dx > 0, $ |
which implies that $ \mathcal{R}_0 > 1 $.
(ii) Differentiating both sides of (2.2) with respect to $ q $, denoting the differentiation with respect to $ q $ by the dot notation, we obtain
$ {−dI˙φxx−˜a′(x)φx−˜a′(x)˙φx+γ(x)˙φ=−˙R0R20β(x)φ+1R0β(x)˙φ,0<x<L,˙φx(0)=˙φx(L)=0. $ | (2.19) |
Multiplying (2.19) by $ e^{\frac{a(x)}{d_I}}\varphi $ and integrating the resulting equation in $ (0, L) $, we have
$ dI∫L0ea(x)dI˙φxφxdx−∫L0ea(x)dIφxφ˜a′(x)dx+∫L0γ(x)ea(x)dI˙φφdx=−˙R0R20∫L0β(x)ea(x)dIφ2dx+1R0∫L0β(x)ea(x)dI˙φφdx. $ | (2.20) |
Multiplying (2.2) by $ e^{\frac{a(x)}{d_I}}\dot{\varphi} $ and integrating the resulting equation in $ (0, L) $, we get
$ dI∫L0ea(x)dI˙φxφxdx+∫L0γ(x)ea(x)dI˙φφdx=1R0∫L0β(x)ea(x)dI˙φφdx. $ | (2.21) |
Subtracting (2.20) and (2.21), we obtain
$ ∂R0∂q=R20∫L0ea(x)dIφxφ˜a′(x)dx∫L0β(x)ea(x)dIφ2dx. $ | (2.22) |
By the result of Corollary 2.1.1, we know that
$ \lim\limits_{q\rightarrow \infty} \mathcal{R}_0 = \frac{\beta(L)}{\gamma(L)} < 1. $ |
Meanwhile, we have
$ \lim\limits_{q\rightarrow 0} \mathcal{R}_0 = \hat{\mathcal{R}}_0 > 1 $ |
for any $ d_I $. Then there must exist at least some $ \bar{q} $ such that $ \mathcal{R}_0(\bar{q}) = 1 $. By Lemma 2.1.1, for any $ \bar{q} > 0 $ satisfying $ \mathcal{R}_0(\bar{q}) = 1 $, $ (\phi_1)_x < 0 $ in $ (0, L) $. Recalling (2.22), we have
$ \frac{\partial \mathcal{R}_0}{\partial \bar{q}} = \frac{\int_0^Le^{\frac{\bar{q}}{d_I}\tilde{a}(x)}(\phi_1)_x\phi_1 dx} {\int_0^L\beta(x)e^{\frac{\bar{q}}{d_I}\tilde{a}(x)}(\phi_1)^2dx} < 0, $ |
which implies that $ \bar{q} $ is the unique point satisfying $ \mathcal{R}_0(\bar{q}) = 1 $.
The following lemma will tell us that there exists a function $ q = \rho_1(d_I) $ such that $ \mathcal{R}_0(d_I, \rho_1(d_I)) = 1 $ and give the asymptotic profile of $ \rho_1(d_I) $ if $ \int_0^L\beta(x)dx > \int_0^L\gamma(x)dx $.
Lemma 2.3.2. Assume that $ \beta(x)-\gamma(x) $ changes sign once in $ (0, L) $, $ \int_0^L\beta(x)dx > \int_0^L\gamma(x)dx $, and $ \theta_1 $ is the unique solution of
$ \int_0^L[\beta(x)-\gamma(x)]e^{\theta_1\tilde{a}(x)}dx = 0. $ |
Suppose that $ \beta(x) $ and $ \gamma(x) $ satisfy (C2). Then there exists a function $ \rho_1:(0, \infty)\rightarrow (0, \infty) $ such that $ \mathcal{R}_0(d_I, \rho_1(d_I)) = 1 $. And $ \rho_1 $ satisfies
$ \lim\limits_{d_I\rightarrow 0} \rho_1(d_I) = 0, \quad \lim\limits_{d_I\rightarrow \infty} \frac{\rho_1(d_I)}{d_I} = \theta_1. $ |
Proof. 1. Let's first consider the limit of $ \frac{\rho_1(d_I)}{d_I} $ as $ d_I\rightarrow \infty $. Assume that $ \frac{\rho_1(d_I)}{d_I}\rightarrow \infty $ as $ d_I\rightarrow \infty $. Under the assumption (C2), by Lemma 2.1.4, we have
$ \lim\limits_{\rho_1(d_I)\rightarrow \infty, \frac{\rho_1(d_I)}{d_I}\rightarrow \infty} \mathcal{R}_0(d_I, \rho_1(d_I)) = \frac{\beta(L)}{\gamma(L)} < 1, $ |
which is a contradiction to $ \mathcal{R}_0(d_I, \rho_1(d_I)) = 1 $.
Next, we will prove that $ \frac{\rho_1(d_I)}{d_I}\rightarrow \theta_1 $ as $ d_I\rightarrow \infty $. Here $ \theta_1 $ is the unique positive root of $ \int_0^L[\beta(x)-\gamma(x)]e^{\theta_1\tilde{a}(x)}dx = 0 $. By the discussions above, we know that $ \frac{\rho_1(d_I)}{d_I} $ is bounded for large $ d_I $. Passing to a subsequence if necessary, we suppose that $ \frac{\rho_1(d_I)}{d_I}\rightarrow \theta_* $ for some nonnegative number $ \theta_* $ as $ d_I\rightarrow \infty $. Let $ \tilde{\varphi} $ be the unique normalized eigenfunction of the eigenvalue $ \mathcal{R}_0(d_I, \rho_1(d_I)) = 1 $. Then
$ {−dI(eρ1(dI)dI˜a(x)˜φx)x+[γ(x)−β(x)]eρ1(dI)dI˜a(x)˜φ=0,0<x<L,˜φx(0)=˜φx(L)=0. $ | (2.23) |
Integrating (2.23) in $ (0, L) $, we get
$ ∫L0[β(x)−γ(x)]eρ1(dI)dI˜a(x)˜φdx=0. $ | (2.24) |
Recalling that, up to a subsequence if necessary, $ \tilde{\varphi}\rightarrow 1 $ in $ C([0, 1]) $ as $ d_I\rightarrow \infty $. Letting $ d_I\rightarrow \infty $ in (2.24), we have
$ \int_0^L[\beta(x)-\gamma(x)]e^{\theta_*\tilde{a}(x)}dx = 0. $ |
By Lemma 2.2.3 with $ m(x) = \frac{[\beta(x)-\gamma(x)]}{\tilde{a}'(x)} $, $ F(\eta) $ has a unique positive root, i.e., $ \theta_* = \theta_1 $.
2. Contradictorily, assume that $ q = \rho_1(d_I)\rightarrow q^* > 0 $ or $ q = \rho_1(d_I)\rightarrow \infty $ as $ d_I\rightarrow 0 $. By Lemma 2.1.4, we know that
$ \lim\limits_{\rho_1(d_I)\rightarrow q^*, \frac{\rho_1(d_I)}{d_I}\rightarrow \infty} \mathcal{R}_0(d_I, \rho_1(d_I)) = \frac{\beta(L)}{\gamma(L)} < 1 $ |
or
$ \lim\limits_{\rho_1(d_I)\rightarrow \infty, \frac{\rho_1(d_I)}{d_I}\rightarrow \infty} \mathcal{R}_0(d_I, \rho_1(d_I)) = \frac{\beta(L)}{\gamma(L)} < 1, $ |
which is a contradiction to $ \mathcal{R}_0(d_I, \rho_1(d_I)) = 1 $. Therefore, we have $ \lim_{d_I\rightarrow 0}\rho_1(d_I) = 0 $.
To study the properties of $ \mathcal{R}_0 $ when $ \int_0^L\beta(x)dx < \int_0^L\gamma(x)dx $, we need the following results which were stated in [2]:
Proposition 2.3.1. Assume that $ \beta(x)-\gamma(x) $ changes sign in $ (0, L) $.
(i) $ \hat{\mathcal{R}}_0 $ is a monotone decreasing function of $ d_I $ with $ \hat{\mathcal{R}}_0\rightarrow \max\{\beta(x)/\gamma(x):x\in[0, L]\} $ as $ d_I\rightarrow 0 $ and $ \hat{\mathcal{R}}_0\rightarrow \int_0^L\beta(x)dx/\int_0^L\gamma(x)dx $ as $ d_I\rightarrow +\infty $;
(ii) $ \hat{\mathcal{R}}_0 > 1 $ for all $ d_I > 0 $ if $ \int_0^L\beta(x)dx\geq \int_0^L\gamma(x)dx $;
(iii) There exists a threshold value $ d^*_I\in (0, +\infty) $ such that $ \hat{\mathcal{R}}_0 > 1 $ for $ d_I < d^*_I $ and $ \hat{\mathcal{R}}_0 < 1 $ for $ d_I > d^*_I $ if $ \int_0^L\beta(x)dx < \int_0^L\gamma(x)dx $.
Lemma 2.3.3. Assume that $ \beta(x)-\gamma(x) $ changes sign once in $ (0, L) $ and $ \int_0^L\beta(x)dx < \int_0^L\gamma(x)dx $. Then there exists some constant $ d^*_I > 0 $ such that $ d^*_I $ is the unique positive root of the equation $ \hat{\mathcal{R}_0}(d_I) = 1 $ and the following statements hold.
1. If $ \beta(x) $ and $ \gamma(x) $ satisfy (C1), then
(i) for $ d_I\in (0, d^*_I] $, $ \mathcal{R}_0 > 1 $ for any $ q > \min_{x\in [0, L]}a'(x) > 0 $;
(ii) for $ d_I\in (d^*_I, \infty) $, there exists a unique $ \bar{q} = \bar{q}(d_I) $ such that $ \mathcal{R}_0 < 1 $ for any $ 0 < \min_{x\in [0, L]}a'(x) < q < \bar{q} $ and $ \mathcal{R}_0 > 1 $ for any $ q > \bar{q} $.
2. If $ \beta(x) $ and $ \gamma(x) $ satisfy (C2), then
(iii) for $ d_I\in (0, d^*_I] $, there exists a unique $ \bar{q} = \bar{q}(d_I) $ such that $ \mathcal{R}_0 > 1 $ for any $ 0 < \min_{x\in [0, L]}a'(x) < q < \bar{q} $ and $ \mathcal{R}_0 < 1 $ for any $ q > \bar{q} $;
(iv) for $ d_I\in (d^*_I, \infty) $, $ \mathcal{R}_0 < 1 $ for any $ q > \min_{x\in [0, L]}a'(x) > 0 $.
Proof. (i) Noticing that $ \beta(x) $ and $ \gamma(x) $ satisfy (C1), similar to the proof of (ii) in Lemma 2.1.4, we can prove that there exists a unique $ \bar{q} > 0 $ satisfying $ \mathcal{R}_0(\bar{q}) = 1 $ and $ \mathcal{R}'_0(\bar{q}) > 0 $. Hence, the conclusion is true for $ d_I\in (d^*_I, +\infty) $.
For $ d_I\in (0, d^*_I] $, by the results of Proposition 2.3.1, we have $ \lim_{q\rightarrow 0}\mathcal{R}_0 = \hat{\mathcal{R}}_0\geq 1 $. By the results of Corollary 2.1.1, $ \lim_{q\rightarrow +\infty}\mathcal{R}_0 = \beta(L)/\gamma(L) > 1 $ under the condition (C1). Hence $ \mathcal{R}_0 > 1 $ for any $ q > 0 $.
(ii) The proof of Lemma 2.3.3 under the condition (C2) is similar to that of Lemma 2.1.4, we omit the details here.
Lemma 2.3.4. Assume that $ \beta(x)-\gamma(x) $ changes sign once in $ (0, L) $ and $ \int_0^L\beta(x)dx < \int_0^L\gamma(x)dx $. Then there exists a constant $ d^*_I > 0 $ such that $ d^*_I $ is the unique positive root of the equation $ \hat{\mathcal{R}_0}(d_I) = 1 $ and the following statements hold.
1. If $ \beta(x) $ and $ \gamma(x) $ satisfy (C1), then there exists a function $ \rho_2:(d^*_I, \infty)\rightarrow (0, \infty) $ such that $ \rho_2 $ is a monotone increasing function of $ d_I $ and $ \mathcal{R}_0(d_I, \rho_2(d_I)) = 1 $. Let $ \theta_2 $ be the unique solution of
$ \int_0^L[\beta(x)-\gamma(x)]e^{\theta_2\tilde{a}(x)}dx = 0. $ |
Then
$ \lim\limits_{d_I\rightarrow d^*_I+}\rho_2(d_I) = 0, \quad \lim\limits_{d_I\rightarrow \infty}\frac{\rho_2(d_I)}{d_I} = \theta_2. $ |
2. If $ \beta(x) $ and $ \gamma(x) $ satisfy (C2), then there exists a function $ \rho_3:(0, d^*_I)\rightarrow (0, \infty) $ such that $ \mathcal{R}_0(d_I, \rho_3(d_I)) = 1 $ and
$ \lim\limits_{d_I\rightarrow 0+}\rho_3(d_I) = 0, \quad \lim\limits_{d_I\rightarrow d^*_I-}\frac{\rho_3(d_I)}{d_I} = 0. $ |
Proof. 1. If we can prove that $ \rho'_2(d_I) > 0 $ for $ d_I\in (d^*_I, \infty) $, then $ \rho_2(d_I) $ is a monotone increasing function of $ d_I $. Here the prime notation denotes differentiation by $ d_I $. Since $ \mathcal{R}_0(d_I, \rho_2(d_I)) = 1 $, we can get
$ ∂R0∂qρ′2(dI)+∂R0∂dI=0. $ | (2.25) |
By Lemma 2.3.1, $ \frac{\partial \mathcal{R}_0}{\partial q} > 0 $ for $ \mathcal{R}_0(d_I, \rho_2(d_I)) = 1 $. So we need to prove that $ \frac{\partial \mathcal{R}_0}{\partial d_I} < 0 $.
Differentiating both sides of (2.2) with respect to $ d_I $, denoting the differentiation with respect to $ d_I $ by the dot notation, we obtain
$ {−φxx−dI˙φxx−a′(x)˙φx+γ(x)˙φ=−˙R0R20β(x)φ+1R0β(x)˙φ,0<x<L,˙φx(0)=˙φx(L)=0. $ | (2.26) |
Multiplying (2.26) by $ e^{\frac{a(x)}{d_I}}\varphi $ and integrating the resulting equation in $ (0, L) $, we obtain
$ −∫L0ea(x)dIφxxφdx+dI∫L0ea(x)dI˙φxφxdx+∫L0γ(x)ea(x)dI˙φφdx=−˙R0R20∫L0β(x)ea(x)dIφ2dx+1R0∫L0β(x)ea(x)dI˙φφdx. $ | (2.27) |
Multiplying (2.2) by $ e^{\frac{a(x)}{d_I}}\dot{\varphi} $ and integrating the resulting equation in $ (0, L) $, we get
$ dI∫L0ea(x)dI˙φxφxdx+∫L0γ(x)ea(x)dI˙φφdx=1R0∫L0β(x)ea(x)dI˙φφdx. $ | (2.28) |
Subtracting (2.27) and (2.28), we have
$ ∂R0∂dI=R20∫L0ea(x)dIφxxφdx∫L0β(x)ea(x)dIφ2dx=−R20∫L0ea(x)dI(φx)2dx∫L0β(x)ea(x)dIφ2dx−R20∫L0ea(x)dIφxφa′(x)dxdI∫L0β(x)ea(x)dIφ2dx. $ | (2.29) |
By Lemma 2.2.1, for any $ d_I $ satisfying $ \mathcal{R}_0(d_I, q) = 1 $, $ (\phi_1)_x > 0 $, we can get
$ ∂R0∂dI=−R20∫L0ea(x)dI[(ϕ1)x]2dx∫L0β(x)ea(x)dIϕ21dx−R20∫L0ea(x)dI(ϕ1)xϕ1a′(x)dxdI∫L0β(x)ea(x)dIϕ21dx<0. $ | (2.30) |
(2.25) and (2.30) imply that $ \rho'_2(d_I) > 0 $ for $ d_I\in (d^*_I, \infty) $.
The proof of $ \lim_{d_I\rightarrow \infty} \frac{\rho_2(d_I)}{d_I} = \theta_2 $($ \theta_2 $ is the unique solution of $ \int_0^L[\beta(x)-\gamma(x)]e^{\theta_2 a(x)}dx = 0 $) is similar to the proof of Lemma 2.3.2, we omit the details here.
Now we will prove that $ \lim_{d_I\rightarrow d^*_I+}\rho_2(d_I) = 0 $. Assume that there exists $ q^* $ such that $ q = \rho_2(d_I)\rightarrow q^* $ as $ d_I\rightarrow d_I^*+ $. Then there exists a positive function $ \phi^*(x)\in C^2([0, L]) $ such that
$ {−d∗Iϕ∗xx−q∗˜a′(x)ϕ∗x+γ(x)ϕ∗=β(x)ϕ∗,0<x<L,ϕ∗x(0)=ϕ∗x(L)=0. $ | (2.31) |
Noticing that $ d^*_I $ is the unique positive root of $ \hat{\mathcal{R}}_0 = 1 $ and the definition of $ \hat{\mathcal{R}}_0 $ implies $ q = 0 $, there exists a positive function $ \hat{\phi}(x)\in C^2([0, L]) $ such that
$ {−d∗Iˆϕxx+γ(x)ˆϕ=β(x)ˆϕ,0<x<L,ˆϕx(0)=ˆϕx(L)=0. $ | (2.32) |
Multiplying (2.31) by $ \hat{\phi} $, (2.32) by $ \phi^* $, subtracting the two resulting equations, then integrating by parts over $ (0, L) $, we get
$ q^*\int_0^L\tilde{a}'(x)\phi^*_x\hat{\phi}dx = 0. $ |
Since $ \phi^*_x $ is positive(by Lemma 2.2.1), we have $ q^* = 0 $. Therefore, $ \lim_{d_I\rightarrow d^*_I+}\rho_2(d_I) = 0 $.
2. Using the arguments above, similar to the proof of Lemma 2.3.2, we can obtain the conclusions.
In this section, we will show that: If the disease-free equilibrium is unstable, then we can use the bifurcation analysis and degree theory to study the existence of endemic equilibrium.
Letting $ \tilde{S} = e^{\frac{a(x)}{d_S}}\bar{S} $, $ \tilde{I} = e^{\frac{a(x)}{d_I}}\bar{I} $, we have
$ {dSˉSxx+a′(x)ˉSx−β(x)ea(x)dIˉSˉIea(x)dSˉS+ea(x)dIˉI+γ(x)e(1dI−1dS)a(x)ˉI=0, 0<x<L,dIˉIxx+a′(x)ˉIx+β(x)ea(x)dSˉSˉIea(x)dSˉS+ea(x)dIˉI−γ(x)ˉI=0, 0<x<L,ˉSx(0)=ˉSx(L)=0,ˉIx(0)=ˉIx(L)=0, ∫L0[ea(x)dSˉS+ea(x)dIˉI]dx=N. $ | (2.33) |
Since the structure of the solution set of (2.33) is the same as that of (1.3), we study (2.33) instead of (1.3). Denote the unique disease-free equilibrium of (2.33) by $ (\hat{\bar{S}}, 0) = (\frac{N}{\int_0^L e^{\frac{a(x)}{d_S}}}, 0) $. We will consider a branch of positive solutions of (2.33) bifurcating from the branch of semi-trivial solutions given by
$ \Gamma_S: = \{(q, (\hat{\bar{S}}, 0)):0 < \min\limits_{x\in [0, L]}a'(x) < q < \infty\} $ |
through using the local and global bifurcation theorems. For fixed $ d_S $, $ d_I > 0 $, we take $ q $ as the bifurcation parameter. Let
$ X = \{u\in W^{2, p}((0, L)):u_x(0) = u_x(L) = 0\}, \quad Y = L^p((0, L)) $ |
for $ p > 1 $ and the set of positive solution of (2.33) to be
$ O = \{(q, (S, I))\in \mathbb{R}^+\times X\times X:q > \min\limits_{x\in [0, L]}a'(x) > 0, S > 0, I > 0, (q, (S, I)) \ {\rm satisfies}\ (2.33)\}. $ |
Lemma 2.4.1 Assume that $ d_S $, $ d_I > 0 $ and $ \beta(x)-\gamma(x) $ changes sign once in $ (0, L) $. Then
1. $ q_* > 0 $ is a bifurcation point for the positive solutions of (2.33) from the semi-trivial branch $ \Gamma_S $ if and only if $ q_* $ satisfies $ R_0(d_I, q_*) = 1 $. That is,
(I) If $ \int^L_0 \beta(x)dx > \int^L_0\gamma(x)dx $, then such $ q_* $ exists uniquely for any $ d_I > 0 $ if and only if assumption (C2) holds;
(II) If $ \int^L_0 \beta(x)dx < \int^L_0\gamma(x)dx $, let $ d^*_I $ be the unique positive root of $ \hat{R}_0 = 1 $, then such $ q_* $ exists uniquely for any $ d_I > 0 $ if and only if either $ \beta(x) $ and $ \gamma(x) $ satisfy condition (C1) and $ d > d^*_I $ or they satisfy condition (C2) and $ 0 < d < d^*_I $.
2. There exits some $ \delta > 0 $ such that all positive solutions of (2.33) near $ (q_*, (\hat{\bar{S}}, 0)))\in\mathbb{R}\times X\times X $ can be parameterized as
$ Γ={(q(τ),(ˆˉS+ˉS1(τ),ˉI1(τ))):τ∈[0,δ)}, $ | (2.34) |
where $ (q(\tau), (\hat{\bar{S}}+\bar{S}_1(\tau), I_1(\tau))) $ is a smooth curve with respect to $ \tau $ and satisfies $ q(0) = q_* $, $ \hat{S}_1(0) = I_1(0) = 0 $.
3. There exists a connected component $ \Sigma $ of $ \bar{O} $ satisfying $ \Gamma\subseteq \Sigma $, and $ \Sigma $ possesses some properties as follows.
Case (I) Assume that $ \int^L_0\beta(x)dx > \int^L_0\gamma(x)dx $ and (C2) holds. Then there exists some endemic equilibrium $ (\hat{S}_*, \hat{I}_*) $ of (2.33) when $ q = 0 $ such that for $ \Sigma $, the projection of $ \Sigma $ to the $ q $-axis satisfies $ Proj_q \Sigma = [0, q_*] $ and the connected component $ \Sigma $ connects to $ (0, (\hat{S}_*, \hat{I}_*)) $.
Case (II) Assume that $ \int^L_0\beta(x)dx < \int^L_0\gamma(x)dx $. Then
(i) If (C1) holds and $ d_I > d^*_I $, then (2.33) has no positive solution for $ 0 < \min_{x\in [0, L]}a'(x) < q < q_* $ and for $ \Sigma $, the projection of $ \Sigma $ to the $ q $-axis satisfies $ Proj_q \Sigma = [q_*, \infty) $.
(ii) If (C2) holds and $ 0 < d_I < d^*_I $, then there exists some endemic equilibrium $ (\hat{S}_*, \hat{I}_*) $ of (2.33) when $ q = 0 $ such that for $ \Sigma $, the projection of $ \Sigma $ to the $ q $-axis satisfies $ Proj_q \Sigma = [0, q_*] $ and the connected component $ \Sigma $ connects to $ (0, (\hat{S}_*, \hat{I}_*)) $.
Proof. 1. Let $ F:\mathbb{R}^+\times X\times X\rightarrow Y\times Y\times \mathbb{R} $ be the mapping as follows.
$ F(q,(ˉS,ˉI))=(dSˉSxx+a′(x)ˉSx−β(x)ea(x)dIˉSˉIea(x)dSˉS+ea(x)dIˉI+γ(x)e(1dI−1dS)a(x)ˉIdIˉIxx+a′(x)ˉIx+β(x)ea(x)dSˉSˉIea(x)dSˉS+ea(x)dIˉI−γ(x)ˉI∫L0[ea(x)dSˉS+ea(x)dIˉI]dx−N). $ |
It is to verify that the pair $ (\bar{S}, \bar{I}) $ is a solution of (2.33) if only if $ F(q, (\bar{S}, \bar{I})) = 0 $. Obviously, $ F(q, (\hat{\bar{S}}, 0)) = 0 $ for any $ q > \min_{x\in [0, L]}a'(x) > 0 $. The Fr$ \acute{e} $chet derivatives of $ F $ at $ (\hat{\bar{S}}, 0) $ are given by
$ D(ˉS,ˉI)F(q,(ˆˉS,0))[ΦΨ]=(dSΦxx+˜a′(x)Φx+[γ(x)−β(x)]e(1dI−1dS)a(x)ΨdIΨxx+˜a′(x)Ψx+[β(x)−γ(x)]Ψ∫L0[ea(x)dSΦ+ea(x)dIΨ]dx), $ |
$ Dq,(ˉS,ˉI)F(q,(ˆˉS,0))[ΦΨ]=(˜a′(x)Φx+(a(x)dI−a(x)dS)[γ(x)−β(x)]e(1dI−1dS)a(x)Ψ˜a′(x)Ψx∫L0[a(x)dSea(x)dSΦ+a(x)dIea(x)dIΨ]dx), $ |
$ D(ˉS,ˉI),(ˉS,ˉI)F(q,(ˆˉS,0))[ΦΨ]2=(2ˆˉSβ(x)e2(qdI−qdS)˜a(x)Ψ2−2ˆˉSβ(x)e(1dI−1dS)a(x)Ψ20). $ |
If $ (\Phi_1, \Psi_1) $ is a nontrivial solution of the following problem
$ {dSΦxx+˜a′(x)Φx+[γ(x)−β(x)]e(1dI−1dS)a(x)Ψ=0,0<x<L,dIΨxx+˜a′(x)Ψx+[β(x)−γ(x)]Ψ=0,0<x<L,Φx(0)=Φx(L)=Ψx(0)=Ψx(L)=0,∫L0[ea(x)dSΦ+ea(x)dIΨ]dx=0, $ | (2.35) |
then $ (q_*, (\hat{\bar{S}}, 0))) $ is degenerate solution of (2.33). The second equation of (2.33) has a positive solution $ \Psi_1 $ only if $ q = q_* $ satisfies $ \mathcal{R}_0(d_I, q_*) = 1 $. And $ \Phi_1 $ satisfies
$ {dS(Φ1)xx+˜a′(x)(Φ1)x+[γ(x)−β(x)]e(1dI−1dS)a(x)Ψ1=0,0<x<L,(Φ1)x(0)=(Φ1)x(L)=0,∫L0[ea(x)dSΦ1+ea(x)dIΨ1]dx=0, $ | (2.36) |
Obviously, $ \Phi_1 $ is uniquely determined by $ \Psi_1 $ in (2.36). Therefore, $ q = q_* $ is the only possible bifurcation point along $ \Gamma_S $ where positive solutions of (2.33) bifurcates and such $ q_* $ exists if and only if $ \mathcal{R}_0 = 1 $. We can obtain the necessary and sufficient conditions for the occurrence of bifurcation by Lemma 2.3.1 and Lemma 2.3.3.
2. At $ (q, (\bar{S}, \bar{I})) = (q_*, (\hat{\bar{S}}, 0)) $, the kernel
$ {\rm Ker}(D_{(\bar{S}, \bar{I})}F(q_*, (\hat{\bar{S}}, 0))) = {\rm span}\{(\Phi_1, \Psi_1)\}, $ |
where $ (\Phi_1, \Psi_1) $ is the solution of (2.35) with $ q = q_* $. Up to a multiple of constant, $ (\Phi_1, \Psi_1) $ is unique. And the range of $ D_{(\bar{S}, \bar{I})}F(q_*, (\hat{\bar{S}}, 0)) $ is given by
$ {\rm Range}(D_{(\bar{S}, \bar{I})}F(q_*, (\hat{\bar{S}}, 0))) = \{(f, g, k)\in Y\times Y\times \mathbb{R}^N:\int_0^Lg\Psi_1e^{\frac{a(x)}{d_I}}dx = 0\}, $ |
and it is co-dimension one. By the result of Lemma 2.1.1, $ (\Psi_1)_x $ keeps one sign in $ (0, L) $ and $ \int_0^L(\Psi_1)_x\Psi_1e^{\frac{a(x)}{d_I}}dx\neq 0 $, which implies that
$ D_{q, (\bar{S}, \bar{I})}F(q_*, (\hat{\bar{S}}, 0))[(\Phi_1, \Psi_1)]\notin {\rm Range}(D_{q, (\bar{S}, \bar{I})}F(q_*, (\hat{\bar{S}}, 0))). $ |
Therefore, using the local bifurcation theorem in [20] to $ F(q, (\bar{S}, \bar{I})) $ at $ (q_*, (\hat{\bar{S}}, 0)) $, we know that the set of positive solutions of (2.33) is a smooth curve
$ \Gamma = \{(q(\tau), (\hat{\bar{S}}+\bar{S}_1(\tau), \bar{I}_1(\tau))):\tau\in [0, \delta)\} $ |
satisfying $ q(0) = q_* $, $ \bar{S}_1(\tau) = \tau \hat{\bar{S}}+o(|\tau|) $ and $ I_1(\tau) = o(|\tau|) $. Similar to the procedure in [21] and [22], (also see [23]), we can compute
$ q' = -\frac{ < l, D_{(\bar{S}, \bar{I}), (\bar{S}, \bar{I})}F(q_*, (\hat{\bar{S}}, 0))[\Phi_1, \Psi_1]^2 > }{2 < l, D_{q, (\bar{S}, \bar{I})}F(q_*, (\hat{\bar{S}}, 0))[(\Phi_1, \Psi_1)]} = \frac{\int_0^L\beta(x)e^{(\frac{1}{d_I}-\frac{1}{d_S})a(x)}\phi_1^3dx} {\hat{\bar{S}}\int_0^Le^{\frac{a(x)}{d_I}}\phi_1(\phi_1)_xdx}. $ |
Here $ l $ is the linear functional on $ Y\times Y\times \mathbb{R} $ defined by $ < l, [f, g, k] > = \int_0^Lg\Psi_1e^{\frac{a(x)}{d_I}}dx $.
3. By the global bifurcation theorem in [23] and [24], we can get the existence of the connected component $ \Sigma $. Moreover, $ \Sigma $ is either unbounded, or connects to another $ (q, (\hat{\bar{S}}, 0)) $, or $ \Sigma $ connects to another point on the boundary of $ O $.
Case (I) Assume that $ \int^L_0\beta(x)dx > \int^L_0\gamma(x)dx $ and (C2) holds. By Lemma 2.2.1 and the proof of part 2, we see that there exits a unique $ q_* $ such that the local bifurcation occurs at $ (q_*, (\hat{\bar{S}}, 0)) $ and $ q'(0) < 0 $, which means that the bifurcation direction is subcritical. Therefore, there exists some small $ \delta > 0 $ such that (2.33) has a positive solution if $ q_*-\delta < q < q_* $. By Lemma 2.1.4, $ \mathcal{R}_0 > 1 $ if $ q_*-\delta < q < q_* $ for $ \delta > 0 $ small enough. By Lemma 2.1.5, (2.33) has no positive solution if $ \mathcal{R}_0 < 1 $, which implies that (2.33) has no positive solution if $ q > q_* $. Consequently, the projection of $ \Sigma $ to the $ q $-axis $ Proj_q\Sigma \subset [0, q_*] $. And $ \Sigma $ must be bounded in $ \bar{O} $ because the positive solutions are uniformly bounded in $ L^{\infty} $ for $ 0\leq q\leq q_* $. So the third option must happen here. Hence $ \Sigma $ must connect to $ (0, (\bar{S}_*, \bar{I}_*)) $, so $ 0\in Proj_q\Sigma $. Here $ (\bar{S}_*, \bar{I}_*) $ is the unique endemic equilibrium of (2.33) when $ q = 0 $.
Case (II) Assume that $ \int^L_0\beta(x)dx < \int^L_0\gamma(x)dx $.
(i) If (C1) holds and $ d_I > d^*_I $, by Lemma 2.2.1 and the bifurcation analysis above, there exists unique bifurcation point $ q_* $ satisfying $ q'(0) > 0 $, which means the bifurcation direction is supercritical. Then there exists some small $ \delta > 0 $ such that (2.33) has a positive solution if $ q_* < q < q_*+\delta $. By Lemma 2.3.3, $ \mathcal{R}_0 > 1 $ if $ q_* < q < q_*+\delta $ for some $ \delta > 0 $ small enough. By Lemma 2.1.5, (2.33) has no positive solution if $ \mathcal{R}_0 < 1 $, which implies that (2.33) has no positive solution if $ 0 < q < q_* $. So the first option must happen here. If there exists some finite $ q^* > q_* $ such that $ Proj_q\Sigma = [q_*, q^*) $, then it contradicts to the fact that all positive solutions are uniformly bounded in $ L^{\infty} $ for $ q = q^* $. Consequently, the projection of $ \Sigma $ to the $ q $-axis $ Proj_q\Sigma = [q_*, \infty) $.
(ii) If (C2) holds and $ 0 < d_I < d^*_I $, the proof is similar to that of Case (I), we omit the details here.
We will give the Leray-Schauder degree argument.
Lemma 2.4.2. For any $ \epsilon > 0 $, there exist two constants $ \underline{C} $ and $ \bar{C} $ which depend on $ d_I $, $ \epsilon $, $ \|\beta\|_{\infty} $, $ \|\gamma\|_{\infty} $ and $ N $ such that if $ \mathcal{R}_0\neq 1 $, then for any positive solution of (2.33),
$ C_≤ˉS(x),ˉI(x)≤ˉCfor any x∈[0,L] $ | (2.37) |
for any $ \epsilon\leq d_S\leq \frac{1}{\epsilon} $ and $ 0\leq q\leq \frac{1}{\epsilon} $.
Proof. $ \int_0^L[e^{\frac{a(x)}{d_S}}\bar{S}+e^{\frac{a(x)}{d_I}}\bar{I}]dx = N $ means that $ \bar{S}(x) $ and $ \bar{I}(x) $ are bounded in $ L^1 $ space. Using the standard theory of elliptic equation, it is easy to see that $ \bar{S} $ and $ \bar{I} $ have the upper bound $ \bar{C} $ depending on $ d_I $, $ \epsilon $, $ \|\beta\|_{\infty} $, $ \|\gamma\|_{\infty} $ and $ N $.
Therefore, we just need to prove that $ \bar{S} $ and $ \bar{I} $ have lower bounds.
Suppose contradictorily that there exist a sequence of $ \{(d_{S, i}, q_i)\}_{i = 1}^{\infty} $ satisfies $ \epsilon\leq d_{S, i}\leq \frac{1}{\epsilon} $ and $ 0\leq q_i\leq \frac{1}{\epsilon} $ and $ \mathcal{R}_0\neq 1 $, and $ \{(\bar{S}_i(x), \bar{I}_i(x))\}_{i = 1}^{\infty} $ are the corresponding positive solutions of (2.33) satisfying
$ \max\limits_{x\in [0, L]} I_i(x)\rightarrow 0, \quad {\rm as}\ i\rightarrow \infty, $ |
and $ (\bar{S}_i(x), \bar{I}_i(x)) $ satisfies
$ {dS,i(ˉSi)xx+qi˜a′(x)(ˉSi)x−β(x)eqidI˜a(x)ˉSiˉIieqidS,i˜a(x)ˉSi+eqidI˜a(x)ˉIi+γ(x)e(qidI−qidS,i)˜a(x)ˉIi=0, 0<x<L,dI(ˉIi)xx+qi˜a′(x)(ˉIi)x+β(x)eqidS,i˜a(x)ˉSiˉIieqidS,i˜a(x)ˉSi+eqidI˜a(x)ˉIi−γ(x)ˉIi=0, 0<x<L,(ˉSi)x(0)=(ˉSi)x(L)=0,(ˉIi)x(0)=(ˉIi)x(L)=0, ∫L0[eqidS,i˜a(x)ˉSi+eqidI˜a(x)ˉIi]dx=N. $ | (2.38) |
Up to a subsequence, we assume that $ d_{S, i}\rightarrow d_S > 0 $ and $ q_i\rightarrow q\geq 0 $. Note that $ \|\bar{I}_i\|_{\infty} $ are uniformly bounded. Letting $ \tilde{\bar{I}}_i = \frac{\bar{I}_i}{\|\bar{I}_i\|_{\infty}} $, we have
$ {dI(˜ˉIi)xx+qi˜a′(x)(˜ˉIi)x+β(x)˜ˉIieqidS,i˜a(x)ˉSieqidS,i˜a(x)ˉSi+eqidI˜a(x)ˉIi−γ(x)˜ˉIi=0, 0<x<L,(˜ˉIi)x(0)=(˜ˉIi)x(L)=0. $ |
By standard regularity and Sobolev embedding theorem in [25], up to a subsequence, $ \bar{I}_i\rightarrow 0 $ in $ C^1([0, L]) $ and there exists $ I^* > 0 $ such that $ \tilde{\bar{I}}_i\rightarrow I^* $ in $ C^1([0, L]) $ and $ \|I^*\|_{\infty} = 1 $. Since $ \bar{I}_i\rightarrow 0 $ in $ C^1([0, L]) $ and $ \int_0^L[e^{\frac{q_i}{d_{S, i}}\tilde{a}(x)}\bar{S}_i+e^{\frac{q_i}{d_I}\tilde{a}(x)}\bar{I}_i]dx = N $ implies that $ \bar{S}_i $ is bounded in $ L^1([0, L]) $, using the equation of $ \bar{S}_i $, we get $ \bar{S}_i\rightarrow \hat{\bar{S}} > 0 $ in $ C^1([0, L]) $. Letting $ i\rightarrow \infty $ in the equation of $ \bar{I}_i $, we have
$ {dII∗xx+a′(x)I∗x+[β(x)−γ(x)]I∗=0, 0<x<L,I∗x(0)=I∗x(L)=0. $ | (2.39) |
Since $ I^* > 0 $, (2.39) means that $ 0 $ is the principle eigenvalue, which is a contradiction of the assumption of $ \mathcal{R}_0\neq 1 $ for any $ d_I > 0 $ and $ 0\leq q \leq \frac{1}{\epsilon} $. Therefore, there must exist some positive constant $ \underline{C} $ such that $ \max_{x\in [0, L]}I(x)\geq \underline{C} $. Similar to the argument in [26], by Harnack inequality, we have
$ \max\limits_{x\in[0, L]}\bar{I}(x)\leq C^*\min\limits_{x\in [0, L]}\bar{I}(x) $ |
for some constant $ C^* $ depending on $ d_I $, $ \epsilon $, $ \|\beta\|_{\infty} $, $ \|\gamma\|_{\infty} $ and $ N $, which implies that $ \bar{I}(x) $ has uniformly positive lower bound.
Now we prove that $ S(x) $ has a uniform positive lower bound. Let $ S(x_0) = \min_{x\in [0, L]}S(x) $. Using the minimum principle in [27], we have
$ \beta(x_0)\frac{e^{\frac{q}{d_I}\tilde{a}(x_0)}\bar{S}(x_0)}{e^{\frac{q}{d_S}\tilde{a}(x_0)}\bar{S}(x_0)+e^{\frac{q}{d_I}\tilde{a}(x_0)}\bar{I}(x_0)}- \gamma(x_0)e^{(\frac{q}{d_I}-\frac{q}{d_S})\tilde{a}(x_0)}\geq 0. $ |
Consequently,
$ \beta(x_0)\frac{\bar{S}(x_0)}{\bar{I}(x_0)}\geq \beta(x_0)\frac{e^{\frac{q}{d_I}\tilde{a}(x_0)}\bar{S}(x_0)}{e^{\frac{q}{d_S}\tilde{a}(x_0)}\bar{S}(x_0)+e^{\frac{q}{d_I}\tilde{a}(x_0)}\bar{I}(x_0)}\geq \gamma(x_0)e^{(\frac{q}{d_I}-\frac{q}{d_S})\tilde{a}(x_0)} $ |
and
$ \bar{S}(x_0)\geq \frac{\gamma(x_0)e^{(\frac{q}{d_I}-\frac{q}{d_S})\tilde{a}(x_0)}\bar{I}(x_0)}{\beta(x_0)}\bar{I}(x_0)\geq C\min\limits_{x\in [0, L]}\bar{I}(x), $ |
which completes the proof.
Lemma 2.4.3. Assume that $ \beta(x)-\gamma(x) $ changes sign once in $ (0, L) $ and one of the following conditions holds:
(i) $ d_I > 0 $, $ q > \min_{x\in [0, L]}a'(x) > 0 $, $ \int_0^L\beta(x)dx > \int_0^L\gamma(x)dx $ and (C2) holds;
(ii) $ 0 < d_I < d^*_I $, $ q > \min_{x\in [0, L]}a'(x) > 0 $, $ \int_0^L\beta(x)dx < \int_0^L\gamma(x)dx $ and (C1) holds.
Then (2.33) has at least an endemic equilibrium.
Proof. Note that we can extend the ranges of $ f $ and $ g $ properly for any nonnegative pair $ (f, g)\in C([0, L])\times C([0, L]) $ such that the function $ \frac{fg}{e^{\frac{\tau a(x)}{d_S}}f+e^{\frac{\tau a(x)}{d_I}}g} $ is Lipschitz continuous for $ f, g\in \mathbb{R} $ and $ \tau\in [0, 1] $. Therefore we define the following compact operator family from $ C([0, L])\times C([0, L]) $ to $ C([0, L])\times C([0, L]) $:
$ {(τdS+(1−τ)dI)uxx+τa′(x)ux+γ(x)e(τdI−τdS)a(x)v=β(x)efgτa(x)dIfeτa(x)dS+geτa(x)dI,0<x<L,dIvxx+τa′(x)vx−γ(x)v=−β(x)fgeτa(x)dSfeτa(x)dS+geτa(x)dI,0<x<L,ux(0)=ux(L)=0,vx(0)=vx(L)=0,∫L0[eτa(x)τdS+(1−τ)dIu+eτa(x)dIv]dx=N. $ | (2.40) |
Since the operator $ d_I\frac{d^2}{dx^2}+\tau a'(x)\frac{d}{dx}-\gamma(x) $ is invertible, then for any $ \tau\in [0, 1] $ and $ (f, g)\in C([0, L])\times C([0, L]) $, by the second equation of (2.40), $ v $ is uniquely determined. Substituting this $ v $ into the first and last equations of (2.40), $ u $ is also uniquely determined. Therefore, we can define $ \mathcal{G}_{\tau}(f, g): = (u, v) $.
Under conditions (i) and (ii), $ \mathcal{R}_{0, \tau} > 1 $ for any $ \tau\in [0, 1] $. Here
$ \mathcal{R}_{0, \tau} = \sup\limits_{\varphi\in H^1((0, L)), \varphi\neq 0}\left\{\frac{\int_0^L\beta(x)e^{\frac{\tau a(x)}{d_I}}\varphi^2dx} {d_I\int_0^L\beta(x)e^{\frac{\tau a(x)}{d_I}}\varphi_x^2dx+\int_0^L\gamma(x)e^{\frac{\tau a(x)}{d_I}}\varphi^2dx}\right\}. $ |
By the result of Lemma 2.4.2, for any $ \tau\in [0, 1] $, there exist two positive constant $ \bar{C} $ and $ \underline{C} $ depending on $ d_S $, $ d_I $, $ q $, $ \|\beta\|_{\infty} $, $ \|\gamma\|_{\infty} $ and $ N $ such that $ \underline{C}\leq u, v\leq \bar{C} $ for any solution of (2.40).
Let
$ D = \{(u, v)\in C([0, L])\times C([0, L]):\frac{\underline{C}}{2}\leq u, v\leq 2\bar{C}\}. $ |
Then $ (\bar{S}, \bar{I})\neq \mathcal{G}(\tau, (\bar{S}, \bar{I})) $ for any $ \tau\in [0, 1] $ and $ (\bar{S}, \bar{I})\in \partial D $, which implies that Leray-Schauder degree $ deg({\bf{I}}-\mathcal{G}(\tau, (\cdot, \cdot)), D, 0) $ is well defined, and it is independent of $ \tau $. Here $ {\bf{I}} $ is the identity map. Moreover, $ (\bar{S}, \bar{I}) $ is a solution of (2.33) if and only if $ (\bar{S}, \bar{I}) $ satisfies $ (\bar{S}, \bar{I}) = \mathcal{G}(1, (\bar{S}, \bar{I})) $. If $ (\bar{S}, \bar{I})\in D $ and $ ({\bf{I}}-\mathcal{G}(0, (\cdot, \cdot)))(\bar{S}, \bar{I}) = 0 $, then $ (\bar{S}, \bar{I}) $ is a positive solution of
$ {dIˉSxx−β(x)ˉSˉIˉS+ˉI+γ(x)ˉI=0,0<x<L,dIˉIxx+β(x)ˉSˉIˉS+ˉI−γ(x)ˉI=0,0<x<L,ˉSx(0)=ˉSx(L)=0,ˉIx(0)=ˉIx(L)=0,∫L0[ˉS+ˉI]dx=N. $ | (2.41) |
By the result of [2], (2.41) has a unique positive solution $ (S_*, I_*) $ satisfying $ S_*+I_* = \frac{N}{L} $ if the basic reproduction number $ \hat{\mathcal{R}}_0 > 1 $. Linearizing (2.41) around $ (S_*, I_*) $, we get
$ {−dIΦxx+β(x)I2∗(S∗+I∗)2Φ+β(x)S2∗(S∗+I∗)2Ψ−γ(x)Ψ=μΦ,0<x<L,−dIΨxx−β(x)S2∗(S∗+I∗)2Ψ+γ(x)Ψ−β(x)I2∗(S∗+I∗)2Φ=μΨ,0<x<L,Φx(0)=Φx(L)=0,Ψx(0)=Ψx(L)=0,∫L0[Φ+Ψ]dx=N. $ | (2.42) |
Adding the first two equations of (2.42) and using the boundary condition $ \Phi_x = \Psi_x = 0 $, $ x = 0, L $, we get
$ −dI(Φxx+Ψxx)=μ(Φ+Ψ),x∈(0,L),(Φ+Ψ)x=0,x=0,L. $ |
Solving it, we have $ \Phi = -\Psi $. Substituting this relation into the first equation of (2.42), we obtain
$ -d_I\Phi_{xx}+\left(\frac{2L\beta(x)}{N}I_*+\gamma(x)-\beta(x)\right)\Phi = \mu\Phi. $ |
Since $ I_* $ is a positive solution of (2.40), we know that $ -d_I\frac{d^2}{dx^2}+\frac{2L}{N}\beta(x)I_*+\gamma(x)-\beta(x) $ is a positive operator, so $ \mu > 0 $. Hence the unique positive solution $ (S_*, I_*) $ is linearly stable. Using Leray-Schauder degree index (see Theorem 1.2.8.1 in [28]), we obtain
$ deg({\bf{I}}-\mathcal{G}(0, (\cdot, \cdot)), D, 0) = 1. $ |
Consequently, using the homotopy invariance of Leray-Schauder degree, we have
$ deg({\bf{I}}-\mathcal{G}(1, (\cdot, \cdot)), D, 0) = deg({\bf{I}}-\mathcal{G}(0, (\cdot, \cdot)), D, 0) = 1 $ |
for $ (d_I, q)\in \Omega_{hh}^U\cup \Omega_{lh}^{U_1} $. By the properties of degree, $ \mathcal{G}(1, (\cdot, \cdot) $ has a fixed point in $ D $ if $ (d_I, q)\in \Omega_{hh}^U\cup \Omega_{lh}^{U_1} $, which implies that (2.33) has at least one positive solution.
In this section, we consider the properties of $ \mathcal{R}_0 $ when $ \beta(x)-\gamma(x) $ changes sign twice. We also need the results on the positive roots of $ F(\eta) $ which is defined as
$ F(\eta) = \int_0^L\tilde{a}'(x)m(x)e^{\eta \tilde{a}(x)}dx, \quad 0\leq \eta < \infty, $ |
for any given continuous function $ m(x) $ on $ [0, L] $.
Lemma 2.5.1. Assume that there exists $ 0 < x_1 < x_2 < L $ such that $ m(x_1) = m(x_2) = 0 $, i.e., $ m(x) $ change sign twice for $ x\in [0, L] $. Then
(i) If $ m(L) < 0 $ and $ \int_0^L\tilde{a}'(x)m(x)dx > 0 $, then $ F(\eta) $ has a unique positive root $ \eta_1 $ for $ \eta\in (0, +\infty) $ satisfying $ F'(\eta_1) < 0 $;
(ii) If $ m(L) > 0 $ and $ \int_0^L\tilde{a}'(x)m(x)dx < 0 $, then $ F(\eta) $ has a unique positive root $ \eta_1 $ for $ \eta\in (0, +\infty) $ satisfying $ F'(\eta_1) > 0 $;
(iii) If $ m(L) > 0 $ and $ \int_0^L\tilde{a}'(x)m(x)dx > 0 $, then $ F(\eta) $ has at most two positive roots for $ \eta\in (0, +\infty) $;
(iv) If $ m(L) < 0 $ and $ \int_0^L\tilde{a}'(x)m(x)dx < 0 $, then $ F(\eta) $ has at most two positive roots for $ \eta\in (0, +\infty) $.
Proof. We only prove part (i) and part (iii). The proofs of part (ii) and part (iv) are similar.
(i). Let $ G_1(\eta): = e^{-\tilde{a}(x_2)\eta}[\tilde{a}(x_1)F(\eta)-F'(\eta)] $ and the prime notation denote differentiation with respect to $ \eta $. Since $ m(L) < 0 $ and $ m(x) $ changes sign twice, it is easy to see that $ m(x) < 0 $ for $ x\in (0, x_1)\cup (x_2, L) $ and $ m(x) > 0 $ for $ x\in (x_1, x_2) $. Note that $ \tilde{a}(x) $ is increasing. We know that
$ m(x)[\tilde{a}(x)-\tilde{a}(x_1)][\tilde{a}(x)-\tilde{a}(x_2)] < 0 $ |
for $ x\in (0, L) $ and $ x\neq x_i(i = 1, 2) $. As a result, for any $ \eta > 0 $, we have
$ G′1(η)=−e−˜a(x2)η(F″(η)−[˜a(x1)+˜a(x2)]F′(η)+˜a(x1)˜a(x2)F(η))=−∫L0eη[˜a(x)−˜a(x2)]˜a′(x)m(x)[˜a(x)−˜a(x1)][˜a(x)−˜a(x2)]dx>0, $ |
which implies that $ G'_1(\eta) $ is a strictly increasing function for $ \eta\in (0, \infty) $. By Lemma 2.2.2 and $ m(L) < 0 $, $ F(\eta) < 0 $ for $ \eta > M $ if $ M $ is large enough. But $ F(0) = \int_0^L\tilde{a}'(x)m(x)dx > 0 $, so there exits at least a positive root of $ F(\eta) $. Let $ \eta_1 $ be the smallest positive one, then $ F'(\eta_1)\leq 0 $.
If $ F'(\eta_1) = 0 $, since
$ F″(η)−[˜a(x1)+˜a(x2)]F′(η)+˜a(x1)˜a(x2)F(η)=∫L0eη[˜a(x)−˜a(x2)]˜a′(x)m(x)[˜a(x)−˜a(x1)][˜a(x)−˜a(x2)]dx<0, $ |
then
$ F''(\eta_1)-[\tilde{a}(x_1)+\tilde{a}(x_2)]F'(\eta_1)+\tilde{a}(x_1)\tilde{a}(x_2)F(\eta_1) = F''(\eta_1) < 0. $ |
That is, $ \eta_1 $ is a strict local maximum value point of $ F(\eta) $, which is a contradiction. So $ F'(\eta_1) < 0 $. Now we will prove that $ \eta_1 $ is the unique positive root of $ F(\eta) $. Assume contradictorily that $ \eta_2 > \eta_1 $ is the first number such that $ F(\eta_2) = 0 $. Since $ F(\eta_1) = 0 $ and $ F'(\eta_1) < 0 $, then $ F(\eta) < 0 $ in $ (\eta_1, \eta_2) $, which implies that $ F'(\eta_2)\geq 0 $. By the definition of $ G_1(\eta) $, and noticing that $ F(\eta_1) = F(\eta_2) = 0 $, we have $ G_1(\eta_1) = -\tilde{a}(x_1)e^{\tilde{a}(x_2)\eta_1}F'(\eta_1) > 0 $ and $ G_1(\eta_2) = -\tilde{a}(x_1)e^{\tilde{a}(x_2)\eta_2}F'(\eta_2)\leq 0 $, which is a contradiction to the fact that $ G_1(\eta) $ is strictly increasing.
(iii) By Lemma 2.2.2 and $ m(L) > 0 $, we see that $ F(\eta) > 0 $ for $ \eta > M $ if $ M $ is large enough. Then either $ F(\eta) > 0 $ for any $ \eta > 0 $ or $ F(\eta) $ has positive roots in $ (0, \infty) $. Let $ G_2(\eta) = e^{-\tilde{a}(x_2)\eta}[F'(\eta)-\tilde{a}(x_1)F(\eta)] $ and $ \eta_1 $ be the first positive root of $ F(\eta) = 0 $. Similar to the proof of part (i), it is easy to prove that $ G_2(\eta) $ is strictly monotone increasing in $ (0, +\infty) $ and $ F'(\eta_1)\leq 0 $. We discuss in two cases.
Case 1: $ F'(\eta_1) = 0 $. We will show that $ \eta_1 $ is the unique positive root of $ F(\eta) $. Since
$ F″(η)−[˜a(x1)+˜a(x2)]F′(η)+˜a(x1)˜a(x2)F(η)=∫L0eη[˜a(x)−˜a(x2)]˜a′(x)m(x)[˜a(x)−˜a(x1)][˜a(x)−˜a(x2)]dx>0 $ |
then $ F''(\eta_1)-[\tilde{a}(x_1)+\tilde{a}(x_2)]F'(\eta_1)+\tilde{a}(x_1)\tilde{a}(x_2)F(\eta_1) = F''(\eta_1) > 0 $. That is, $ F(\eta) $ attains a strict local minimum at $ \eta_1 $. Now we will prove that $ \eta_1 $ is the unique positive root of $ F(\eta) $. Assume contradictorily that $ \eta_2 > \eta_1 $ is the first number such that $ F(\eta_2) = 0 $. Since $ \eta_1 $ is a strict local minimum value point, we have $ F(\eta) > 0 $ in $ (\eta_1, \eta_2) $, which implies that $ F'(\eta_2)\leq 0 $. By the definition of $ G_2(\eta) $, and noticing that $ F(\eta_1) = F(\eta_2) = 0 $, we have $ G_2(\eta_1) = 0 $ and $ G_2(\eta_2) = e^{a(x_2)\eta_2}F'(\eta_2)\leq 0 $, which is a contradiction to the fact that $ G_2(\eta) $ is strictly increasing. So $ F(\eta) $ only has a unique positive root $ \eta_1 $ in this case.
Case 2. $ F'(\eta_1) < 0 $. Since $ F(\eta_1) = 0 $, so $ F(\eta) < 0 $ if $ \eta > \eta_1 $ and $ \eta $ close to $ \eta_1 $ enough. By Lemma 3.2 and $ m(L) > 0 $, $ F(\eta) > 0 $ for $ \eta > M $ if $ M $ is large enough. Therefore, there exists at least a root of $ F(\eta) = 0 $ in $ (\eta_1, \infty) $. Assume that $ \eta_2 $ is the first root of $ F(\eta) = 0 $ in $ (\eta_1, \infty) $. Then $ F(\eta) < 0 $ in $ (\eta_1, \eta_2) $ and $ F'(\eta_2)\geq 0 $. If $ F'(\eta_2) = 0 $, then
$ F″(η2)=F″(η2)−[˜a(x1)+˜a(x2)]F′(η2)+˜a(x1)˜a(x2)F(η2)=∫L0eη2[˜a(x)−˜a(x2)]˜a′(x)m(x)[˜a(x)−˜a(x1)][˜a(x)−˜a(x2)]dx>0. $ |
And $ F(\eta) $ attains a strict local minimum at $ \eta_2 $, which is a contradiction. Hence $ F'(\eta_2) > 0 $.
We need to show that there is no positive root of $ F(\eta) = ) $ for $ \eta > \eta_2 $. Assume contradictorily that there exists $ \eta_3 > \eta_2 $ such that $ F(\eta_3) = 0 $ and $ F(\eta) > 0 $ in $ (\eta_2, \eta_3) $. Then $ F'(\eta_3) < 0 $. And $ G_2(\eta_2) = e^{\tilde{a}(x_2)\eta_2}F'(\eta_2) > 0 $ and $ G_2(\eta_3) = e^{a(x_2)\eta_3}F'(\eta_3) < 0 $, which contradicts the fact that $ G_2(\eta) $ is strictly increasing. Therefore we have proved that there exists a unique $ \eta_2 > \eta_1 $ such that $ F(\eta_2) = 0 $ and $ F'(\eta_2) > 0 $.
Now we give the proof of Theorem 1.6 below.
Proof. We only prove part(i) and (iii). The proofs of (ii) and (iv) are similar.
Part (i): Similar to the proofs of Lemma 2.3.2 and 2.3.3, it is easy to prove that there exists some positive constant $ \Lambda $ which is independent of $ d_I $ and $ q $ and for each $ d_I > \Lambda $, there exists some $ \tilde{q} = \tilde{q}(d_I) $ which satisfies $ \mathcal{R}_0(d_I, \tilde{q}) = 1 $ and $ \frac{\tilde{q}}{d_I}\rightarrow \eta_0 $ as $ d_I\rightarrow \infty $. Here $ \eta_0 $ is the unique positive root of $ F(\eta) = 0 $.
Next, we will prove that
$ \frac{\partial \mathcal{R}_0}{\partial q}(d_I, \tilde{q}) < 0 $ |
for any $ \tilde{q} $ satisfying $ \mathcal{R}_0(d_I, \tilde{q}) = 1 $ if $ d_I $ is large enough.
Let $ \tilde{\varphi} $ be the unique normalized eigenfunction of the eigenvalue $ \mathcal{R}_0(d_I, \tilde{q}) = 1 $, i.e., $ \max_{[0, L]}\tilde{\varphi} = 1 $ and
$ {−dI(e˜qdI˜a(x)˜φx)x+[γ(x)−β(x)]e˜qdI˜a(x)˜φ=0,0<x<L,˜φx(0)=˜φx(L)=0. $ | (2.43) |
By (2.22), we have
$ ∂R0∂q(dI,˜q)=R20∫L0e˜qdI˜a(x)˜φx˜φ˜a′(x)dx∫L0β(x)e˜qdI˜a(x)˜φ2dx. $ | (2.44) |
Multiplying (2.43) by $ \int_0^x\tilde{\varphi}(s)ds $ and integrating it over $ (0, L) $, we get
$ d_I\int_0^Le^{\frac{\tilde{q}}{d_I}\tilde{a}(x)}\tilde{\varphi}_x\tilde{\varphi}\tilde{a}'(x)dx +\int_0^L[\gamma(x)-\beta(x)]e^{\frac{\tilde{q}}{d_I}\tilde{a}(x)}\tilde{\varphi}(\int_0^x\tilde{\varphi}(s)ds)dx = 0. $ |
Substitute it into (2.44), we obtain
$ d_I\frac{\partial \mathcal{R}_0}{\partial q}(d_I, \tilde{q}) = \frac{\int_0^L[\beta(x)-\gamma(x)]e^{\frac{\tilde{q}}{d_I}\tilde{a}(x)}\tilde{\varphi}(\int_0^x\tilde{\varphi}(s)ds)dx} {\int_0^L\beta(x) e^{\frac{\tilde{q}}{d_I}\tilde{a}(x)}\tilde{\varphi}^2dx}. $ |
As $ d_I\rightarrow \infty $, $ \frac{\tilde{q}}{d_I}\rightarrow \eta_0 $ and $ \tilde{\varphi}\rightarrow 1 $, we have
$ \lim\limits_{d_I\rightarrow \infty}d_I\frac{\partial \mathcal{R}_0}{\partial q}(d_I, \tilde{q}) = \frac{\int_0^Lx[\beta(x)-\gamma(x)]e^{\eta_0\tilde{a}(x)}dx}{\int_0^L\beta(x)e^{\eta_0\tilde{a}(x)}dx}. $ |
By Lemma 2.5.1(i),
$ \int_0^Lx[\beta(x)-\gamma(x)]e^{\eta_0\tilde{a}(x)}dx = F'(\eta_0) < 0. $ |
Hence, there exists some constant $ Q > 0 $(dependent on $ d_I $) such that $ \mathcal{R}_0 > 1 $ for $ 0 < q < Q $ and $ \mathcal{R}_0 < 1 $ for $ q > Q $.
Part (iii). According to the results of Lemma 2.5.1(iii), we divide into three cases to prove it.
Case 1. $ F(\eta) > 0 $ for any $ \eta > 0 $. It is easy to show that there exists some positive constant $ \Lambda $ independent of $ d_I $ and $ q $ such that $ \mathcal{R}_0 > 1 $ for every $ d_I > \Lambda $ and any $ q > 0 $.
Case 2. $ F(\eta) $ has a unique positive root $ \eta_1 $ for $ \eta\in(0, +\infty) $ and $ F'(\eta_1) = 0 $. Similar to the proof of part (i), we can prove that there exists some positive constant $ \Lambda $ independent of $ d_I $ and $ q $ such that for every $ d_I > \Lambda $, there exists some $ \tilde{q} = \tilde{q}(d_I) $ such that $ \mathcal{R}_0(d_I, \tilde{q}) = 1 $ and $ \frac{\tilde{q}}{d_I}\rightarrow \eta_0 $ as $ d_I\rightarrow \infty $, where $ \eta_0 $ is the unique positive root of $ F(\eta) = 0 $. Moreover, $ \frac{\partial \mathcal{R}_0}{\partial q}(d_I, \tilde{q}) = 0 $. Therefore there exists some positive constant $ \Lambda $ which is independent of $ d_I $ and $ q $ such that for every $ d_I > \Lambda $, there exists a constant $ Q > 0 $ dependent on $ d_I $ satisfying $ \mathcal{R}_0 = 1 $ for $ q = Q $ and $ \mathcal{R}_0 > 1 $ for $ q\in (0, Q)\cup (Q, \infty) $.
Case 3. $ F(\eta) $ has two positive roots $ \eta_1 $ and $ \eta_2 $($ \eta_1 < \eta_2 $) for $ \eta\in (0, +\infty) $ and $ F'(\eta_1) < 0 $, $ F'(\eta_2) > 0 $. Similar to the discussion of part (i), for each $ d_I > 0 $, there exist $ \tilde{q}_1 = \tilde{q}_1(d_I) $ and $ \tilde{q}_2 = \tilde{q}_2(d_I) $ such that $ \mathcal{R}_0(d_I, \tilde{q}_i) = 1(i = 1, 2) $ and $ \frac{\tilde{q}_1}{d_I}\rightarrow \eta_1 $, $ \frac{\tilde{q}_2}{d_I}\rightarrow \eta_2 $ as $ d_I\rightarrow \infty $. And
$ \frac{\partial \mathcal{R}_0}{\partial q}(d_I, \tilde{q}_1) < 0, \quad \frac{\partial \mathcal{R}_0}{\partial q}(d_I, \tilde{q}_2) > 0. $ |
Consequently, there exist two constants $ Q_2 > Q_1 > 0 $ which depend on $ d_I $ and satisfy that $ \mathcal{R}_0 > 1 $ for $ q\in(0, Q_1)\cup (Q_2, \infty) $, $ \mathcal{R}_0 < 1 $ for $ q\in(Q_1, Q_2) $.
In this section, we will summarize the main results of this paper.
Theorem 1.1 gives some properties for the basic reproduction number $ \mathcal{R}_0 $ and Theorem 1.2 says that $ \mathcal{R}_0 = 1 $ is the watershed for judging whether the DFE is stable or not. Theorem 1.3 and Theorem 1.4 deal with the stable and unstable regions of the DFE. Theorem 1.5 establishes the existence of EE. Theorem 1.6 considers the results on (1.1) when $ \beta(x)-\gamma(x) $ changes sign twice in $ (0, L) $.
We only establish the results on (1.1) under the assumption of $ a'(x) > 0 $ in this paper. However, it is much more difficult to obtain the results on (1.1) if there exists some $ x_0\in (0, L) $ satisfying $ a'(x_0) = 0 $.
Biologically, the influence of advection is from the upstream to the downstream, small diffusion or large advection tends to force the individuals to concentrate at the downstream end. Therefore, the disease persists for arbitrary advection rate if the habitat is a high-risk domain and the downstream end is a high-risk site. While the advection transports the individuals to a favorable location and thus it can help eliminate the disease if the downstream end is a low-risk site. In conclusion, when advection is strong or the diffusion is small, the disease will be eliminated if the downstream end is a low–risk site, while the disease will persist if the downstream end is a high–risk site.
The authors thank the anonymous referees for their helpful suggestions.
Xiaowei An was supported by Natural Science Foundation of China People's Police University(No.ZKJJPY201723).
All authors declare no conflicts of interest in this paper.
[1] | Lidgren L. (2003) The bone and joint decade and the global economic and healthcare burden of musculoskeletal disease. J Rheum 67: 4-5. |
[2] | Hsu YY. (2014) 0243 Screening and disability prevention for musculoskeletal disorders of high-tech industry workers in Taiwan. Occup Environ Med 71(Supp 1): A92. |
[3] | Woolf AD, Pfleger B. (2003) Burden of major musculoskeletal conditions. Bull World Health Organization 81(9): 646-656. |
[4] |
Lane NE, Bloch DA, Wood PD, et al. (1987) Aging, long-distance running, and the development of musculoskeletal disability: a controlled study. Am J Med 82: 772-780. doi: 10.1016/0002-9343(87)90014-3
![]() |
[5] |
Leveille SG. (2004) Musculoskeletal aging. Curr Opin Rheumatol 16: 114-118. doi: 10.1097/00002281-200403000-00007
![]() |
[6] | Rajan K, Hebert L, Scherr P. (2012) Cognitive and physical functions as determinants of delayed age at onset and progression of disability. J Gerontol Series A: Biol Sci Med Sci 67(12):1419-1426. |
[7] | Du S, Yuan C, Xiao X, et al. (2011) Self-management programs for chronic musculoskeletal pain conditions: A systematic review and meta-analysis. Patient Educ Couns 85(3): e299-e310. |
[8] | Jordan JM, Lawrence R, Kington R, et al. (2002) Ethnic health disparities in arthritis and musculoskeletal diseases: report of a scientific conference. Arth Rheum 46(9): 2280-2286. |
[9] | Mu R. (2014) Regional disparities in self-reported health: evidence from Chinese older adults. Health Econ 23(5): 529-549. |
[10] | Dong X, Simon M. (2010) Health and aging in a Chinese population: urban and rural disparities. Geriatr Gerontol Int 10(1): 85-93. |
[11] | Chang E, Dong X. (2013) Understanding elder abuse in the Chinese community: the role of cultural, social, and community factors. In: Taylor R. Elder abuse its prevention: workshop summary. Washington, DC: The National Academies Press, 57-62. |
[12] | Holland AT, Palaniappan LP. (2012) Problems with the collection and interpretation of Asian-American health data. Ann Epid 22(6): 397-405. |
[13] | US Census Bureau. (2010) American fact finder. Available from: http://factfinder2. census. gov/faces/nav/jsf/pages/index. xhtml. |
[14] | Zhang Y, Xu L, Nevitt MC, et al. (2001) Comparison of the prevalence of knee osteoarthritis between the elderly Chinese population in Beijing and whites in the United States: The Beijing osteoarthritis study. Arth Rheum 44(9): 2065-2071. |
[15] | Dong X, Chang E, Wong E, et al. (2011) Assessing the health needs of Chinese older adults: Findings from a community-based participatory research study in Chicago's Chinatown. J Aging Res 2010:1-12. |
[16] | Chen L, Miaskowski C, Dodd M, et al. (2008) Concepts within the Chinese Culture that Influence the Cancer Pain Experience. Cancer Nurs 31(2): 103-108. |
[17] | Dong X, Zhang M, Zhang N, et al. (2014) The expectation and perceived receipts of filial piety among Chinese older adults in greater Chicago area. J Health Aging 26(2): 1225-1247. |
[18] | Dong X, Chang E, Wong E, et al. (2012) A qualitative study of filial piety among community dwelling, Chinese, older adults: Changing meaning and impact on health and well-being. J Int Relat 10(2): 131-146. |
[19] | Dong X, Simon M. (2009) China: The aging giant with an achilles heel. J Am Geriatr Soc 56(2):379-380. |
[20] | Dong X, Wong E, Simon M. (2014) Study design and implementation of the PINE study. J Aging Health 26(7):1085-1099. |
[21] | Simon M, Chang E, Rajan K, et al. (2014) Demographic characteristics of U. S. Chinese older adults in the greater Chicago area: Assessing the representativeness of the PINE study. J Aging Health 26(7): 1100-1015. |
[22] | Jacobs JJ. (2011) Burden of musculoskeletal diseases: overview. Rosemont: United States Bone and Joint Initiative, 1-20. |
[23] |
Hughes S, Edelman P, Naughton B, et al. (1993) Estimates and determinants of valid self-reports of musculoskeletal disease in the elderly. J Aging Health 5: 244-263. doi: 10.1177/089826439300500206
![]() |
[24] |
Fejer R, Ruhe A. (2012) What is the prevalence of musculoskeletal problems in the elderly population in developed countries? A systematic critical literature review. Chiropract Manual Therap 20: 31. doi: 10.1186/2045-709X-20-31
![]() |
[25] | Wijnhoven H, de Vet H, Picavet H. (2006) Prevalence of musculoskeletal disorders in systematically higher in women than in men. Clin J Pain 22(8): 717-724. |
[26] | Rollman GB, Lautenbacher S. (2001) Sex differences in Musculoskeletal Pain. Clin J Pain 17(1):20-24. |
[27] | Chen R, Simon M, Chang E, et al. (2014) The perception of social support among U. S. Chinese older adults: Findings from the PINE study. J Aging Health: In Print. |
[28] | Simon M, Chen R, Dong X. (2014) Gender differences in perceived social support in U. S. Chinese older adults. Geront Geriatr Res 3: 163. |
[29] | Jensen I, Nygren A, Gamberale F, et al. (1994) Coping with long-term musculoskeletal pain and its consequences: is gender a factor? Pain 57(2): 167-172. |
[30] | Woo J, Ho S, Lau J, et al. (1994) Musculoskeletal complaints and associated consequences in elderly Chinese aged 70 years and Over. J Rheumatol 21(10): 1927-1931. |
[31] | Ross CE, Zhang W. (2008) Education and psychological distress among older Chinese. J Aging Health 20(3): 273-289. |
[32] | Simon M, Dong X, Nonzee N, et al. (2009) Heeding our words: complexities of research among low-literacy populations. J Clin Oncol 27(12): 1938-1940. |
[33] | Kempen G, Brilman E, Rachor A, et al. (1999) Morbidity and quality of life and the moderating effects of level of education in the elderly. Soc Sci Med 49(1): 143-149. |
[34] | Mirowsky J, Ross C. (2005) Education, cumulative advantage, and health. Ageing Int 31(1):27-62. |
[35] |
Urwin M, Symmons D, Allison T, et al. (1998) Estimating the burden of musculoskeletal disorders in the community: the comparative prevalence of symptoms at different anatomical sites, and the relation to social deprivation. Ann Rheum Dis 57: 649-655. doi: 10.1136/ard.57.11.649
![]() |
[36] | Dong X, Chang E, Simon M. (2014) Sense of community among Chinese older adults in the Greater Chicago Area: Findings from the PINE Study. AIMS Med Sci 1(1): 28-39. |
[37] | Reyes-Gibby CC, Aday L, Cleeland C. (2002) Impact of pain on self-rated health in community-dwelling older adults. Pain 95(1-2): 75-82. |
[38] | Simon M, Magee M, Shah A, et al. (2008) Building a Chinese community health survey in Chicago: the value of involving the community to more accurately portray health. In J Health Ageing Manag 2(1): 41-57. |
[39] | Dong X, Chang E, Wong E, et al. (2011) Working with culture: lessons learned from a community-engaged project in a Chinese aging population. Aging Health 7(4): 529-537. |
[40] | Simon M, Chang E, Dong X. (2010) Partnership, reflection and patient focus: advancing cultural competency training relevance. Med Educ 44(6): 540-542. |
[41] | Dong X, Li Y, Chen R, et al. (2013) Evaluation of community health education workshops among Chinese Older adults in Chicago: a community-based participatory research approach. J Educ Train Stud 1(1): 170-181. |
[42] |
Dong X, Chang E, Simon M, et al. (2011) Sustaining Community-University Partnerships: Lessons learned from a participatory research project with elderly Chinese. Gateways: Int J Commu Res Engag 4: 31-47. doi: 10.5130/ijcre.v4i0.1767
![]() |
[43] | Chang E, Simon M, Dong X. (2014) Using community-based participatory research to address Chinese older women's health needs: Towards sustainability. J Women Aging: In Press. |
[44] | Simon M, Chang E, Dong X. (2010) Partnership, reflection, and patient focus: Advancing cultural competency training. Med Educ 44(6): 540-542. |
[45] | Chang E, Simon M, Dong X. (2010) Integrating cultural humility into health care professional education and training. Adv Health Sci Educ Theory Pract 17(2): 269-278. |
1. | Mengxin Chen, Ranchao Wu, Qianqian Zheng, QUALITATIVE ANALYSIS OF A DIFFUSIVE COVID-19 MODEL WITH NON-MONOTONE INCIDENCE RATE, 2023, 13, 2156-907X, 2229, 10.11948/20220450 | |
2. | Yantao Luo, Yunqiang Yuan, Zhidong Teng, ANALYSIS OF A DEGENERATED DIFFUSION SVEQIRV EPIDEMIC MODEL WITH GENERAL INCIDENCE IN A SPACE HETEROGENEOUS ENVIRONMENT, 2024, 14, 2156-907X, 2704, 10.11948/20230346 | |
3. | Yun Li, Shigui Ruan, Zhi-Cheng Wang, Asymptotic behavior of endemic equilibria for a SIS epidemic model in convective environments, 2025, 426, 00220396, 606, 10.1016/j.jde.2025.01.055 |