Research article Special Issues

Teaching learning-based whale optimization algorithm for multi-layer perceptron neural network training

  • Received: 29 May 2020 Accepted: 24 August 2020 Published: 10 September 2020
  • This paper presents an improved teaching learning-based whale optimization algorithm (TSWOA) used the simplex method. First of all, the combination of WOA algorithm and teaching learning-based algorithm not only achieves a better balance between exploration and exploitation of WOA, but also makes whales have self-learning ability from the biological background, and greatly enriches the theory of the original WOA algorithm. Secondly, the WOA algorithm adds the simplex method to optimize the current worst unit, averting the agents to search at the boundary, and increasing the convergence accuracy and speed of the algorithm. To evaluate the performance of the improved algorithm, the TSWOA algorithm is employed to train the multi-layer perceptron (MLP) neural network. It is a difficult thing to propose a well-pleasing and valid algorithm to optimize the multi-layer perceptron neural network. Fifteen different data sets were selected from the UCI machine learning knowledge and the statistical results were compared with GOA, GSO, SSO, FPA, GA and WOA, severally. The statistical results display that better performance of TSWOA compared to WOA and several well-established algorithms for training multi-layer perceptron neural networks.

    Citation: Yongquan Zhou, Yanbiao Niu, Qifang Luo, Ming Jiang. Teaching learning-based whale optimization algorithm for multi-layer perceptron neural network training[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5987-6025. doi: 10.3934/mbe.2020319

    Related Papers:

    [1] Mohcine Chraibi, Ulrich Kemloh, Andreas Schadschneider, Armin Seyfried . Force-based models of pedestrian dynamics. Networks and Heterogeneous Media, 2011, 6(3): 425-442. doi: 10.3934/nhm.2011.6.425
    [2] Andreas Schadschneider, Armin Seyfried . Empirical results for pedestrian dynamics and their implications for modeling. Networks and Heterogeneous Media, 2011, 6(3): 545-560. doi: 10.3934/nhm.2011.6.545
    [3] Antoine Tordeux, Claudia Totzeck . Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems. Networks and Heterogeneous Media, 2023, 18(2): 906-929. doi: 10.3934/nhm.2023039
    [4] Fabio Camilli, Adriano Festa, Silvia Tozza . A discrete Hughes model for pedestrian flow on graphs. Networks and Heterogeneous Media, 2017, 12(1): 93-112. doi: 10.3934/nhm.2017004
    [5] Dirk Hartmann, Isabella von Sivers . Structured first order conservation models for pedestrian dynamics. Networks and Heterogeneous Media, 2013, 8(4): 985-1007. doi: 10.3934/nhm.2013.8.985
    [6] Michael Fischer, Gaspard Jankowiak, Marie-Therese Wolfram . Micro- and macroscopic modeling of crowding and pushing in corridors. Networks and Heterogeneous Media, 2020, 15(3): 405-426. doi: 10.3934/nhm.2020025
    [7] Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351
    [8] Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433
    [9] Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond . Time-delayed follow-the-leader model for pedestrians walking in line. Networks and Heterogeneous Media, 2015, 10(3): 579-608. doi: 10.3934/nhm.2015.10.579
    [10] Abdul M. Kamareddine, Roger L. Hughes . Towards a mathematical model for stability in pedestrian flows. Networks and Heterogeneous Media, 2011, 6(3): 465-483. doi: 10.3934/nhm.2011.6.465
  • This paper presents an improved teaching learning-based whale optimization algorithm (TSWOA) used the simplex method. First of all, the combination of WOA algorithm and teaching learning-based algorithm not only achieves a better balance between exploration and exploitation of WOA, but also makes whales have self-learning ability from the biological background, and greatly enriches the theory of the original WOA algorithm. Secondly, the WOA algorithm adds the simplex method to optimize the current worst unit, averting the agents to search at the boundary, and increasing the convergence accuracy and speed of the algorithm. To evaluate the performance of the improved algorithm, the TSWOA algorithm is employed to train the multi-layer perceptron (MLP) neural network. It is a difficult thing to propose a well-pleasing and valid algorithm to optimize the multi-layer perceptron neural network. Fifteen different data sets were selected from the UCI machine learning knowledge and the statistical results were compared with GOA, GSO, SSO, FPA, GA and WOA, severally. The statistical results display that better performance of TSWOA compared to WOA and several well-established algorithms for training multi-layer perceptron neural networks.




    [1] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115-133.
    [2] A. Krogh, What are artificial neural networks?, Nat. Biotechnol., 26 (2008), 195-197.
    [3] A. Leśnia, M. Juszczyk, Prediction of site overhead costs with the use of artificial neural network based model, Arch. Civil. Mech. Eng., 18 (2018), 973-982.
    [4] S. Kaymak, A. Helwan, D. Uzun, Breast cancer image classification using artificial neural networks, Proc. Comput. Sci., 120 (2017), 126-131.
    [5] J. D. Sitton, Y. Zeinali, B. A. Story, Rapid soil classification using artificial neural networks for use in constructing compressed earth blocks, Constr. Build. Mater., 138 (2017), 214-221.
    [6] D. Valero, D. B. Bung, Artificial Neural Networks and pattern recognition for air-water flow velocity estimation using a single-tip optical fibre probe, J. Hydro. Environ. Res., 19 (2018), 150-159.
    [7] C. C. Lai, K. L. Su, Development of an intelligent mobile robot localization system using Kinect RGB-D mapping and neural network, Comput. Electr. Eng., 67 (2018), 620-628.
    [8] O. Erkaymaz, M. Ozer, M. Perc, Performance of small-world feedforward neural networks for the diagnosis of diabetes, Appl. Math. Comput., 311 (2017), 22-28.
    [9] N. Wan, W. X. Shi, S. S. Fan, S. X. Liu, PSO-FNNbased vertical handoff decision algorithm in heterogeneous wireless networks, Proc. Environ. Sci., 11 (2011), 55-62.
    [10] A. A. Hameed, B. Karlik, M. S. Salman, Back-propagation algorithm with variable adaptive momentum, Knowl. Based Syst., 114 (2016), 79-87.
    [11] D. J. Montana, L. Davis, Training feedforward neural networks using genetic algorithms, Proceedings of the 11th International Joint Conference on Artificial Intelligence, 1989. Available from: https://www.ijcai.org.
    [12] C. Reale, K. Gavin, L. Librić, D. Jurić-Kaćunić, Automatic classification of fine-grained soils using CPT measurements and Artificial Neural Networks, Adv. Eng. Inf., 36 (2018),207-215.
    [13] W. Li, Improving particle swarm optimization based on neighborhood and historical memory for training multi-layer perceptron, Information, 9 (2018), 16.
    [14] S. Gambhir, S. K. Malik, Y. Kumar, PSO-ANN based diagnostic model for the earl detection of dengue disease, New Horiz. Trans. Med., 4 (2017, 1-8.
    [15] S. Z. Mirjalili, S. Saremi, S. M. Mirjalili, Designing evolutionary feedforward neural networks using social spider optimization algorithm, Neural Comput. Appl., 26 (2015),1919-1928.
    [16] E. Uzlu, M. Kankal, A. Akpınar, T. Dede, Estimates of energy consumption in Turkey using neural networks with the teaching-learning-based optimization algorithm, Energy, 75 (2014), 295-303.
    [17] I. Aljarah, H. Faris, S. Mirjalili, Optimizing connection weights in neural networks using the whale optimization algorithm, Soft Comput., 22 (2016), 1-15.
    [18] P. A. Kowalski, S. Łukasik, Training neural networks with Krill Herd algorithm, Neural Process. Lett., 44 (2016), 5-17.
    [19] D. A. Alboaneen, H. Tianfield, Y. Zhang, Glowworm swarm optimization for training multi-layer perceptrons, Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, 2017. Available from: https://dl.acm.org/doi/abs/10.1145/3148055.3148075.
    [20] A. A. Heidari, H Faris, I Aljarah, S Mirjalili, An efficient hybrid multilayer perceptron neural network with grasshopper optimization, Soft. Comput., 23 (2019), 7941-7958.
    [21] E. Valian, S. Mohanna, S. Tavakoli, Improved cuckoo search algorithm for feedforward neural network training, Int. J. Artif. Intell. Appl., 2 (2011), 36-43.
    [22] C. Blum, K. Socha, Training feed-forward neural networks with ant colony optimization: an application to pattern classifcation, Fifth International Conference on Hybrid Intelligent Systems (HIS'05), 2005. Available from: https://ieeexplore.ieee.org/abstract/document/1587754.
    [23] K. Socha, C. Blum, An ant colony optimization algorithm for continuous optimization: Application to feed-forward neural network training, Neural Comput. Appl., 16 (2007), 235-247.
    [24] D. Karaboga, B. Akay, C. Ozturk, Artifcial Bee Colony(ABC) optimization algorithm for training feed-forward neural networks, Proceedings of the International Conference on Modeling Decisions for Artifcial Intelligence (MDAI '07), 2007. Available from: https://link.springer.com/chapter/10.1007/978-3-540-73729-2_30.
    [25] S. Mirjalili, How effective is the Grey Wolf optimizer in training multi-layer perceptions, Appl. Intell., 43 (2015),150-161.
    [26] M Branch, A multi-layer perceptron neural network trained by invasive weed optimization for potato color image segmentation, Trends Appl. Sci. Res., 7 (2012), 445-455.
    [27] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67-82.
    [28] S. Mirjalili, A. Lewis. The whale optimization algorithm, Adv. Eng. Soft., 95 (2016), 51-67.
    [29] M. Abdel-Basset, A. N. Hessin, L. Abdel-Fatah, A comprehensive study of cuckoo-inspired algorithms, Neural Comput. Appl., 29 (2018), 345-361.
    [30] A. A. Heidari, P. Pahlavani, An efficient modified grey wolf optimizer with Lévy flight for optimization tasks, Appl. Soft. Comput., 60 (2017), 115-134.
    [31] S. W. Lin, Z. J. Lee, K. C. Ying, C. Y. Lee, Applying hybrid metaheuristics for capacitated vehicle routing problem, Expert. Syst. Appl., 36 (2009), 1505-1512.
    [32] J. Chen, B. Xin, Z. Peng, L. Dou, J. Zhang, Optimal contraction theorem for exploration-exploitation tradeoff in search and optimization, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum., 39 (2009), 680-691.
    [33] R. Li, S. Hu, Y. Wang, M. Yin, A local search algorithm with tabu strategy and perturbation mechanism for generalized vertex cover problem, Neural Comput. Appl., 28 (2017), 1775-1785.
    [34] N. H. Awad, M. Z. Ali, P. N. Suganthan, R. G. Reynolds, CADE: a hybridization of cultural algorithm and differential evolution for numerical optimization, Inf. Sci., 378 (2017), 215-241.
    [35] M. El-Abd, M. Kamel, A taxonomy of cooperative search algorithms, Int. Workshop Hybrid Metaheuristics, 36 (2005), 32-41.
    [36] V. K. Ojha, A. Abraham, V. Snášel, Metaheuristic design of feedforward neural networks: a review of two decades of research, Eng. Appl. Artif. Int., 60 (2017), 97-116.
    [37] P. Sarkar, N. M. Laskar, S. Nath, K. L. Baishnab, S. Chanda, Offset voltage minimization based circuit sizing of CMOS operational amplifier using whale optimization algorithm, J. Inf. Optim. Sci., 39 (2017), 1-17.
    [38] R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput. Aided Des., 43 (2011), 303-315.
    [39] W. Spendley, G. R. Hext, F. R. Himsworth, Sequential application of simplex designs in optimisation and evolutionary operation, Technometrics, 4 (1962), 441-461.
    [40] A. A. Heidari, P. Pahlavani, An efficient modified grey wolf optimizer with lexvy flight for optimization tasks, Appl. Soft. Comput., 60 (2017),115-134.
    [41] J. Villanueva, Kolmogorov theorem revisited, J. Differ. Equations, 244 (2008), 2251-2276.
    [42] H. Samet, F. Hashemi, T. Ghanbari, Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO, Renewable Sustainable Energy Rev., 52 (2015), 1-18.
    [43] D. A. Alboaneen, H. Tianfield, Y. Zhang, Glowworm swarm optimisation for training multi-layer perceptrons, Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, 2017. Available from: https://dl.acm.org/doi/abs/10.1145/3148055.3148075.
    [44] S. Z. Mirjalili, S. Saremi, S. M. Mirjalili, Designing evolutionary feedforward neural networks using social spider optimization algorithm, Neural Comput. Appli., 26 (2015), 1919-1928.
    [45] I. Aljarah, H. Faris, S. Mirjalili, Optimizing connection weights in neural networks using the whale optimization algorithm, Soft Comput., 22 (2016), 1-15.
    [46] H. Wu, Y. Zhou, Q. Luo, M. A. Basset, Training feedforward neural networks using symbiotic organisms search algorithm, Comput. Intell. Neurosci., 2016 (2016).
    [47] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1 (2011), 3-18.
    [48] J. Li, Q. Luo, L. Liao, Y. Zhou, Using spotted hyena optimizer for training feedforward neural networks, International Conference on Intelligent Computing, 2018. Available from: https://link.springer.com/chapter/10.1007/978-3-319-95957-3_88.
  • This article has been cited by:

    1. Armel Ulrich Kemloh Wagoum, Armin Seyfried, Conception, Development, Installation and Evaluation of a Real Time Evacuation Assistant for Complex Buildings, 2013, 104, 18770428, 728, 10.1016/j.sbspro.2013.11.167
    2. Dirk Hartmann, Isabella von Sivers, Structured first order conservation models for pedestrian dynamics, 2013, 8, 1556-181X, 985, 10.3934/nhm.2013.8.985
    3. I.M. Sticco, G.A. Frank, F.E. Cornes, C.O. Dorso, A re-examination of the role of friction in the original Social Force Model, 2020, 121, 09257535, 42, 10.1016/j.ssci.2019.08.041
    4. Milad Haghani, The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact, 2021, 580, 03784371, 126145, 10.1016/j.physa.2021.126145
    5. Dirk Hartmann, Jana Mille, Alexander Pfaffinger, Christian Royer, 2014, Chapter 102, 978-3-319-02446-2, 1237, 10.1007/978-3-319-02447-9_102
    6. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 2, 978-3-319-06619-6, 29, 10.1007/978-3-319-06620-2_2
    7. Machi Zawidzki, 2016, Chapter 3, 978-981-10-1105-4, 53, 10.1007/978-981-10-1106-1_3
    8. Nirajan Shiwakoti, Understanding differences in emergency escape and experimental pedestrian crowd egress through quantitative comparison, 2016, 20, 22124209, 129, 10.1016/j.ijdrr.2016.11.002
    9. Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram, Mean field games with nonlinear mobilities in pedestrian dynamics, 2014, 19, 1553-524X, 1311, 10.3934/dcdsb.2014.19.1311
    10. Andreas Schadschneider, Christian Eilhardt, Stefan Nowak, Armel Ulrich Kemloh Wagoum, Armin Seyfried, 2013, Chapter 27, 978-3-642-39668-7, 287, 10.1007/978-3-642-39669-4_27
    11. Krithika Rathinakumar, Annalisa Quaini, A microscopic approach to study the onset of a highly infectious disease spreading, 2020, 329, 00255564, 108475, 10.1016/j.mbs.2020.108475
    12. Jieyu Chen, Tianxing Shi, Nan Li, Pedestrian evacuation simulation in indoor emergency situations: Approaches, models and tools, 2021, 142, 09257535, 105378, 10.1016/j.ssci.2021.105378
    13. Jarosław Wąs, Robert Lubaś, Towards realistic and effective Agent-based models of crowd dynamics, 2014, 146, 09252312, 199, 10.1016/j.neucom.2014.04.057
    14. Maria Davidich, Gerta Köster, Tobias Preis, Predicting Pedestrian Flow: A Methodology and a Proof of Concept Based on Real-Life Data, 2013, 8, 1932-6203, e83355, 10.1371/journal.pone.0083355
    15. Machi Zawidzki, Mohcine Chraibi, Katsuhiro Nishinari, Crowd-Z: The user-friendly framework for crowd simulation on an architectural floor plan, 2014, 44, 01678655, 88, 10.1016/j.patrec.2013.10.025
    16. Antoine Tordeux, Mohcine Chraibi, Armin Seyfried, 2016, Chapter 29, 978-3-319-33481-3, 225, 10.1007/978-3-319-33482-0_29
    17. Milad Haghani, Majid Sarvi, Crowd model calibration at strategic, tactical, and operational levels: Full-spectrum sensitivity analyses show bottleneck parameters are most critical, followed by exit-choice-changing parameters, 2023, 1942-7867, 1, 10.1080/19427867.2023.2195729
    18. Ziwei Cui, Ming Cai, Yao Xiao, Zheng Zhu, Mofeng Yang, Gongbo Chen, Forecasting the transmission trends of respiratory infectious diseases with an exposure-risk-based model at the microscopic level, 2022, 212, 00139351, 113428, 10.1016/j.envres.2022.113428
    19. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 6, 978-3-319-06619-6, 137, 10.1007/978-3-319-06620-2_6
    20. Xiao Song, Kai Chen, Xu Li, Jinghan Sun, Baocun Hou, Yong Cui, Baochang Zhang, Gang Xiong, Zilie Wang, Pedestrian Trajectory Prediction Based on Deep Convolutional LSTM Network, 2021, 22, 1524-9050, 3285, 10.1109/TITS.2020.2981118
    21. A. Kneidl, D. Hartmann, A. Borrmann, A hybrid multi-scale approach for simulation of pedestrian dynamics, 2013, 37, 0968090X, 223, 10.1016/j.trc.2013.03.005
    22. Daewa Kim, Annalisa Quaini, Coupling kinetic theory approaches for pedestrian dynamics and disease contagion in a confined environment, 2020, 30, 0218-2025, 1893, 10.1142/S0218202520400126
    23. Sibel Gokce, Ozhan Kayacan, Study on bi-directional pedestrian movement using ant algorithms, 2016, 25, 1674-1056, 010508, 10.1088/1674-1056/25/1/010508
    24. Zhe Zhang, Limin Jia, Direction-Decision Learning Based Pedestrian Flow Behavior Investigation, 2020, 8, 2169-3536, 15027, 10.1109/ACCESS.2020.2964001
    25. Sainan Zhang, Jun Zhang, Mohcine Chraibi, Weiguo Song, A speed-based model for crowd simulation considering walking preferences, 2021, 95, 10075704, 105624, 10.1016/j.cnsns.2020.105624
    26. Felix Dietrich, Gerta Köster, Michael Seitz, Isabella von Sivers, 2014, Chapter 62, 978-3-642-55194-9, 659, 10.1007/978-3-642-55195-6_62
    27. Xiao Yang, Binxu Wang, Zheng Qin, Floor Field Model Based on Cellular Automata for Simulating Indoor Pedestrian Evacuation, 2015, 2015, 1024-123X, 1, 10.1155/2015/820306
    28. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 5, 978-3-319-06619-6, 109, 10.1007/978-3-319-06620-2_5
    29. Maria Davidich, Florian Geiss, Hermann Georg Mayer, Alexander Pfaffinger, Christian Royer, Waiting zones for realistic modelling of pedestrian dynamics: A case study using two major German railway stations as examples, 2013, 37, 0968090X, 210, 10.1016/j.trc.2013.02.016
    30. Marija Bezbradica, Heather J. Ruskin, 2020, Chapter 9, 978-1-78985-041-3, 10.5772/intechopen.86801
    31. Alexander Aurell, Boualem Djehiche, Modeling tagged pedestrian motion: A mean-field type game approach, 2019, 121, 01912615, 168, 10.1016/j.trb.2019.01.011
    32. Junjie Wei, Qigen Deng, Lixin Zhang, Peng Li, Study on emergency evacuation in underground urban complexes, 2022, 17, 1932-6203, e0278521, 10.1371/journal.pone.0278521
    33. Sean Curtis, Dinesh Manocha, 2014, Chapter 73, 978-3-319-02446-2, 875, 10.1007/978-3-319-02447-9_73
    34. Zhe Zhang, ShuRong Yan, JianYuan Guo, 2022, Chapter 52, 978-981-16-9912-2, 467, 10.1007/978-981-16-9913-9_52
    35. Felix Dietrich, Gerta Köster, Gradient navigation model for pedestrian dynamics, 2014, 89, 1539-3755, 10.1103/PhysRevE.89.062801
    36. Francisco Martinez-Gil, Miguel Lozano, Ignacio García-Fernández, Fernando Fernández, Modeling, Evaluation, and Scale on Artificial Pedestrians, 2018, 50, 0360-0300, 1, 10.1145/3117808
    37. A. Garcimartín, J. M. Pastor, C. Martín-Gómez, D. Parisi, I. Zuriguel, Pedestrian collective motion in competitive room evacuation, 2017, 7, 2045-2322, 10.1038/s41598-017-11197-x
    38. Alessandro Corbetta, Federico Toschi, Physics of Human Crowds, 2023, 14, 1947-5454, 311, 10.1146/annurev-conmatphys-031620-100450
    39. Weili Wang, Jiayu Rong, Qinqin Fan, Jingjing Zhang, Xin Han, Beihua Cong, Nirajan Shiwakoti, Data-Driven Simulation of Pedestrian Movement with Artificial Neural Network, 2021, 2021, 2042-3195, 1, 10.1155/2021/5580910
    40. Michael J Seitz, Gerta Köster, How update schemes influence crowd simulations, 2014, 2014, 1742-5468, P07002, 10.1088/1742-5468/2014/07/P07002
    41. Armel Ulrich Kemloh Wagoum, Mohcine Chraibi, Jonas Mehlich, Armin Seyfried, Andreas Schadschneider, Efficient and validated simulation of crowds for an evacuation assistant, 2012, 23, 15464261, 3, 10.1002/cav.1420
    42. Na Li, Ren-Yong Guo, Simulation of bi-directional pedestrian flow through a bottleneck: Cell transmission model, 2020, 555, 03784371, 124542, 10.1016/j.physa.2020.124542
    43. Michael J. Seitz, Felix Dietrich, Gerta Köster, The effect of stepping on pedestrian trajectories, 2015, 421, 03784371, 594, 10.1016/j.physa.2014.11.064
    44. Xiao Song, Daolin Han, Jinghan Sun, Zenghui Zhang, A data-driven neural network approach to simulate pedestrian movement, 2018, 509, 03784371, 827, 10.1016/j.physa.2018.06.045
    45. Gerta Köster, Marion Gödel, 2015, Chapter 8, 978-3-319-10628-1, 63, 10.1007/978-3-319-10629-8_8
    46. Gerta Köster, Franz Treml, Marion Gödel, Avoiding numerical pitfalls in social force models, 2013, 87, 1539-3755, 10.1103/PhysRevE.87.063305
    47. Antoine Tordeux, Guillaume Costeseque, Michael Herty, Armin Seyfried, From Traffic and Pedestrian Follow-the-Leader Models with Reaction Time to First Order Convection-Diffusion Flow Models, 2018, 78, 0036-1399, 63, 10.1137/16M110695X
    48. Antoine Tordeux, Claudia Totzeck, Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems, 2023, 18, 1556-1801, 906, 10.3934/nhm.2023039
    49. Felix Dietrich, Gerta Köster, 2015, Chapter 7, 978-3-319-10628-1, 55, 10.1007/978-3-319-10629-8_7
    50. S. Liu, S. Lo, J. Ma, W. Wang, An Agent-Based Microscopic Pedestrian Flow Simulation Model for Pedestrian Traffic Problems, 2014, 15, 1524-9050, 992, 10.1109/TITS.2013.2292526
    51. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 4, 978-3-319-06619-6, 73, 10.1007/978-3-319-06620-2_4
    52. Dirk Hartmann, Peter Hasel, Efficient Dynamic Floor Field Methods for Microscopic Pedestrian Crowd Simulations, 2014, 16, 1815-2406, 264, 10.4208/cicp.200513.290114a
    53. Larkin Heintzman, Amanda Hashimoto, Nicole Abaid, Ryan K. Williams, 2021, Anticipatory Planning and Dynamic Lost Person Models for Human-Robot Search and Rescue, 978-1-7281-9077-8, 8252, 10.1109/ICRA48506.2021.9562070
    54. Saumya Gupta, Mohamed H. Zaki, Adan Vela, Generative Modeling of Pedestrian Behavior: A Receding Horizon Optimization-Based Trajectory Planning Approach, 2022, 10, 2169-3536, 81624, 10.1109/ACCESS.2022.3193671
    55. Mohcine Chraibi, Takahiro Ezaki, Antoine Tordeux, Katsuhiro Nishinari, Andreas Schadschneider, Armin Seyfried, Jamming transitions in force-based models for pedestrian dynamics, 2015, 92, 1539-3755, 10.1103/PhysRevE.92.042809
    56. Tianyi Wang, Yu Chen, The Negative Dependence of Evacuation Time on Group Size Under a Binding Mechanism, 2022, 9, 2296-424X, 10.3389/fphy.2021.798423
    57. Sean Curtis, Basim Zafar, Adnan Gutub, Dinesh Manocha, Right of way, 2013, 29, 0178-2789, 1277, 10.1007/s00371-012-0769-x
    58. Daewa Kim, Annalisa Quaini, 2021, Chapter 7, 978-3-030-91645-9, 157, 10.1007/978-3-030-91646-6_7
    59. Armel Ulrich Kemloh Wagoum, Mohcine Chraibi, Christian Eilhardt, Stefan Nowak, Igor Kulkov, Daniel Weber, Kathrin Sauer, Hubert Klüpfel, Andreas Schadschneider, 2014, Chapter 109, 978-3-319-02446-2, 1323, 10.1007/978-3-319-02447-9_109
    60. Yi Ma, Eric Wai Ming Lee, Richard Kwok Kit Yuen, An Artificial Intelligence-Based Approach for Simulating Pedestrian Movement, 2016, 17, 1524-9050, 3159, 10.1109/TITS.2016.2542843
    61. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 3, 978-3-319-06619-6, 53, 10.1007/978-3-319-06620-2_3
    62. Denis Shikhalev, Renat Khabibulin, Ulrich Kemloh, Sergey Gudin, 2017, Chapter 6, 978-3-319-62385-6, 122, 10.1007/978-3-319-62386-3_6
    63. Michael J. Seitz, Gerta Köster, Natural discretization of pedestrian movement in continuous space, 2012, 86, 1539-3755, 10.1103/PhysRevE.86.046108
    64. R. Borsche, A. Meurer, Microscopic and macroscopic models for coupled car traffic and pedestrian flow, 2019, 348, 03770427, 356, 10.1016/j.cam.2018.08.037
    65. Tobias Kretz, On oscillations in the Social Force Model, 2015, 438, 03784371, 272, 10.1016/j.physa.2015.07.002
    66. Martin Burger, Sabine Hittmeir, Helene Ranetbauer, Marie-Therese Wolfram, Lane Formation by Side-Stepping, 2016, 48, 0036-1410, 981, 10.1137/15M1033174
    67. Angelika Kneidl, Dirk Hartmann, André Borrmann, 2014, Chapter 85, 978-3-319-02446-2, 1029, 10.1007/978-3-319-02447-9_85
    68. Yunchao Qu, Ziyou Gao, Penina Orenstein, Jiancheng Long, Xingang Li, An effective algorithm to simulate pedestrian flow using the heuristic force-based model, 2015, 3, 2168-0566, 1, 10.1080/21680566.2014.943823
    69. Raphael Korbmacher, Antoine Tordeux, Review of Pedestrian Trajectory Prediction Methods: Comparing Deep Learning and Knowledge-Based Approaches, 2022, 23, 1524-9050, 24126, 10.1109/TITS.2022.3205676
    70. Samer Hani Hamdar, Alireza Talebpour, Kyla D’Sa, Victor Knoop, Winnie Daamen, Martin Treiber, Behavioral-Based Pedestrian Modeling Approach: Formulation, Sensitivity Analysis, and Calibration, 2022, 2676, 0361-1981, 334, 10.1177/03611981211059767
    71. Amanda Hashimoto, Larkin Heintzman, Robert Koester, Nicole Abaid, An agent-based model reveals lost person behavior based on data from wilderness search and rescue, 2022, 12, 2045-2322, 10.1038/s41598-022-09502-4
    72. S. B. Liu, S. M. Lo, K. L. Tsui, W. L. Wang, Modeling Movement Direction Choice and Collision Avoidance in Agent-Based Model for Pedestrian Flow, 2015, 141, 0733-947X, 10.1061/(ASCE)TE.1943-5436.0000762
    73. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 1, 978-3-319-06619-6, 3, 10.1007/978-3-319-06620-2_1
    74. Lei Cao, Lin Wang, 2015, Analysis and intervention in pedestrian evacuation via a modified social force model, 978-1-4799-7017-9, 5924, 10.1109/CCDC.2015.7161870
    75. Felix Dietrich, Gerta Köster, Michael Seitz, Isabella von Sivers, Bridging the gap: From cellular automata to differential equation models for pedestrian dynamics, 2014, 5, 18777503, 841, 10.1016/j.jocs.2014.06.005
    76. M. Ramírez, B. A. Toledo, F. Torres, J. Rogan, J. A. Valdivia, P. Correa-Burrows, Pedestrian flow in two dimensions: Optimal psychological stress leads to less evacuation time and decongestion, 2021, 104, 2470-0045, 10.1103/PhysRevE.104.024312
    77. Armel Ulrich Kemloh Wagoum, Armin Seyfried, Frank Fiedrich, Ralph Majer, 2014, Chapter 20, 978-3-319-02446-2, 251, 10.1007/978-3-319-02447-9_20
    78. Libi Fu, Ying Zhang, Huigui Qin, Qingxin Shi, Qiyi Chen, Yunqian Chen, Yongqian Shi, A modified social force model for studying nonlinear dynamics of pedestrian-e-bike mixed flow at a signalized crosswalk, 2023, 174, 09600779, 113813, 10.1016/j.chaos.2023.113813
    79. Jakob Cordes, Mohcine Chraibi, Antoine Tordeux, Andreas Schadschneider, 2023, Chapter 6, 978-3-031-46358-7, 143, 10.1007/978-3-031-46359-4_6
    80. Amir Rafe, Patrick A. Singleton, Exploring the Complexity of Pedestrian Dynamics: Impact of Societal Behaviors and Personal Attributes in Urban Environments, 2024, 0361-1981, 10.1177/03611981241260707
    81. Rongyong Zhao, Arifur Rahman, Bingyu Wei, Cuiling Li, Yunlong Ma, Yuxing Cai, Lingchen Han, A literature review of contacting force measurement methods for pedestrian crowds, 2024, 10, 24058440, e39755, 10.1016/j.heliyon.2024.e39755
    82. Rudina Subaih, Antoine Tordeux, Modeling pedestrian single-file movement: Extending the interaction to the follower, 2024, 633, 03784371, 129394, 10.1016/j.physa.2023.129394
    83. Mengchen He, Yunfei Qiu, Xinru Ge, Ran Huang, Juan Chen, Qiao Wang, Jacquline Lo, Jian Ma, Effect of moving walkway arrangement on unidirectional crowd flow characteristics, 2024, 643, 03784371, 129789, 10.1016/j.physa.2024.129789
    84. Raphael Korbmacher, Alexandre Nicolas, Antoine Tordeux, Claudia Totzeck, 2023, Chapter 3, 978-3-031-46358-7, 55, 10.1007/978-3-031-46359-4_3
    85. Tobias Kretz, Laura Eckes, Dominic Lipp, Janis Diz, Sven Müller, Using Empirical Travel Time Distributions for Calibration of a Model of Pedestrian Dynamics, 2023, 1556-5068, 10.2139/ssrn.4369718
    86. Hua Wang, Xing-Yu Guo, Hao Tao, Ming-Liang Xu, Collective Movement Simulation: Methods and Applications, 2024, 21, 2731-538X, 452, 10.1007/s11633-022-1405-5
    87. Jakub Porzycki, Jarosław Wąs, Modeling spatial patterns in a moving crowd of people using data-driven approach—A concept of Interplay Floor Field, 2023, 167, 09257535, 106266, 10.1016/j.ssci.2023.106266
    88. Tiziana Campisi, Angela Ricciardello, Marianna Ruggieri, Giorgia Vitanza, 2024, Chapter 11, 978-3-031-65328-5, 168, 10.1007/978-3-031-65329-2_11
    89. Mingwei Liu, Guiliang Lu, Oeda Yoshinao, Analyzing factors causing deadlock events of bi-directional pedestrian flow when moving on stairs using a personal space model, 2024, 14, 2045-2322, 10.1038/s41598-024-61007-4
    90. Ruihang Xie, Sisi Zlatanova, Jinwoo (Brian) Lee, Mitko Aleksandrov, A Motion-Based Conceptual Space Model to Support 3D Evacuation Simulation in Indoor Environments, 2023, 12, 2220-9964, 494, 10.3390/ijgi12120494
    91. Zhomart Turarov, Claudia Totzeck, Gradient-based parameter calibration of an anisotropic interaction model for pedestrian dynamics, 2023, 0956-7925, 1, 10.1017/S0956792523000153
    92. Heng Ding, Qiao Wang, Juan Chen, Jacqueline T.Y. Lo, Jian Ma, Investigating pedestrian stepping characteristics via intrinsic trajectory, 2024, 652, 03784371, 130045, 10.1016/j.physa.2024.130045
    93. Priyanka Iyer, Rajendra Singh Negi, Andreas Schadschneider, Gerhard Gompper, Directed motion of cognitive active agents in a crowded three-way intersection, 2024, 7, 2399-3650, 10.1038/s42005-024-01860-x
    94. Jason Hindes, Kevin Daley, George Stantchev, Ira B Schwartz, Swarming network inference with importance clustering of relative interactions, 2024, 5, 2632-072X, 045009, 10.1088/2632-072X/ad9b63
    95. Tarık Kunduracı, A Study on Impatient Pedestrian Effect on Bi-directional Pedestrian Movement by Using Ant Algorithms, 2024, 11, 2148-3736, 327, 10.31202/ecjse.1430803
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5307) PDF downloads(113) Cited by(18)

Article outline

Figures and Tables

Figures(33)  /  Tables(18)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog