
Mathematical Biosciences and Engineering, 2020, 17(5): 59876025. doi: 10.3934/mbe.2020319.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Teaching learningbased whale optimization algorithm for multilayer perceptron neural network training
1 College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
2 Key Laboratory of Guangxi High Schools Complex System and Computational Intelligence, Nanning 530006, China
3 Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
4 Guangxi Institute of Digital Technology, Nanning 530000, China
Received: , Accepted: , Published:
Special Issues: Application of Soft Computing
Keywords: teaching learningbased; whale optimization algorithm; multilayer perceptron (MLP) neural network; metaheuristic algorithm
Citation: Yongquan Zhou, Yanbiao Niu, Qifang Luo, Ming Jiang. Teaching learningbased whale optimization algorithm for multilayer perceptron neural network training. Mathematical Biosciences and Engineering, 2020, 17(5): 59876025. doi: 10.3934/mbe.2020319
References:
 1. W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115133.
 2. A. Krogh, What are artificial neural networks?, Nat. Biotechnol., 26 (2008), 195197.
 3. A. Leśnia, M. Juszczyk, Prediction of site overhead costs with the use of artificial neural network based model, Arch. Civil. Mech. Eng., 18 (2018), 973982.
 4. S. Kaymak, A. Helwan, D. Uzun, Breast cancer image classification using artificial neural networks, Proc. Comput. Sci., 120 (2017), 126131.
 5. J. D. Sitton, Y. Zeinali, B. A. Story, Rapid soil classification using artificial neural networks for use in constructing compressed earth blocks, Constr. Build. Mater., 138 (2017), 214221.
 6. D. Valero, D. B. Bung, Artificial Neural Networks and pattern recognition for airwater flow velocity estimation using a singletip optical fibre probe, J. Hydro. Environ. Res., 19 (2018), 150159.
 7. C. C. Lai, K. L. Su, Development of an intelligent mobile robot localization system using Kinect RGBD mapping and neural network, Comput. Electr. Eng., 67 (2018), 620628.
 8. O. Erkaymaz, M. Ozer, M. Perc, Performance of smallworld feedforward neural networks for the diagnosis of diabetes, Appl. Math. Comput., 311 (2017), 2228.
 9. N. Wan, W. X. Shi, S. S. Fan, S. X. Liu, PSOFNNbased vertical handoff decision algorithm in heterogeneous wireless networks, Proc. Environ. Sci., 11 (2011), 5562.
 10. A. A. Hameed, B. Karlik, M. S. Salman, Backpropagation algorithm with variable adaptive momentum, Knowl. Based Syst., 114 (2016), 7987.
 11. D. J. Montana, L. Davis, Training feedforward neural networks using genetic algorithms, Proceedings of the 11th International Joint Conference on Artificial Intelligence, 1989. Available from: https://www.ijcai.org.
 12. C. Reale, K. Gavin, L. Librić, D. JurićKaćunić, Automatic classification of finegrained soils using CPT measurements and Artificial Neural Networks, Adv. Eng. Inf., 36 (2018),207215.
 13 W. Li, Improving particle swarm optimization based on neighborhood and historical memory for training multilayer perceptron, Information, 9 (2018), 16.
 14. S. Gambhir, S. K. Malik, Y. Kumar, PSOANN based diagnostic model for the earl detection of dengue disease, New Horiz. Trans. Med., 4 (2017, 18.
 15. S. Z. Mirjalili, S. Saremi, S. M. Mirjalili, Designing evolutionary feedforward neural networks using social spider optimization algorithm, Neural Comput. Appl., 26 (2015),19191928.
 16. E. Uzlu, M. Kankal, A. Akpınar, T. Dede, Estimates of energy consumption in Turkey using neural networks with the teachinglearningbased optimization algorithm, Energy, 75 (2014), 295303.
 17. I. Aljarah, H. Faris, S. Mirjalili, Optimizing connection weights in neural networks using the whale optimization algorithm, Soft Comput., 22 (2016), 115.
 18. P. A. Kowalski, S. Łukasik, Training neural networks with Krill Herd algorithm, Neural Process. Lett., 44 (2016), 517.
 19. D. A. Alboaneen, H. Tianfield, Y. Zhang, Glowworm swarm optimization for training multilayer perceptrons, Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, 2017. Available from: https://dl.acm.org/doi/abs/10.1145/3148055.3148075.
 20. A. A. Heidari, H Faris, I Aljarah, S Mirjalili, An efficient hybrid multilayer perceptron neural network with grasshopper optimization, Soft. Comput., 23 (2019), 79417958.
 21. E. Valian, S. Mohanna, S. Tavakoli, Improved cuckoo search algorithm for feedforward neural network training, Int. J. Artif. Intell. Appl., 2 (2011), 3643.
 22. C. Blum, K. Socha, Training feedforward neural networks with ant colony optimization: an application to pattern classifcation, Fifth International Conference on Hybrid Intelligent Systems (HIS'05), 2005. Available from: https://ieeexplore.ieee.org/abstract/document/1587754.
 23. K. Socha, C. Blum, An ant colony optimization algorithm for continuous optimization: Application to feedforward neural network training, Neural Comput. Appl., 16 (2007), 235247.
 24. D. Karaboga, B. Akay, C. Ozturk, Artifcial Bee Colony(ABC) optimization algorithm for training feedforward neural networks, Proceedings of the International Conference on Modeling Decisions for Artifcial Intelligence (MDAI '07), 2007. Available from: https://link.springer.com/chapter/10.1007/9783540737292_30.
 25. S. Mirjalili, How effective is the Grey Wolf optimizer in training multilayer perceptions, Appl. Intell., 43 (2015),150161.
 26. M Branch, A multilayer perceptron neural network trained by invasive weed optimization for potato color image segmentation, Trends Appl. Sci. Res., 7 (2012), 445455.
 27. D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 6782.
 28. S. Mirjalili, A. Lewis. The whale optimization algorithm, Adv. Eng. Soft., 95 (2016), 5167.
 29. M. AbdelBasset, A. N. Hessin, L. AbdelFatah, A comprehensive study of cuckooinspired algorithms, Neural Comput. Appl., 29 (2018), 345361.
 30. A. A. Heidari, P. Pahlavani, An efficient modified grey wolf optimizer with Lévy flight for optimization tasks, Appl. Soft. Comput., 60 (2017), 115134.
 31. S. W. Lin, Z. J. Lee, K. C. Ying, C. Y. Lee, Applying hybrid metaheuristics for capacitated vehicle routing problem, Expert. Syst. Appl., 36 (2009), 15051512.
 32. J. Chen, B. Xin, Z. Peng, L. Dou, J. Zhang, Optimal contraction theorem for explorationexploitation tradeoff in search and optimization, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum., 39 (2009), 680691.
 33. R. Li, S. Hu, Y. Wang, M. Yin, A local search algorithm with tabu strategy and perturbation mechanism for generalized vertex cover problem, Neural Comput. Appl., 28 (2017), 17751785.
 34. N. H. Awad, M. Z. Ali, P. N. Suganthan, R. G. Reynolds, CADE: a hybridization of cultural algorithm and differential evolution for numerical optimization, Inf. Sci., 378 (2017), 215241.
 35. M. ElAbd, M. Kamel, A taxonomy of cooperative search algorithms, Int. Workshop Hybrid Metaheuristics, 36 (2005), 3241.
 36. V. K. Ojha, A. Abraham, V. Snášel, Metaheuristic design of feedforward neural networks: a review of two decades of research, Eng. Appl. Artif. Int., 60 (2017), 97116.
 37. P. Sarkar, N. M. Laskar, S. Nath, K. L. Baishnab, S. Chanda, Offset voltage minimization based circuit sizing of CMOS operational amplifier using whale optimization algorithm, J. Inf. Optim. Sci., 39 (2017), 117.
 38. R. V. Rao, V. J. Savsani, D. P. Vakharia, Teachinglearningbased optimization: A novel method for constrained mechanical design optimization problems, Comput. Aided Des., 43 (2011), 303315.
 39. W. Spendley, G. R. Hext, F. R. Himsworth, Sequential application of simplex designs in optimisation and evolutionary operation, Technometrics, 4 (1962), 441461.
 40. A. A. Heidari, P. Pahlavani, An efficient modified grey wolf optimizer with lexvy flight for optimization tasks, Appl. Soft. Comput., 60 (2017),115134.
 41. J. Villanueva, Kolmogorov theorem revisited, J. Differ. Equations, 244 (2008), 22512276.
 42. H. Samet, F. Hashemi, T. Ghanbari, Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO, Renewable Sustainable Energy Rev., 52 (2015), 118.
 43. D. A. Alboaneen, H. Tianfield, Y. Zhang, Glowworm swarm optimisation for training multilayer perceptrons, Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, 2017. Available from: https://dl.acm.org/doi/abs/10.1145/3148055.3148075.
 44. S. Z. Mirjalili, S. Saremi, S. M. Mirjalili, Designing evolutionary feedforward neural networks using social spider optimization algorithm, Neural Comput. Appli., 26 (2015), 19191928.
 45. I. Aljarah, H. Faris, S. Mirjalili, Optimizing connection weights in neural networks using the whale optimization algorithm, Soft Comput., 22 (2016), 115.
 46. H. Wu, Y. Zhou, Q. Luo, M. A. Basset, Training feedforward neural networks using symbiotic organisms search algorithm, Comput. Intell. Neurosci., 2016 (2016).
 47. J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1 (2011), 318.
 48. J. Li, Q. Luo, L. Liao, Y. Zhou, Using spotted hyena optimizer for training feedforward neural networks, International Conference on Intelligent Computing, 2018. Available from: https://link.springer.com/chapter/10.1007/9783319959573_88.
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *