Citation: Xinqi Dong, E-Shien Chang, Stephanie Bergren. The Prevalence of Musculoskeletal Symptoms among Chinese older Adults in the Greater Chicago Area—Findings from the PINE Study[J]. AIMS Medical Science, 2014, 1(2): 87-102. doi: 10.3934/medsci.2014.2.87
[1] | Lirong Huang, Jianqing Chen . Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28(1): 383-404. doi: 10.3934/era.2020022 |
[2] | Senli Liu, Haibo Chen . Existence and asymptotic behaviour of positive ground state solution for critical Schrödinger-Bopp-Podolsky system. Electronic Research Archive, 2022, 30(6): 2138-2164. doi: 10.3934/era.2022108 |
[3] | Xiaoyong Qian, Jun Wang, Maochun Zhu . Existence of solutions for a coupled Schrödinger equations with critical exponent. Electronic Research Archive, 2022, 30(7): 2730-2747. doi: 10.3934/era.2022140 |
[4] | Jun Wang, Yanni Zhu, Kun Wang . Existence and asymptotical behavior of the ground state solution for the Choquard equation on lattice graphs. Electronic Research Archive, 2023, 31(2): 812-839. doi: 10.3934/era.2023041 |
[5] | Yixuan Wang, Xianjiu Huang . Ground states of Nehari-Pohožaev type for a quasilinear Schrödinger system with superlinear reaction. Electronic Research Archive, 2023, 31(4): 2071-2094. doi: 10.3934/era.2023106 |
[6] | Xiaoguang Li . Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189 |
[7] | Zhiyan Ding, Hichem Hajaiej . On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29(5): 3449-3469. doi: 10.3934/era.2021047 |
[8] | Li Cai, Fubao Zhang . The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, 2021, 29(3): 2475-2488. doi: 10.3934/era.2020125 |
[9] | Hui Guo, Tao Wang . A note on sign-changing solutions for the Schrödinger Poisson system. Electronic Research Archive, 2020, 28(1): 195-203. doi: 10.3934/era.2020013 |
[10] | Qihong Shi, Yaqian Jia, Xunyang Wang . Global solution in a weak energy class for Klein-Gordon-Schrödinger system. Electronic Research Archive, 2022, 30(2): 633-643. doi: 10.3934/era.2022033 |
In this paper, we study a class of Schrödinger-Poisson system with the following version
$ {−Δu+u+K(x)ϕu=|u|p−1u+μh(x)u in R3,−Δϕ=K(x)u2 in R3, $ | (1) |
where
$ {−Δu+u+ϕu=f(u) in R3,−Δϕ=u2 in R3, $ | (2) |
which has been derived from finding standing waves of the Schrödinger-Poisson system
$ \left\{ iψt−Δψ+ϕψ=f(ψ) in R3,−Δϕ=|ψ|2 in R3. \right. $ |
A starting point of studying system (1) is the following fact. For any
$ \phi_u(x) = \frac{1}{4\pi}\int_{\mathbb{R}^3}\frac{K(y)|u(y)|^2}{|x-y|}dy $ |
such that
$ −Δu+u+K(x)ϕuu=|u|p−1u+μh(x)u,u∈H1(R3). $ | (3) |
Problem (3) can be also looked on as a usual semilinear elliptic equation with an additional nonlocal perturbation
From Lemma 2.1, we know that under the condition (A1), the following eigenvalue problem
$ -\Delta u + u = \mu h(x) u,\qquad u\in \ H^1(\mathbb{R}^3) $ |
has a first eigenvalue
$ F(u) : = \int_{\mathbb{R}^3}K(x)\phi_u(x)|u(x)|^2dx $ |
and introduce the energy functional
$ I_\mu(u) = \frac{1}{2}\|u\|^2+\frac{1}{4}F(u)-\int_{\mathbb{R}^3}\left({\frac{1}{p+1}}|u|^{p+1} + \frac{\mu}{2} h(x)u^2\right)dx, $ |
where
$ \langle I_\mu'(u), v\rangle = \int_{\mathbb{R}^3}\left( \nabla u\nabla v+uv + K(x)\phi_uuv- |u|^{p-1}uv+ \mu h(x)uv\right)dx. $ |
It is known that there is a one to one correspondence between solutions of (3) and critical points of
Theorem 1.1. Suppose that the assumptions of
The second result is about
Theorem 1.2. Under the assumptions of
The proofs of Theorem 1.1 and Theorem 1.2 are based on critical point theory. There are several difficulties in the road of getting critical points of
While for nonautonomous version of Schrödinger-Poisson system, only a few results are known in the literature. Jiang et.al.[21] have studied the following Schrödinger-Poisson system with non constant coefficient
$ \left\{ −Δu+(1+λg(x))u+θϕ(x)u=|u|p−2u in R3,−Δϕ=u2in R3,lim|x|→∞ϕ(x)=0, \right. $ |
in which the authors prove the existence of ground state solution and its asymptotic behavior depending on
$ \left\{ −Δu+u+ϕu=V(x)|u|4u+μP(x)|u|q−2uin R3,−Δϕ=u2in R3,2<q<6,μ>0 \right. $ |
has been studied by Zhao et al. [31]. Besides some other conditions, Zhao et. al. [31] assume that
$ {−Δu+u+L(x)ϕu=g(x,u) in R3,−Δϕ=L(x)u2 in R3. $ | (4) |
Besides some other conditions and the assumption
$ −Δu=a(x)|u|p−2u+˜μk(x)u, in RN, $ | (5) |
Costa et.al.[14] have proven the mountain pass geometry for the related functional of (5) when
This paper is organized as follows. In Section 2, we give some preliminaries. Special attentions are focused on several lemmas analyzing the Palais-Smale conditions of the functional
Notations. Throughout this paper,
$ S_{p+1} = {\inf\limits_{u\in H^1(\mathbb{R}^3)\setminus\{0\}}}\frac{\int_{\mathbb{R}^3}\left(|\nabla u|^2 + |u|^2\right)dx}{\left(\int_{\mathbb{R}^3}| u|^{p+1}dx\right)^{\frac2{p+1}}}. $ |
For any
In this section, we give some preliminary lemmas, which will be helpful to analyze the (PS) conditions for the functional
$ L_u(v) = \int_{{\mathbb{R}}^3} K(x)u^2vdx,\qquad v\in D^{1, 2}(\mathbb{R}^3), $ |
one may deduce from the Hölder and the Sobolev inequalities that
$ |Lu(v)|≤C‖u‖2L125‖v‖L6≤C‖u‖2L125‖v‖D1,2. $ | (6) |
Hence, for any
$ \phi_u(x) = \frac{1}{4\pi}\int_{\mathbb{R}^3}\frac{K(y)u^2(y)}{|x-y|}dy. $ |
Clearly
$ ‖ϕu‖2D1,2=∫R3|∇ϕu|2dx=∫R3K(x)ϕuu2dx. $ | (7) |
Using (6) and (7), we obtain that
$ ‖ϕu‖L6≤C‖ϕu‖D1,2≤C‖u‖2L125≤C‖u‖2. $ | (8) |
Then we deduce that
$ ∫R3K(x)ϕu(x)u2(x)dx≤C‖u‖4. $ | (9) |
Hence on
$ F(u)=∫R3K(x)ϕu(x)u2(x)dx $ | (10) |
and
$ Iμ(u)=12‖u‖2+14F(u)−∫R3(1p+1|u|p+1+μ2h(x)u2)dx $ | (11) |
are well defined and
$ \langle I'_\mu(u), v\rangle = \int_{\mathbb{R}^3}\left( \nabla u\nabla v+uv + K(x) \phi_uuv - |u|^{p-1}uv - \mu h(x)uv\right)dx. $ |
The following Lemma 2.1 is a direct consequence of [28,Lemma 2.13].
Lemma 2.1. Assume that the hypothesis
Using the spectral theory of compact symmetric operators on Hilbert space, the above lemma implies the existence of a sequence of eigenvalues
$ -\Delta u+u = \mu h(x)u, \; \hbox{in}\; H^1(\mathbb{R}^3) $ |
with
$ \mu_1 = {\inf\limits_{u\in {H^1(\mathbb{R}^3)}\setminus \{0\}}}\frac{\|u\|^2}{ \int_{\mathbb{R}^3} h(x)u^2dx}, \quad \mu_n = {\inf\limits_{u\in {S_{n-1}^\perp}\setminus \{0\}}}\frac{\|u\|^2}{ \int_{\mathbb{R}^3} h(x)u^2dx}, $ |
where
Next we analyze the
Definition 2.2. For
Lemma 2.3. Let
Proof. For
$ d+1+o(1)‖un‖=Iμ(un)−14⟨I′μ(un),un⟩=14‖un‖2−μ4∫R3h(x)u2ndx+p−34(p+1)∫R3|un|p+1dx. $ | (12) |
Note that
$ ∫R3h(x)u2ndx≤(∫R3|un|p+1dx)2p+1(∫R3|h(x)|p+1p−1dx)p−1p+1≤2ϑp+1∫R3|un|p+1dx+p−1p+1ϑ−2p−1∫R3|h(x)|p+1p−1dx. $ |
Choosing
$ d+1+o(1)‖un‖≥14‖un‖2−D(p,h)μp+1p−1, $ | (13) |
where
The following lemma is a variant of Brezis-Lieb lemma. One may find the proof in [20].
Lemma 2.4. [20] If a sequence
$ \lim\limits_{n\to\infty}F(u_n) = F(u_0) + \lim\limits_{n\to\infty}F(u_n-u_0). $ |
Lemma 2.5. There is a
$ I_\mu(u) > - \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}. $ |
Proof. Since
$ Iμ(u)=12(‖u‖2−μ∫R3h(x)u2dx)+14F(u)−1p+1∫R3|u|p+1dx=p−12(p+1)(‖u‖2−μ∫R3h(x)u2dx)+p−34(p+1)F(u). $ |
Noticing that
$ I_{\mu_1}(u) \geq \frac{p-3}{4(p+1)}F(u) > 0. $ |
Next, we claim: there is a
$ I_\mu(u) > - \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}}. $ |
Suppose this claim is not true, then there is a sequence
$ I_{\mu^{(n)}}(u_{\mu^{(n)}}) \leq - \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}}. $ |
Note that
$ Iμ(n)(uμ(n))+o(1)‖uμ(n)‖≥Iμ(n)(uμ(n))−14⟨I′μ(n)(uμ(n)),uμ(n)⟩≥14‖uμ(n)‖2−D(p,h)(μ(n))p+1p−1. $ |
This implies that
$ \|u_{\mu^{(n)}}\|^2 - \mu^{(n)} \int_{\mathbb{R}^3} h(x)(u_{\mu^{(n)}})^2 dx \geq \left(1-\frac{\mu^{(n)}}{\mu_1}\right)\|u_{\mu^{(n)}}\|^2\to 0 $ |
because
$ Iμ(n)(uμ(n))=p−12(p+1)(‖uμ(n)‖2−μ(n)∫R3h(x)(uμ(n))2dx)+p−34(p+1)F(uμ(n)), $ |
we deduce that
$ \liminf\limits_{n\to\infty}I_{\mu^{(n)}}(u_{\mu^{(n)}}) \geq \frac{p-3}{4(p+1)}\liminf\limits_{n\to\infty} F(u_{\mu^{(n)}}) \geq 0, $ |
which contradicts to the
$ I_{\mu^{(n)}}(u_{\mu^{(n)}}) \leq - \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}. $ |
This proves the claim and the proof of Lemma 2.5 is complete.
Lemma 2.6. If
Proof. Let
$ d + o(1) = \frac{1}{2}\|u_n\|^2 - \frac{\mu}{2}\int_{\mathbb{R}^3}h(x)u_n^2dx + \frac{1}{4}F(u_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|u_n|^{p+1}dx $ |
and
$ \langle I'_\mu (u_n), u_n\rangle = \|u_n\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx. $ |
Then we can prove that
$ \|u_n\|^2 = \|u_0\|^2 + \|w_n\|^2 +o(1), $ |
$ F(u_n) = F(u_0) + F(w_n) +o(1) $ |
and
$ \|u_n\|^{p+1}_{L^{p+1}} = \|u_0\|^{p+1}_{L^{p+1}} + \|w_n\|^{p+1}_{L^{p+1}} +o(1). $ |
Using Lemma 2.1, we also have that
$ d+o(1)=Iμ(un)=Iμ(u0)+12‖wn‖2+14F(wn)−1p+1∫R3|wn|p+1dx. $ | (14) |
Noticing
$ ‖u0‖2−μ∫R3h(x)u20dx+F(u0)=∫R3|u0|p+1dx. $ | (15) |
Since
$ o(1) = \|u_n\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx. $ |
Combining this with (15) as well as Lemma 2.1, we obtain that
$ o(1)=‖wn‖2+F(wn)−∫R3|wn|p+1dx. $ | (16) |
Recalling the definition of
Suppose that the case (ⅰ) occurs. We may obtain from (16) that
$ \|w_n\|^2 \geq S_{p+1} \left(\|w_n\|^2 + F(w_n) - o(1)\right)^{\frac2{p+1}}. $ |
Hence we get that for
$ ‖wn‖2≥Sp+1p−1p+1+o(1). $ | (17) |
Therefore using (14), (16) and (17), we deduce that for
$ d+o(1)=Iμ(un)=Iμ(u0)+12‖wn‖2+14F(wn)−1p+1∫R3|wn|p+1dx.=Iμ(u0)+p−12(p+1)‖wn‖2+p−34(p+1)F(wn)>−p−12(p+1)Sp+1p−1p+1+p−12(p+1)‖wn‖2+p−34(p+1)F(wn)>0, $ | (18) |
which contradicts to the condition
Next we give a mountain pass geometry for the functional
Lemma 2.7. There exist
Proof. For any
$ u=te1+v,where∫R3(∇v∇e1+ve1)dx=0. $ | (19) |
Hence we deduce that
$ ‖u‖2=‖∇(te1+v)‖2L2+‖te1+v‖2L2=t2+‖v‖2, $ | (20) |
$ μ2∫R3h(x)v2dx≤‖v‖2,μ1∫R3h(x)e21dx=‖e1‖2=1 $ | (21) |
and
$ μ1∫R3h(x)e1vdx=∫R3(∇v∇e1+ve1)dx=0. $ | (22) |
We first consider the case of
$ Iμ1(u)=12‖u‖2+14F(u)−μ12∫R3h(x)u2dx−1p+1∫R3|u|p+1dx=12‖te1+v‖2+14F(te1+v)−μ12∫R3h(x)(te1+v)2dx−1p+1∫R3|te1+v|p+1dx≥12(1−μ1μ2)‖v‖2+14F(te1+v)−1p+1∫R3|te1+v|p+1dx≥θ1‖v‖2+14F(te1+v)−C1|t|p+1−C2‖v‖p+1. $ |
Next we estimate the term
$ F(te_1+v) = \frac{1}{4\pi}\int_{\mathbb{R}^3\times \mathbb{R}^3}\frac{K(x)K(y)(te_1(y)+v(y))^2(te_1(x)+v(x))^2}{|x-y|}dydx. $ |
Since
$ (te1(y)+v(y))2(te1(x)+v(x))2=t4(e1(y))2(e1(x))2+(v(y))2(v(x))2+2t3(e1(y)(e1(x))2v(y)+e1(x)(e1(y))2v(x))+2t(e1(x)v(x)(v(y))2+e1(y)v(y)(v(x))2)+t2((e1(x))2(v(y))2+4e1(y)e1(x)v(y)v(x)+(e1(y))2(v(x))2), $ |
we know that
$ |∫R3×R3K(x)K(y)(e1(y)(e1(x))2v(y)+e1(x)(e1(y))2v(x))|x−y|dydx|≤C‖v‖; $ | (23) |
$ |∫R3×R3K(x)K(y)(2(e1(x))2(v(y))2+4e1(y)e1(x)v(y)v(x))|x−y|dydx|≤C‖v‖2 $ | (24) |
and
$ |∫R3×R3K(x)K(y)(e1(x)v(x)(v(y))2+e1(y)v(y)(v(x))2)|x−y|dydx|≤C‖v‖3. $ | (25) |
Hence
$ Iμ1(u)≥θ1‖v‖2+θ2|t|4−C1|t|p+1−C2‖v‖p+1−C3|t|3‖v‖−C4|t|2‖v‖2−C5|t|‖v‖3+14F(v), $ |
where
$ t^2\|v\|^2 \leq \frac2{p+1} |t|^{p+1} + \frac{p-1}{p+1} \|v\|^{\frac{2(p+1)}{p-1}}, $ |
$ |t|\|v\|^3 \leq \frac1{p+1} |t|^{p+1} + \frac{p}{p+1}\|v\|^{\frac{3(p+1)}{p}} $ |
and for some
$ |t|^3\|v\| \leq \frac{1}{q_0} \|v\|^{q_0} + \frac{q_0 - 1}{q_0} |t|^{\frac{3q_0}{q_0 - 1}}. $ |
Therefore we deduce that
$ Iμ1(u)≥θ1‖v‖2+θ2|t|4−C3q0‖v‖q0−C3(q0−1)q0|t|3q0q0−1−2C4p+1|t|p+1−(p−1)C4p+1‖v‖2(p+1)p−1−C5p+1|t|p+1−pC5p+1‖v‖3(p+1)p−C|t|p+1−C‖v‖p+1. $ | (26) |
From
$ I_{\mu_1}(u) \geq \theta_3 \|v\|^2 + \theta_4 |t|^4 $ |
provided that
$ Iμ1(u)≥θ5‖u‖4for‖u‖2≤˜θ25. $ | (27) |
Set
$ Iμ(u)=Iμ1(u)+12(μ1−μ)∫Rh(x)u2dx≥θ5‖u‖4−μ−μ12μ1‖u‖2=‖u‖2(θ5‖u‖2−μ−μ12μ1)≥‖u‖2(12θ5˜θ25−14θ5˜θ25)=14θ5˜θ25‖u‖2 $ |
for
In this section, our aim is to prove Theorem 1.1. For
Proposition 3.1. Let the assumptions
$ d_{\mu_1} = \inf\limits_{\gamma \in \Gamma_1}\sup\limits_{t\in [0,1]}I_{\mu_1}(\gamma(t)) $ |
with
$ \Gamma_1 = \left\{ \gamma \in C([0,1], H^1(\mathbb{R}^3))\ : \ \gamma(0) = 0,\ I_{\mu_1}(\gamma(1)) < 0 \right\}. $ |
Then
Before proving Proposition 3.1, we analyze the
Lemma 3.2. If the assumptions
Proof. It suffices to find a path
$ \sup\limits_{t\in [0,1]}I_{\mu_1}(\gamma(t)) < \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}. $ |
Define
$ \|U_R\|^2 -\mu_1\int h(x)U_R^2 dx+ T_R^2F(U_R) - T_R^{p-1}\int U_R^{p+1} dx = 0. $ |
If
$ \frac{1}{T_R^2}\left(\|U_R\|^2 -\mu_1\int h(x)U_R^2dx\right)+F(U_R) = T_R^{p-3}\int U_R^{p+1}dx \to \infty, $ |
which is impossible either. Hence we only need to estimate
$ I_{\mu_1}(tU_R) \leq g(t) + CF(U_R), $ |
where
$ g(t) = \frac{t^2}{2}\left(\|U_R\|^2 - \mu_1 \int_{\mathbb{R}^3} h(x) U_R^2 dx\right) - \frac{|t|^{p+1}}{p+1}\int_{\mathbb{R}^3} U_R^{p+1} dx. $ |
Noting that under the assumptions
$ F(UR)≤(∫R3K(x)65U125Rdx)56(∫R3ϕ6URdx)16≤C(∫R3e−65a|x+Rθ|(U(x))125dx)56≤C(∫R3e−65aRe(65a−125(1−ε))|x|dx)56≤Ce−aR $ | (28) |
since
$ ∫R3h(x)U2Rdx=∫R3h(x+Rθ)U2(x)dx≥C∫R3e−b|x+Rθ|U2(x)dx≥C∫R3e−b|x|−bRU2(x)dx≥Ce−bR∫R3e−b|x|U2(x)dx≥Ce−bR. $ | (29) |
It is now deduced from (28) and (29) that
$ supt>0Iμ1(tUR)≤supt>0g(t)+Ce−aR≤p−12(p+1)(‖UR‖2−μ1∫R3h(x)U2Rdx)p+1p−1(‖UR‖−2Lp+1)p+1p−1+Ce−aR≤p−12(p+1)Sp+1p−1p+1−Ce−bR+o(e−bR)+Ce−aR<p−12(p+1)Sp+1p−1p+1 $ |
for
Lemma 3.3. Under the assumptions
Proof. Let
$ d + o(1) = \frac{1}{2}\|u_n\|^2 - \frac{\mu_1}{2}\int_{\mathbb{R}^3}h(x)u_n^2dx + \frac{1}{4}F(u_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|u_n|^{p+1}dx $ |
and
$ \langle I'_{\mu_1} (u_n), u_n\rangle = \|u_n\|^2 - \mu_1\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx. $ |
Hence we can deduce that
$ \|u_n\|^2 = \|u_0\|^2 + \|w_n\|^2 +o(1),\quad F(u_n) = F(u_0) + F(w_n) +o(1) $ |
and
$ \|u_n\|^{p+1}_{L^{p+1}} = \|u_0\|^{p+1}_{L^{p+1}} + \|w_n\|^{p+1}_{L^{p+1}} +o(1). $ |
Since
$ d+o(1)=Iμ1(un)=Iμ1(u0)+12‖wn‖2+14F(wn)−1p+1∫R3|wn|p+1dx. $ | (30) |
From
$ \|u_0\|^2 - \mu_1\int_{\mathbb{R}^3}h(x)u_0^2dx + F(u_0) = \int_{\mathbb{R}^3}|u_0|^{p+1}dx $ |
and then
$ I_{\mu_1}(u_0) \geq \frac{p-1}{2(p+1)}\left(\|u_0\|^2 - \mu_1 \int_{\mathbb{R}^3}h(x)u_0^2dx\right) + \frac{p-3}{4(p+1)}F(u_0) \geq 0. $ |
Now using an argument similar to the proof of (16), we obtain that
$ o(1)=‖wn‖2+F(wn)−∫R3|wn|P+1dx. $ | (31) |
By the relation
Suppose that the case (I) occurs. Then up to a sbusequence, we may obtain from (31) that
$ \|w_n\|^2 \geq S_{p+1} \left(\| w_n\|^2 + F(w_n) - o(1)\right)^{\frac2{p+1}}, $ |
which implies that for
$ \|w_n\|^2 \geq S_{p+1}^{\frac{p+1}{p-1}} + o(1). $ |
It is deduced from this and (30) that
Proof of Proposition 3.1. Since
Proof of Theorem 1.1. By Proposition 3.1, the
$ dμ1≤maxt∈[0,1]Iμ1(γn(t))<dμ1+1n. $ | (32) |
By Ekeland's variational principle [5], there exists
$ {dμ1≤maxt∈[0,1]Iμ1(γ∗n(t))≤maxt∈[0,1]Iμ1(γn(t))<dμ1+1n;maxt∈[0,1]‖γn(t)−γ∗n(t)‖<1√n; there existstn∈[0,1]such thatzn=γ∗n(tn) satisfies:Iμ1(zn)=maxt∈[0,1]Iμ1(γ∗n(t)),and‖I′μ1(zn)‖≤1√n. $ | (33) |
By Lemma 3.2 and Lemma 3.3 we get a convergent subsequence (still denoted by
In this section, we always assume the conditions
$ \inf\{ I_\mu(u)\ : \ u\in \mathcal{M}\},\quad \mathcal{M} = \{u\in H^1(\mathbb{R}^3)\ :\ \langle I'_\mu(u), u\rangle = 0\} $ |
to get a ground state solution. But for
$ \mathcal{N} = \{u\in H^1(\mathbb{R}^3)\backslash\{0\}:I_\mu'(u) = 0\}. $ |
And then we consider the following minimization problem
$ c0,μ=inf{Iμ(u):u∈N}. $ | (34) |
Lemma 4.1. Let
$ d_{0, \mu} = \inf\limits_{\|u\| < \rho} I_\mu (u). $ |
Then the
Proof. Firstly, we prove that
$ Iμ(u)=12‖u‖2−μ2∫R3h(x)u2dx+14F(u)−1p+1∫R3|u|p+1dx≥12‖u‖2−μ2μ1‖u‖2−C‖u‖p+1>−∞ $ |
as
$ I_\mu(te_1) = \frac{t^2}2 \|e_1\|^2-\frac{\mu t^2}{2}\int_{\mathbb{R}^3} h(x)e_1^2dx + \frac{t^4}4 F(e_1) - \frac{t^{p+1}}{p+1}\int_{\mathbb{R}^3}|e_1|^{p+1}dx. $ |
It is now deduced from
$ I_\mu(te_1) = \frac{t^2}2\left(1-\frac{\mu}{\mu_1}\right)\|e_1\|^2 + \frac{t^4}4 F(e_1) -\frac{t^{p+1}}{p+1}\int_{\mathbb{R}^3}|e_1|^{p+1}dx. $ |
Since
Secondly, let
$ I_\mu(u_n) \to d_{0, \mu}\qquad \hbox{and}\qquad I'_\mu(u_n) \to 0. $ |
Then we can prove that
We emphasize that the above lemma does NOT mean that
Lemma 4.2. For
Proof. By Lemma 4.1, we know that
For any
$ I_\mu(u) = I_\mu(u) - \frac{1}{4}\langle I'_\mu(u), u\rangle \geq \frac{1}{4}\|u\|^2 - D(p,h) \mu^{\frac{p+1}{p-1}}. $ |
Therefore the
Now let
$ I_\mu(u_n) \to c_{0,\mu}\qquad \hbox{and}\qquad I'_\mu(u_n) = 0. $ |
Since
Next, to analyze further the
Lemma 4.3. There exists
Proof. The proof is divided into two steps. In the first place, for
$ \|u\|^2 - \mu_1\int_{\mathbb{R}^3} h(x)u^2dx + F(u) = \int_{\mathbb{R}^3} |u|^{p+1}dx $ |
and hence
$ I_{\mu_1}(u) = \frac{p-1}{2(p+1)} \left(\|u\|^2 - \mu_1\int_{\mathbb{R}^3} h(x)u^2dx\right) + \frac{p-3}{4(p+1)}F(u). $ |
Since
$ I_{\mu_1}(u) \geq \frac{p-3}{4(p+1)}F(u) > 0. $ |
In the second place, denoted by
$ I'_{\mu^{(n)}}(u_{0,\mu^{(n)}}) = 0 $ |
and we also have that
$ c_{0, \mu^{(n)}} = I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) < 0. $ |
Hence we deduce that
$ Iμ(n)(u0,μ(n))=p−12(p+1)(‖u0,μ(n)‖2−μ(n)∫R3h(x)(u0,μ(n))2dx)+p−34(p+1)F(u0,μ(n)). $ |
Using the definition of
$ \|u_{0,\mu^{(n)}}\|^2 - \mu^{(n)}\int_{\mathbb{R}^3} h(x)(u_{0,\mu^{(n)}})^2dx \geq \left(1-\frac{\mu^{(n)}}{\mu_1}\right)\|u_{0,\mu^{(n)}}\|^2\to 0 $ |
because
Claim. As
Proof of the Claim. From
$ o(1)+Iμ(n)(u0,μ(n))=Iμ(n)(˜u0)+12‖˜wn‖2+14F(˜wn)−1p+1∫R3|˜wn|p+1dx, $ | (35) |
where
Now we distinguish two cases:
Suppose that the case (ⅰ) occurs. We may deduce from a proof similar to Lemma 2.6 that
$ I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) + o(1) \geq I_{\mu_1}(\tilde{u}_0) + \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}, $ |
which is a contradiction because
Next we prove that
$ \liminf\limits_{n\to\infty} I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) \geq \frac{p-3}{4(p+1)} F(\tilde{u}_0) > 0, $ |
which is also a contradiction since
Hence there is
Remark 4.4. The proof of Lemma 4.3 implies that (1) of Theorem 1.2 holds.
In the following, we are going to prove the existence of another nonnegative bound state solution of (3). To obtain this goal, we have to analyze further the
Lemma 4.5. Under the assumptions of
Proof. Let
$ d + o(1) = \frac{1}{2}\|u_n\|^2 - \frac{\mu}{2}\int_{\mathbb{R}^3}h(x)u_n^2dx + \frac{1}{4}F(u_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|u_n|^{p+1}dx $ |
and
$ \langle I'_\mu (u_n), u_n\rangle = \|u_n\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx. $ |
Similar to the proof in Lemma 2.3, we can deduce that
$ \|u_n\|^2 = \|u_0\|^2 + \|w_n\|^2 +o(1), $ |
$ F(u_n) = F(u_0) + F(w_n) +o(1) $ |
and
$ \|u_n\|^{p+1}_{L^{p+1}} = \|u_0\|^{p+1}_{L^{p+1}} + \|w_n\|^{p+1}_{L^{p+1}} +o(1). $ |
Using Lemma 2.1, we also have that
$ d+o(1)=Iμ(un)=Iμ(u0)+12‖wn‖2+14F(wn)−1p+1∫R3|wn|p+1dx. $ | (36) |
Since
$ I_\mu(u_0) \geq c_{0,\mu} $ |
and
$ \|u_0\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_0^2dx + \int_{\mathbb{R}^3}\phi_{u_0}u_0^2 = \int_{\mathbb{R}^3}|u_0|^{p+1}dx. $ |
Note that
$ o(1) = \|u_n\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx $ |
imply that
$ o(1)=‖wn‖2+F(wn)−∫R3|wn|p+1dx. $ | (37) |
Using
Suppose (I) occurs. Up to a subsequence, we may obtain from (37) that
$ \|w_n\|^2 \geq S_{p+1} \left(\|w_n\|^2 + F(w_n) - o(1)\right)^{\frac2{p+1}}. $ |
Hence we get that for
$ ‖wn‖2≥Sp+1p−1p+1+o(1). $ | (38) |
Therefore using (36) and (38), we deduce that for
$ d+o(1)=Iμ(un)=Iμ(u0)+12‖wn‖2+14F(wn)−1p+1∫R3|wn|p+1dx=Iμ(u0)+p−12(p+1)‖wn‖2+p−34(p+1)F(wn)≥c0,μ+p−12(p+1)‖wn‖2+p−34(p+1)F(wn)>c0,μ+p−12(p+1)Sp+1p−1p+1, $ | (39) |
which contradicts to the assumption
Next, for the
$ d_{2, \mu} = \inf\limits_{\gamma \in \Gamma_2}\sup\limits_{t\in [0,1]}I_\mu(\gamma(t)) $ |
with
$ \Gamma_2 = \{ \gamma \in C([0,1], H^1(\mathbb{R}^3))\ : \ \gamma(0) = w_{0, \mu},\ I_\mu(\gamma(1)) < c_{0,\mu} \}. $ |
Lemma 4.6. Suppose that the conditions
$ d_{2, \mu} < c_{0,\mu} + \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}. $ |
Proof. It suffices to find a path starting from
$ Iμ(w0+tUR)=12(‖w0+tUR‖2−μ∫R3h(x)|w0+tUR|2dx)+14F(w0+tUR)−1p+1∫R3|w0+tUR|p+1dx=Iμ(w0)+A1+A2+A3+t22‖UR‖2−μ2∫R3h(x)U2Rdx, $ |
where
$ A_1 = \langle w_0, tU_R\rangle - \mu t\int_{\mathbb{R}^3} h(x)w_0 U_R dx, $ |
$ A_2 = \frac{1}{4}\left(F(w_0 + tU_R) - F(w_0)\right) $ |
and
$ A_3 = \frac1{p+1} \int_{\mathbb{R}^3}\left(|w_0|^{p+1} - |w_0 + t U_R|^{p+1}\right)dx. $ |
Since
$ A_1 = \int_{\mathbb{R}^3}(w_0)^p t U_R dx - \int_{\mathbb{R}^3} K(x)\phi_{w_0}w_0 t U_R dx. $ |
From an elementary inequality:
$ (a+b)^q - a^q \geq b^q + q a^{q-1}b,\qquad q > 1,\ \ a > 0, b > 0, $ |
we deduce that
$ |A_3| \leq - \frac1{p+1}\int_{\mathbb{R}^3} |t U_R|^{p+1}dx - \int_{\mathbb{R}^3} |w_0|^p tU_Rdx. $ |
For the estimate of
$ |A2|≤t∫R3K(x)ϕw0w0URdx+t22∫R3K(x)ϕw0(UR)2dx+t44∫R3K(x)ϕUR(UR)2dx+t3∫R3K(x)ϕURw0URdx+t2∫R3×R3K(x)K(y)w0(x)w0(y)UR(x)UR(y)|x−y|dxdy. $ |
Since
$ ∫R3×R3K(x)K(y)w0(x)w0(y)UR(x)UR(y)|x−y|dxdy=∫R3K(x)ϕ√w0URw0URdx≤‖ϕ√w0UR‖L6(∫R3K(x)65(w0UR)65dx)56≤C(∫R3e−65aRe(65a−65(1−δ))|x|dx)56≤Ce−aRsince0<a<1. $ |
Similarly we can deduce that for
$ \int_{\mathbb{R}^3}K(x)\phi_{w_0}w_0 U_R dx \leq C e^{-a R}, \ \ \int_{\mathbb{R}^3}K(x)\phi_{w_0} (U_R)^2 dx \leq C e^{-a R}, $ |
$ \int_{\mathbb{R}^3} K(x)\phi_{U_R}(U_R)^2 dx \leq C e^{-a R}\ \ \hbox{and}\ \ \int_{\mathbb{R}^3} K(x)\phi_{U_R}w_0 U_R dx \leq C e^{-a R}. $ |
Since
$ Iμ(w0+tUR)≤Iμ(w0)+t22‖UR‖2dx−μ2∫R3h(x)U2Rdx−1p+1∫R3|tUR|p+1dx+Ce−aR≤Iμ(w0)+p−12(p+1)Sp+1p−1p+1+Ce−aR−Ce−bR+o(e−bR)<c0,μ+p−12(p+1)Sp+1p−1p+1 $ |
for
Proposition 4.7. Under the conditions (A1)-(A4), if
Proof. Since for
Proof of Theorem 1.2. The conclusion (1) of Theorem 1.2 follows from Lemma 4.3 and Remark 4.4. It remains to prove (2) of Theorem 1.2. By Proposition 4.7, the
$ d2,μ≤maxt∈[0,1]Iμ(γn(t))<d2,μ+1n. $ | (40) |
By Ekeland's variational principle, there exists
$ {d2,μ≤maxt∈[0,1]Iμ(γ∗n(t))≤maxt∈[0,1]Iμ(γn(t))<d2,μ+1n;maxt∈[0,1]‖γn(t)−γ∗n(t)‖<1√n; there existstn∈[0,1]such thatzn:=γ∗n(tn) satisfies:Iμ(zn)=maxt∈[0,1]Iμ(γ∗n(t)),and‖I′μ(zn)‖≤1√n. $ | (41) |
By Lemma 4.6 we get a convergent subsequence (still denoted by
Next, let
$ 0 < \alpha \leq d_{2, \mu^{(n)}}\leq \max\limits_{s > 0}I_{\mu^{(n)}}(w_{0,\mu^{(n)}} + sU_R) $ |
and
$ I_{\mu^{(n)}}(w_{0,\mu^{(n)}} + sU_R) \leq \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}} +C e^{-a R} - C e^{-b R} + o(e^{-b R}), $ |
$ lim supn→∞d2,μ(n)≤p−12(p+1)Sp+1p−1p+1. $ | (42) |
Next, similar to the proof in Lemma 2.3, we can deduce that
$ I_{\mu^{(n)}}(u_{2,\mu^{(n)}}) \geq I_{\mu_1}(\tilde{u}_2) + \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}}, $ |
which contradicts to (42). Hence
The author thanks the unknown referee for helpful comments.
[1] | Lidgren L. (2003) The bone and joint decade and the global economic and healthcare burden of musculoskeletal disease. J Rheum 67: 4-5. |
[2] | Hsu YY. (2014) 0243 Screening and disability prevention for musculoskeletal disorders of high-tech industry workers in Taiwan. Occup Environ Med 71(Supp 1): A92. |
[3] | Woolf AD, Pfleger B. (2003) Burden of major musculoskeletal conditions. Bull World Health Organization 81(9): 646-656. |
[4] |
Lane NE, Bloch DA, Wood PD, et al. (1987) Aging, long-distance running, and the development of musculoskeletal disability: a controlled study. Am J Med 82: 772-780. doi: 10.1016/0002-9343(87)90014-3
![]() |
[5] |
Leveille SG. (2004) Musculoskeletal aging. Curr Opin Rheumatol 16: 114-118. doi: 10.1097/00002281-200403000-00007
![]() |
[6] | Rajan K, Hebert L, Scherr P. (2012) Cognitive and physical functions as determinants of delayed age at onset and progression of disability. J Gerontol Series A: Biol Sci Med Sci 67(12):1419-1426. |
[7] | Du S, Yuan C, Xiao X, et al. (2011) Self-management programs for chronic musculoskeletal pain conditions: A systematic review and meta-analysis. Patient Educ Couns 85(3): e299-e310. |
[8] | Jordan JM, Lawrence R, Kington R, et al. (2002) Ethnic health disparities in arthritis and musculoskeletal diseases: report of a scientific conference. Arth Rheum 46(9): 2280-2286. |
[9] | Mu R. (2014) Regional disparities in self-reported health: evidence from Chinese older adults. Health Econ 23(5): 529-549. |
[10] | Dong X, Simon M. (2010) Health and aging in a Chinese population: urban and rural disparities. Geriatr Gerontol Int 10(1): 85-93. |
[11] | Chang E, Dong X. (2013) Understanding elder abuse in the Chinese community: the role of cultural, social, and community factors. In: Taylor R. Elder abuse its prevention: workshop summary. Washington, DC: The National Academies Press, 57-62. |
[12] | Holland AT, Palaniappan LP. (2012) Problems with the collection and interpretation of Asian-American health data. Ann Epid 22(6): 397-405. |
[13] | US Census Bureau. (2010) American fact finder. Available from: http://factfinder2. census. gov/faces/nav/jsf/pages/index. xhtml. |
[14] | Zhang Y, Xu L, Nevitt MC, et al. (2001) Comparison of the prevalence of knee osteoarthritis between the elderly Chinese population in Beijing and whites in the United States: The Beijing osteoarthritis study. Arth Rheum 44(9): 2065-2071. |
[15] | Dong X, Chang E, Wong E, et al. (2011) Assessing the health needs of Chinese older adults: Findings from a community-based participatory research study in Chicago's Chinatown. J Aging Res 2010:1-12. |
[16] | Chen L, Miaskowski C, Dodd M, et al. (2008) Concepts within the Chinese Culture that Influence the Cancer Pain Experience. Cancer Nurs 31(2): 103-108. |
[17] | Dong X, Zhang M, Zhang N, et al. (2014) The expectation and perceived receipts of filial piety among Chinese older adults in greater Chicago area. J Health Aging 26(2): 1225-1247. |
[18] | Dong X, Chang E, Wong E, et al. (2012) A qualitative study of filial piety among community dwelling, Chinese, older adults: Changing meaning and impact on health and well-being. J Int Relat 10(2): 131-146. |
[19] | Dong X, Simon M. (2009) China: The aging giant with an achilles heel. J Am Geriatr Soc 56(2):379-380. |
[20] | Dong X, Wong E, Simon M. (2014) Study design and implementation of the PINE study. J Aging Health 26(7):1085-1099. |
[21] | Simon M, Chang E, Rajan K, et al. (2014) Demographic characteristics of U. S. Chinese older adults in the greater Chicago area: Assessing the representativeness of the PINE study. J Aging Health 26(7): 1100-1015. |
[22] | Jacobs JJ. (2011) Burden of musculoskeletal diseases: overview. Rosemont: United States Bone and Joint Initiative, 1-20. |
[23] |
Hughes S, Edelman P, Naughton B, et al. (1993) Estimates and determinants of valid self-reports of musculoskeletal disease in the elderly. J Aging Health 5: 244-263. doi: 10.1177/089826439300500206
![]() |
[24] |
Fejer R, Ruhe A. (2012) What is the prevalence of musculoskeletal problems in the elderly population in developed countries? A systematic critical literature review. Chiropract Manual Therap 20: 31. doi: 10.1186/2045-709X-20-31
![]() |
[25] | Wijnhoven H, de Vet H, Picavet H. (2006) Prevalence of musculoskeletal disorders in systematically higher in women than in men. Clin J Pain 22(8): 717-724. |
[26] | Rollman GB, Lautenbacher S. (2001) Sex differences in Musculoskeletal Pain. Clin J Pain 17(1):20-24. |
[27] | Chen R, Simon M, Chang E, et al. (2014) The perception of social support among U. S. Chinese older adults: Findings from the PINE study. J Aging Health: In Print. |
[28] | Simon M, Chen R, Dong X. (2014) Gender differences in perceived social support in U. S. Chinese older adults. Geront Geriatr Res 3: 163. |
[29] | Jensen I, Nygren A, Gamberale F, et al. (1994) Coping with long-term musculoskeletal pain and its consequences: is gender a factor? Pain 57(2): 167-172. |
[30] | Woo J, Ho S, Lau J, et al. (1994) Musculoskeletal complaints and associated consequences in elderly Chinese aged 70 years and Over. J Rheumatol 21(10): 1927-1931. |
[31] | Ross CE, Zhang W. (2008) Education and psychological distress among older Chinese. J Aging Health 20(3): 273-289. |
[32] | Simon M, Dong X, Nonzee N, et al. (2009) Heeding our words: complexities of research among low-literacy populations. J Clin Oncol 27(12): 1938-1940. |
[33] | Kempen G, Brilman E, Rachor A, et al. (1999) Morbidity and quality of life and the moderating effects of level of education in the elderly. Soc Sci Med 49(1): 143-149. |
[34] | Mirowsky J, Ross C. (2005) Education, cumulative advantage, and health. Ageing Int 31(1):27-62. |
[35] |
Urwin M, Symmons D, Allison T, et al. (1998) Estimating the burden of musculoskeletal disorders in the community: the comparative prevalence of symptoms at different anatomical sites, and the relation to social deprivation. Ann Rheum Dis 57: 649-655. doi: 10.1136/ard.57.11.649
![]() |
[36] | Dong X, Chang E, Simon M. (2014) Sense of community among Chinese older adults in the Greater Chicago Area: Findings from the PINE Study. AIMS Med Sci 1(1): 28-39. |
[37] | Reyes-Gibby CC, Aday L, Cleeland C. (2002) Impact of pain on self-rated health in community-dwelling older adults. Pain 95(1-2): 75-82. |
[38] | Simon M, Magee M, Shah A, et al. (2008) Building a Chinese community health survey in Chicago: the value of involving the community to more accurately portray health. In J Health Ageing Manag 2(1): 41-57. |
[39] | Dong X, Chang E, Wong E, et al. (2011) Working with culture: lessons learned from a community-engaged project in a Chinese aging population. Aging Health 7(4): 529-537. |
[40] | Simon M, Chang E, Dong X. (2010) Partnership, reflection and patient focus: advancing cultural competency training relevance. Med Educ 44(6): 540-542. |
[41] | Dong X, Li Y, Chen R, et al. (2013) Evaluation of community health education workshops among Chinese Older adults in Chicago: a community-based participatory research approach. J Educ Train Stud 1(1): 170-181. |
[42] |
Dong X, Chang E, Simon M, et al. (2011) Sustaining Community-University Partnerships: Lessons learned from a participatory research project with elderly Chinese. Gateways: Int J Commu Res Engag 4: 31-47. doi: 10.5130/ijcre.v4i0.1767
![]() |
[43] | Chang E, Simon M, Dong X. (2014) Using community-based participatory research to address Chinese older women's health needs: Towards sustainability. J Women Aging: In Press. |
[44] | Simon M, Chang E, Dong X. (2010) Partnership, reflection, and patient focus: Advancing cultural competency training. Med Educ 44(6): 540-542. |
[45] | Chang E, Simon M, Dong X. (2010) Integrating cultural humility into health care professional education and training. Adv Health Sci Educ Theory Pract 17(2): 269-278. |
1. | Chao Yang, Sharp condition of global well-posedness for inhomogeneous nonlinear Schrödinger equation, 2021, 14, 1937-1632, 4631, 10.3934/dcdss.2021136 |