Review Special Issues

Quantitative characterization of animal social organization: Applications for epidemiological modelling

  • Received: 20 April 2020 Accepted: 13 July 2020 Published: 22 July 2020
  • Social organization is a key aspect of animal ecology, closely interlinked with all aspects of animal behaviour. The structure of animal assemblages is highly diverse, both within and between species. The complexity and variety of social systems and the dynamic nature of interactions and dependencies between members of social groups have long been major obstacles for developing operational characterizations of social organization. Here, social network analysis, a set of statistical tools rooted in graph theory, suggests itself as a potential solution for this problem, by offering quantitative measures for various aspects of social relationships. In this review I will first introduce network analysis as a tool to characterize the social organization of animal groups and population and, then, focus on the application of this method for epidemiological modelling, specifically the prediction of spreading patterns of pathogens in livestock and its potential for informing targeted surveillance and planning of intervention measures.

    Citation: Bernhard Voelkl. Quantitative characterization of animal social organization: Applications for epidemiological modelling[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5005-5026. doi: 10.3934/mbe.2020271

    Related Papers:

  • Social organization is a key aspect of animal ecology, closely interlinked with all aspects of animal behaviour. The structure of animal assemblages is highly diverse, both within and between species. The complexity and variety of social systems and the dynamic nature of interactions and dependencies between members of social groups have long been major obstacles for developing operational characterizations of social organization. Here, social network analysis, a set of statistical tools rooted in graph theory, suggests itself as a potential solution for this problem, by offering quantitative measures for various aspects of social relationships. In this review I will first introduce network analysis as a tool to characterize the social organization of animal groups and population and, then, focus on the application of this method for epidemiological modelling, specifically the prediction of spreading patterns of pathogens in livestock and its potential for informing targeted surveillance and planning of intervention measures.


    [1] E. O. Wilson, Sociobiology: The New Synthesis, Belknap Press, 1975.
    [2] R. A. Hinde, Ethology: Its Nature and Relation with Other Sciences, Oxford University Press, 1982.
    [3] H. Whitehead, Analyzing Animal Societies, University of Chicago Press, 2008.
    [4] A. F. Fraser, D. M. Broom, Farm Animal Behaviour and Welfare, CAB International, 1997.
    [5] E. O. Price, Animal Domestication and Behaviour, CABI Publishing, 2002.
    [6] R. A. Hinde, Primate Social Relationships, Blackwell Scientific Publications, 1983.
    [7] T. T. Strusaker, Correlates of ecology and social organization among African cercopithecines, Folia Primatol., 11 (1969), 80-118.
    [8] S. R. Sundaresan, I. R. Fishhoff, J. Dushoff, D. I. Rubenstein, Network metrics reveal differences in social organization between two fission-fusion species, Grevy's zebra and onager, Oecologia, 151 (2007), 140-149.
    [9] D. P. Croft, R. James, J. Krause, Exploring Animal Social Networks, Princeton University Press, 2008.
    [10] T. Wey, D. T. Blumstein, W. Shen, F. Jordan, Social network analysis of animal behaviour: A promising tool for the study of sociality, Anim. Behav., 75 (2008), 333-344.
    [11] C. Kasper, B. Voelkl, A social network analysis of primate groups, Primates, 50 (2009), 343-356.
    [12] J. Moreno, Who Shall Survive?, Beacon, 1934.
    [13] J. Scott, P. J. Carrington, The SAGE Handbook of Social Network Analysis, SAGE Publications, 2011.
    [14] G. A. Lundberg, M. Steel, Social attraction-patterns in a village, Sociometry, 1 (1938), 375-419.
    [15] J. A. Barnes, Class and committee in a Norwegian island parish, Hum. Relat., 7 (1954), 39-58.
    [16] J. H. Levine, The sphere of influence, Am. Sociol. Rev., 37 (1972), 14-27.
    [17] M. Granowetter, The strength of weak ties, Am. J. Sociol., 78 (1973), 1360-1380.
    [18] B. Ryan, N. C. Gross, The diffusion of hybrid seed corn in two Iowa communities, Rural Sociol., 8 (1943), 15-24.
    [19] E. Katz, H. Levine, M. L. Hamilton, Traditions of research on the diffusion of innovation, Am. Sociol. Rev., 28 (1963), 237-253.
    [20] S. Milgram, The small-world problem, Psychol. Today, 2 (1964), 60-67.
    [21] E. M. Rogers, Diffusion of Innovations, Free Press, 2003.
    [22] M. Bond, Social influences on corporate political donations in Britain, Brit. J. Sociol., 55 (2004), 55-77.
    [23] D. Knoke, Policy Networks, in The SAGE Handbook of Social Network Analysis (eds. J. Scott, P. J. Carrington), SAGE Publications, 2011, 210-222.
    [24] M. Diani, Social Movements and collective actions, in The SAGE Handbook of Social Network Analysis (eds. J. Scott, P. J. Carrington), SAGE Publications, 2011, 223-235.
    [25] M. O. Jackson, Social and Economic Networks, Princeton University Press, 2008.
    [26] A. L. Barabâsi, J. Hawoong, N. Zoltan, R. Erzsebet, A. Schubert, T. Vicsek, Evolution of the social network of scientific collaborations, Phys. A, 311 (2002), 590-614.
    [27] M. E. Newman, Coauthorship networks and patterns of scientific collaboration, Proc. Natl. Acad. Sci. USA, 101 (2004), 5200-5205.
    [28] D. J. Watts, S. H. Strogatz, Collective dynamics of "small-world" networks, Nature, 393 (1998), 440-442.
    [29] M. E. Newman, Networks: An Introduction, Oxford University Press, 2010.
    [30] H. Kummer, Soziales Verhalten einer Mantelpavianen-Gruppe, Schweizerische Zeitschr. Psychol., 33 (1957), 1-91.
    [31] D. S. Sade, Some aspects of parent-off spring and sibling relations in a group of rhesus monkeys, with a discussion of grooming, Am. J. Phys. Anthropol., 23 (1965), 1-18.
    [32] R. A. Hinde, Interactions, relationships and social structure, Man, 11 (1976), 1-17.
    [33] R. W. Byrne, A. Whiten, S. P. Henzi, Social relationships of mountain baboons: Leadership and affiliation in a non-female-bonded monkey, Am. J. Primatol., 207 (1989), 191-207.
    [34] B. D. Chepko-sade, K. P. Reitz, D. S. Sade, Sociometrics of Macaca mulatta IV: Network analysis of social structure of a pre-fission group, Soc. Netw., 11 (1989), 293-314.
    [35] C. A. Chapman, Association patterns of spider monkeys: The influence of ecology and sex on social organization, Behav. Ecol. Sociobiol., 26 (1990), 409-414.
    [36] C. P. Yeager, Proboscis monkey (Nasalis larvatus) social organization: Group structure, Am. J. Primatol., 106 (1990), 95-106.
    [37] D. S. Sade, Sociometrics of Macaca mulatta I. Linkage, cliques in grooming matrices, Fol. Primatol., 18 (1972), 196-223.
    [38] D. S. Sade, Sociometrics of Macaca mulatta Ⅲ. n-path centrality in grooming networks, Soc. Netw., 11 (1989), 273-292.
    [39] D. S. Sade, M. Altmann, J. Loy, G. Hausfater, J. A. Breuggeman, Sociometrics of Macaca mulatta: Ⅱ. Decoupling centrality and dominance in rhesus monkey social networks, Am. J. Phys. Anthropol., 77 (1988), 409-425.
    [40] S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications, Cambridge University Press, 1994.
    [41] M. Barthelemy, B. Gondran, E. Guichard, Spatial structure of the internet traffic, Phys. A, 319 (2003), 633-642.
    [42] P. Bonacich, Factoring and weighting approaches to status scores and clique identification, J. Math. Sociol., 2 (1972), 113-120.
    [43] M. E. J. Newman, A measure of betweenness centrality based on random walks, Soc. Netw., 27 (2005), 39-54.
    [44] M. E. J. Newman, M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E, 69 (2004), 026113.
    [45] A. Clauset, Finding local community structure in networks, Phys. Rev. E, 72 (2005), 026132.
    [46] M. E. J. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. USA, 103 (2006), 8577-8582.
    [47] D. Knoke, S. Yang, Social network analysis, Sage Publications, 2019.
    [48] D. Lusseau, The emergent properties of a dolphin social network, Biol. Lett., 270 (2003), 186-188.
    [49] D. P. Croft, J. Krause, R. James, Social networks in the guppy (Poecilia reticulata), Biol. Lett., 271 (2004), 516-519.
    [50] B. Voelkl, Does group structure influence the social transmission of information?, Fol. Primatol., 75 (2004), 423.
    [51] D. P. Croft, R. James, A. J. W. Ward, M. S. Botham, D. Mawdsley, J. Krause, Assortative interactions and social networks in fish, Oecologia, 143 (2005), 211-219.
    [52] J. C. Flack, M. Girvan, F. B. M. de Waal, D. C. Krakauer, Policing stabilizes construction of social niches in primates, Nature, 439 (2006), 426-429.
    [53] C. Sueur, O. Petit, Organization of group members at departure Is driven by social structure in Macaca, Int. J. Primatol., 29 (2008), 1085-1089.
    [54] S. P. Henzi, D. Lusseau, T. Weingrill, Cyclicity in the structure of female baboon social networks, Behav. Ecol. Sociobiol., 63 (2009), 1015-1021.
    [55] J. Lehmann, C. Boesch, Sociality of the dispersing sex: The nature of social bonds in West African female chimpanzees, Pan troglodytes, Anim. Behav., 77 (2009), 377-387. doi: 10.1016/j.anbehav.2008.09.038
    [56] J. Lehmann, R. I. M. Dunbar, Network cohesion, group size and neocortex size in female-bonded Old World primates, Proc. R. Soc. B, 276 (2009), 4417-4422.
    [57] G. Ramos-Fernández, D. Boyer, F. Aureli, L. G. Vick, Association networks in spider monkeys (Ateles geoffroyi), Behav. Ecol. Sociobiol., 63 (2009), 999-1013.
    [58] N. J. B. Boogert, S. M. Reader, W. Hoppitt, K. N. Laland, The origin and spread of innovations in starlings, Anim. Behav., 75 (2008), 1509-1518.
    [59] B. Voelkl, R. Noë, The influence of social structure on the propagation of social information in artificial primate groups: A graph-based simulation approach, J. Theoret. Biol., 252 (2008), 77-86.
    [60] M. Franz, C. L. Nunn, Network-based diffusion analysis: A new method for detecting social learning, Proc. R. Soc. B, 276 (2009), 1829-1836.
    [61] C. Vital, P. Martins, Using graph theory metrics to infer information flow through animal social groups: A computer simulation analysis, Ethology, 115 (2009), 347-355.
    [62] W. Hoppitt, A. Kandler, J. R. Kendal, K. N. Laland, The effect of task structure on diffusion dynamics: Implications for diffusion curve and network-based analyses, Learn. Behav., 38 (2010), 243-251.
    [63] L. M. Aplin, D. R. Farine, J. Morand-Ferron, A. Cockburn, A. Thornton, B. C. Sheldon, Experimentally induced innovations lead to persistent culture via conformity in wild birds, Nature, 7540 (2015), 538.
    [64] B. Voelkl, C. Kasper, Social structure of primate interaction networks facilitates the emergence of cooperation, Biol. Lett., 5 (2009), 462-464.
    [65] B. Voelkl, The "Hawk-Dove" game and the spread of the evolutionary process in small heterogeneous populations, Games, 1 (2010), 103-116.
    [66] B. Voelkl, The evolution of generalized reciprocity in social interaction networks, Theoret. Popul. Biol., 104 (2015), 17-25.
    [67] B. Mccowan, K. Anderson, A. Heagarty, A. Cameron, Utility of social network analysis for primate behavioral management and well-being, Appl. Anim. Behav. Sci., 109 (2008), 396-405.
    [68] B. A. Beisner, M. E. Jackson, A. Cameron, B. Mccowan, Effects of natal male alliances on aggression and power dynamics in rhesus macaques, Am. J. Primatol., 801 (2011), 790-801.
    [69] V. Dufour, C. Sueur, A. Whiten, The impact of moving to a novel environment on social networks, activity and wellbeing in two new world primates, Am. J. Primatol., 811 (2011), 802-811.
    [70] M. C. Crofoot, D. I. Rubenstein, A. S. Maiya, T. Y. Berger-wolf, Aggression, grooming and group-level cooperation in white-faced capuchins (Cebus capucinus): Insights from social networks, Am. J. Primatol., 833 (2011), 821-833.
    [71] B. Tiddi, F. Aureli, G. Schino, B. Voelkl, Social relationships between adult females and the alpha male in wild tufted capuchin monkeys, Am. J. Primatol., 73 (2011), 812-820.
    [72] A. J. J. MacIntosh, A. Jacobs, C. Garcia, K. Shimizu, K. Mouri, M. A. Huffman, et al., Monkeys in the middle: Parasite transmission through the social network of a wild primate, PLoS One, 7 (2012), e51144.
    [73] L. J. N. Brent, S. Semple, Social capital and physiological stress levels in free-ranging adult female rhesus macaques, Behaviour, 102 (2011), 76-83.
    [74] P. C. Lopes, P. Block, B. König, Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks, Sci. Rep., 6 (2016), 31790.
    [75] M. Dow, F. B. M. de Waal, Assignment methods for the analysis of network subgroup interactions, Soc. Netw., 11 (1989), 237-255.
    [76] I. Matsuda, P. Zhang, L. Swedell, U. Mori, A. Tuuga, A., H. Bernard, et al., Comparisons of intraunit relationships in nonhuman primates living in multilevel social systems, Int. J. Primatol., 33 (2012), 1038-1053.
    [77] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs: Simple building blocks of complex networks, Science, 298 (2002), 824-827.
    [78] N. Snyder-Mackler, J. C. Beehner, T. J. Bergman, Defining higher levels in the multilevel societies of geladas (Theropithecus gelada), Int. J. Primatol., 33 (2012), 1054-1068.
    [79] C. Sueur, O. Petit, A. de Marco, A. T. Jacobs, K. Watanabe, B. Thierry, A comparative network analysis of social style in macaques, Anim. Behav., 82 (2011), 845-852.
    [80] B. Voelkl, R. Noë, Simulation of information propagation in real-life primate networks: Longevity, fecundity, fidelity, Behav. Ecol. Sociobiol., 64 (2010), 1449-1459.
    [81] D. I. Rubenstein, Networks of terrestrial ungulates: linking form and function, in Animal Social Networks (eds. J. Krause, R. James, D. W. Franks, D. P. Croft), Oxford University Press, 2015, 184-196.
    [82] E. A. Foster, D. W. Franks, L. J. Morrell, K. C. Balcomb, K. M. Parsons, A. van Ginneken, et al., Social network correlates of food availability in an endangered population of killer whales, Orcinus orca. Anim. Behav., 83 (2012), 731-736.
    [83] R. Albert, A. L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47-97.
    [84] M. E. J Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), 167-256.
    [85] S. Macdonald, B. Voelkl, Primate social networks, in Animal Social Networks (eds. J. Krause, R. James, D. W. Franks, D. P. Croft), Oxford University Press, 2015,123-136.
    [86] R. R. Kao, L. Danon, D. M. Green, I. Z. Kiss, Demographic structure and pathogen dynamics on the network of livestock movements in Great Britain, Proc. R. Soc. B, 273 (2007), 1999-2007.
    [87] R. R. Kao, D. M. Green, J. Johnson, I. Z. Kiss, Disease dynamics over very different time-scales: Foot-and-mouth disease and scrapie on the network of livestock movements in the UK, J. R. Soc. Interface, 4 (2007), 907-916.
    [88] L. Danon, A. P. Ford, T. House, C. P. Jewell, M. J. Keeling, G. O. Roberts, et al., Networks and the epidemiology of infectious disease, Interdiscipl. Persp. Infect. Dis., 2011 (2011), 284909.
    [89] R. M. Anderson, R. M. May, Population biology of infectious diseases: Part 1, Nature, 280 (1979), 361-367.
    [90] M. J. E. Newman, The spread of epidemic disease on networks, Phys. Rev. E, 66 (2003), 016128.
    [91] R. M. May, Network structure and the biology of populations', Trends Ecol. Evol., 21 (2006), 394-399.
    [92] L. Hufnagel, D. Brockmann, T. Geisel, Forecast and control of epidemics in a globalized world, Proc. Natl. Acad. Sci. USA, 101 (2004), 7794-7799.
    [93] L. A. Meyers, Contact network epidemiology: Bond percolation applied to infectious disease prediction and control, Bull. Am. Math. Soc., 44 (2007), 63-86.
    [94] R. M. May, R. M Anderson, Transmission dynamics of HIV infection, Nature, 326 (1987), 137-142.
    [95] A. S. Klovdahl, J. J. Potterat, D. E. Woodhouse, J. B. Muth, S. Q. Muth, W. W. Darrow, Social networks and infectious disease: The Colorado Springs study, Soc. Sci. Med., 38 (1994), 79-88.
    [96] F. Liljeros, C. R. Edling, L. A. Nunes Amaral, E. Stanley, Y. Åberg, The web of human sexual contacts, Nature, 411 (2001), 907-908.
    [97] M. A. Nowak, Evolutionary Dynamics, Harvard University Press, 2006.
    [98] M. W. Schein, M. H. Fohrman, Social dominance relationships in a herd of dairy cattle, Brit. J. Anim. Behav., 3 (1955), 45-55.
    [99] M. Bigras-Poulin, R. A. Thompson, M. Chriel, S. Mortensen, M. Greiner, Network analysis of Danish cattle industry trade patterns as an evaluation of risk potential for disease spread, Prevent. Vet. Med., 76 (2006), 11-39.
    [100] L. Fiebig, T. Smieszek, J. Saurina, J. Hattendorf, J. Zinsstag, Contacts between poultry farms, their spatial dimension and their relevance for avian influenza preparedness, Geospat. Health, 4 (2009), 79-95.
    [101] B. Martinez-Lopez, A. M. Perez, J. M. Sanchez-Vizcaino, Social network analysis. Review of general concepts and use in preventive veterinary medicine, Transb. Emerg. Dis., 56 (2009), 109-120.
    [102] V. V. Volkova, R. Howey, N. J. Savill, M. E. J. Woolhouse, Sheep movement networks and the transmission of infectious diseases, PLoS One, 5 (2010), e11185.
    [103] R. P. Smith, A. J. C. Cook, R. M. Christley, Descriptive and social network analysis of pig transport data recorded by quality assured pig farms in the UK, Prevent. Vet. Med., 108 (2013), 167-177.
    [104] J. Ribeiro-Lima, E. A. Enns, B. Thompson, M. E. Craft, S. J. Wells, From network analysis to risk analysis-An approach to risk-based surveillance for bovine tuberculosis in Minnesota, US, Prevent. Vet. Med., 118 (2015), 328-340.
    [105] H. H. Lentz, A. Koher, P. Hövel, J. Gethmann, C. Sauter-Louis, T. Selhorst, et al., Disease spread through animal movements: a static and temporal network analysis of pig trade in Germany, PLoS One, 11 (2016), 0155195.
    [106] P. Bajardi, A. Barrat, L. Savini, V. Colizza, Optimizing surveillance for livestock disease spreading through animal movements, J. R. Soc. Interface, 9 (2012), 2814-2825.
    [107] M. M. Mweu, G. Fournié, T. Halasa, N. Toft, S. S. Nielsen, Temporal characterisation of the network of Danish cattle movements and its implication for disease control: 2000-2009, Prevent. Vet. Med., 110 (2013), 379-387.
    [108] S. Nickbakhsh, L. Matthews, J. E. Dent, G. T. Innocent, M. E. Arnold, S. W. Reid, et al., Implications of within-farm transmission for network dynamics: Consequences for the spread of avian influenza, Epidemics, 5 (2013), 67-76.
    [109] B. Vidondo, B. Voelkl, Dynamic network measures reveal the impact of cattle markets and alpine summering on the risk of epidemic outbreaks in the Swiss cattle population, BMC Vet. Res. 14 (2018), 88.
    [110] J. Krause, D. Lusseau, R. James, Animal social networks: An introduction, Behav. Ecol. Sociobiol., 63 (2009), 967-973.
    [111] M. J. Silk, D. P. Croft, R. J. Delahay, D. J. Hodgson, M. Boots, N. Weber, et al., Using social network measures in wildlife disease ecology, epidemiology, and management, BioScience, 67 (2017), 245-257.
    [112] M. E. Craft, Infectious disease transmission and contact networks in wildlife and livestock, Phil. Trans. R. Soc. B, 370 (2015), 20140107.
    [113] R. H. Griffin, C. L. Nunn, Community structure and the spread of infectious disease in primate social networks, Evol. Ecol., 26 (2012), 779-800.
    [114] C. L. Nunn, F. Jordan, C. M. McCabe, J. L. Verdolin, J. H. Fewell, Infectious disease and group size: More than just a numbers game, Phil. Trans. R. Soc. B, 370 (2015), 20140111.
    [115] S. S. Godfrey, C. M. Bull, R. James, K. Murray, Network structure and parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii, Behav. Ecol. Sociobiol., 63 (2009), 1045-1056.
    [116] K. L. VanderWaal, E. R. Atwill, S. Hooper, K. Buckle, B. McCowan, Network structure and prevalence of Cryptosporidium in Belding's ground squirrels, Behav. Ecol. Sociobiol., 67 (2013), 1951-1959.
    [117] T. Porphyre, M. Stevenson, R. Jackson, J. McKenzie, Original article Influence of contact heterogeneity on TB reproduction ratio R0 in a free-living brushtail possum Trichosurus vulpecula population, Vet. Res., 39 (2008), 31.
    [118] J. Rushmore, D. Caillaud, R. J. Hall, R. M. Stumpf, L. A. Meyers, S. Altizer, Network-based vaccination improves prospects for disease control in wild chimpanzees, J. R. Soc. Interface, 11 (2014), 20140349.
    [119] J. A. Drewe, K. T. D. Eames, J. R. Madden, G. P. Pearce, Integrating contact network structure into tuberculosis epidemiology in meerkats in South Africa: Implications for control, Prevent. Vet. Med., 101 (2011), 113-120.
    [120] M. D. J. Blyton, S. C. Banks, R. Peakall, D. B. Lindenmayer, D. M. Gordon, Not all types of host contacts are equal when it comes to E. coli transmission, Ecol. Lett., 17 (2014), 970-978.
    [121] C. R. Webb, Farm animal networks: Unraveling the contact structure of the British sheep population, Prevent. Vet. Med., 68 (2005), 3-17.
    [122] F. Natale, A. Giovannini, L. Savini, D. Palma, L. Possenti, G. Fiore, et al., Network analysis of Italian cattle trade patterns and evaluation of risks for potential disease spread, Prevent. Vet. Med., 92 (2009), 341-350.
    [123] C. Dubé, C. Ribble, D. Kelton, B. Mcnab, A Review of network analysis terminology and its application to foot-and-mouth disease modelling and policy development, Transbound. Emerg. Dis., 56 (2009), 73-85.
    [124] H. Chen, G. Smith, S. Zhang, K. Qin, J. Wang, S. Li, et al., H5N1 virus outbreak in migratory waterfowl, Nature, 436 (2005), 191-192.
    [125] B. J. Hoye, V. J. Munster, H. Nishiura, R. A. M. Fouchier, J. Madsen, M. Klaassen, Reconstructing an annual cycle of interaction: Natural infection and antibody dynamics to avian influenca along a migratory flyway, Oikos, 120 (2011), 748-755.
    [126] K. R. Finn, M. J. Silk, M. A. Porter, N. Pinter-Wollman, The use of multilayer network analysis in animal behaviour, Anim. Behav., 149 (2019), 7-22.
    [127] K. Robert, D. Garant, F. Pelletier, Keep in touch: Does spatial overlap correlate with contact rate frequency?, J. Wildl. Manag., 76 (2012), 1670-1675.
    [128] M. L. Gilbertson, L. A. White, M. E. Craft, Trade‐offs with telemetry‐derived contact networks for infectious disease studies in wildlife, Meth. Ecol. Evol., 2020.
    [129] S. E. Perkins, F. Cagnacci, A. Stradiotto, D. Arnoldi, P. J. Hudson, Comparison of social networks derived from ecological data: implications for inferring infectious disease dynamics, J. Anim. Ecol., 78 (2009), 1015-1022.
    [130] J. Krause, A. D. M. Wilson, D. P. Croft, New technology facilitates the study of social networks, Trends Ecol. Evol., 26 (2011), 5-6.
    [131] C. Rutz, Z. T. Burns, R. James, S. M. H. Ismar, J. Burt, B. Otis, et al., Automated mapping of social networks in wild birds, Curr. Biol., 22 (2012), R669-R671.
    [132] I. Psorakis, B. Voelkl, C. J. Garroway, R. Radersma, L. M. Aplin, R. A. Crates, et al., Inferring social structure from temporal data, Behav. Ecol. Sociobiol., 69 (2015), 857-866.
    [133] J. R. Ginsberg, T. P. Young, Measuring associations between individuals or groups in behavioural studies, Anim. Behav., 44 (1992), 377-379.
    [134] L. Beijder, D. Fletcher, S. Brager, A method for testing association patterns of social animals, Anim. Behav., 56 (1998), 719-725.
    [135] L. A. White, J. D. Forester, M. E. Craft, Using contact networks to explore mechanisms of parasite transmission in wildlife, Biol. Rev., 92 (2017), 389-409.
    [136] R. K. Hamede, J. Bashford, H. McCallum, M. Jones, Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: Using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease, Ecol. Lett., 12 (2009), 1147-1157.
    [137] T. C. Germann, K. Kadau, I. M. Longini, C. A. Macken, Mitigation strategies for pandemic influenza in the United States, Proc. Natl. Acad. Sci. USA, 103 (2006), 5935-5940.
    [138] S. E. Robinson, M. G. Everett, R. M. Christley, Recent network evolution increases the potential for large epidemics in the British cattle population, J. R. Soc. Interface, 4 (2007), 669-674.
    [139] J. C. Gibbens, C. E. Sharpe, J. W. Wilesmith, L. M. Mansley, E. Michalopoulou, J. B., et al., Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: The first five months, Vet. Rec., 149 (2001), 729-743.
    [140] I. Z. Kiss, D. M. Green, R. R. Kao, The network of sheep movements within Great Britain: Network properties and their implications for infectious disease spread, J. R. Soc. Interface, 3 (2006), 669-677.
    [141] D. M. Green, I. Z. Kiss, R. R. Kao, Modelling the initial spread of foot-and-mouth disease through animal movements, Proc. R. Soc. B, 273 (2006), 2729-2735.
    [142] M. C.Vernon, M. J. Keeling, Representing the UK's cattle herd as static and dynamic networks, Proc. R. Soc. B, 276 (2009), 469-476.
    [143] P. Sah, S. T. Leu, P. C. Cross, P. J. Hudson, S. Bansal, Unravelling the disease consequences and mechanisms of modular structure in animal social networks, Proc. Natl. Acad. Sci. USA, 114 (2017), 4165-4170.
    [144] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86 (2001), 3200-3203.
    [145] A. L. Lloyd, R. M. May, How viruses spread among computers and people, Science, 292 (2001), 1316-1317.
    [146] D. C. Bell, J. S. Atkinson, J. W. Carlson, Centrality measures for disease transmission networks, Soc. Netw., 21 (1999), 1-21.
    [147] M. J. Keeling, The effects of local spatial structure on epidemiological invasions, Proc. R. Soc. B, 266 (1999), 859-867.
    [148] K. T. D. Eames, M. J. Keeling, Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases, Proc. Natl. Acad. Sci. USA, 99 (2002), 13330-13335.
    [149] C. Buckee, L. Danon, S. Gupta, Host community structure and the maintenance of pathogen diversity, Proc. R. Soc. B, 274 (2007), 1715-1721.
    [150] M. Salathé, J. H. Jones, Dynamics and control of diseases in networks with community structure, PLoS Comp. Biol., 6 (2010), e1000736.
    [151] S. M. Firestone, M. P. Ward, R. M. Christley, N. K. Dhand, The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis, Prevent. Vet. Med., 102 (2011), 185-195.
    [152] J. Frössling, A. Ohlson, C. Björkman, N. Hakansson, M. Nöremark, Application of network analysis parameters in risk-based surveillance-Examples based on cattle trade data and bovine infections in Sweden, Prevent. Vet. Med., 105 (2012), 202-208.
    [153] L. García Álvarez, C. R. Webb, M. A. Holmes, A novel field-based approach to validate the use of network models for disease spread between dairy herds, Epidemiol. Infect., 139 (2011), 1863-1874.
    [154] R. Biek, A. G. Rodrigo, D. Holley, A. Drummond, C. R. Anderson, H. A. Ross, et al., Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars, J. Virol., 77 (2003), 9578-9589.
    [155] B. T. Grenfell, O. G. Pybus, J. R. Gog, J. L. N. Wood, J. M. Daly, J. A. Mumford, et al., Unifying the epidemiological and evolutionary dynamics of pathogens, Science, 303 (2004), 327-333.
    [156] R. Biek, A. Drummond, M. Poss, A virus reveals population structure and recent demographic history of its carnivore host, Science, 311 (2006), 538-542.
    [157] E. A. Archie, G. Luikart, V. O. Ezenwa, Infecting epidemiology with genetics: A new frontier in disease ecology, Trends Ecol. Evol., 24 (2008), 21-30.
    [158] C. M. Bull, S. S. Godfrey, D. M. Gordon, Social networks and the spread of Salmonella in a sleepy lizard population, Mol. Ecol., 21 (2012), 4386-4392.
    [159] K. L. VanderWaal, E. R. Atwill, L. A. Isbell, B. McCowan, Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis), J. Anim. Ecol., 83 (2014), 406-414.
    [160] K. L. VanderWaal, E. R. Atwill, L. A. Isbell, B. McCowan, B. Quantifying microbe transmission networks for wild and domestic ungulates in Kenya, Biol. Conserv., 169 (2014), 136-146.
    [161] J. S. Lee, E. W. Ruell, E. E. Boydston, L. M. Lyren, R. S. Alonso, J. L. Troyer, et al., Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape, Mol. Ecol., 21 (2012), 1617-1631. doi: 10.1111/j.1365-294X.2012.05493.x
    [162] B. Y. Reis, I. S. Kohane, K. D. Mandl, An epidemiological network model for disease outbreak detection, PLoS Med, 4 (2007), e210.
    [163] F. Schirdewahn, V. Colizza, H. H. Lentz, A. Koher, V. Belik, P. Hövel, Surveillance for outbreak detection in livestock-trade networks, in Temporal Network Epidemiology (eds. M. Naoki, P. Holme), Springer, 2017, 215-240.
    [164] P. Skums, A. Kirpich, P. I. Baykal, A. Zelikovsky, G. Chowell, Global transmission network of SARS-CoV-2: From outbreak to pandemic, medRxiv, 2020.
    [165] D. Lusseau, H. Whitehead, S. Gero, Incorporating uncertainty into the study of animal social networks, Anim. Behav., 75 (2008), 1809-1815.
    [166] R. James, D. P. Croft, J. Krause, Potential banana skins in animal social network analysis, Behav. Ecol. Sociobiol., 63 (2009), 989-997.
    [167] B. Voelkl, C. Kasper, C. Schwab, Network measures for dyadic interactions: Stability and reliability, Am. J. Primatol., 73 (2011), 731-740.
    [168] J. Krause, S. Krause, R. Arlinghaus, I. Psorakis, S. Roberts, C. Rutz, Reality mining of animal social systems, Trends Ecol. Evol., 28 (2013), 541-551.
    [169] M. Berdoy, J. P. Webster, D. W. Macdonald, Fatal attraction in rats infected with Toxoplasma gondii, Proc. R. Soc. B, 267 (2000), 1591-1594.
    [170] A. Vyas, S. Kim, N. Giacomini, J. C. Boothroyd, R. M. Sapolsky, Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors, Proc. Natl. Acad. Sci. USA, 104 (2007), 6442-6447.
    [171] D. P. Croft, M. Edenbrow, S. K. Darden, I. W. Ramnarine, C. van Oosterhout, J. Cable, Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata, Behav. Ecol. Sociobiol., 65 (2011), 2219-2227.
    [172] F. J. Theis, L. V. Ugelvig, C. Marr, S. Cremer, Opposing effects of allogrooming on disease transmission in ant societies, Phil Trans. R. Soc. B, 370 (2015), 20140108.
    [173] V. O. Ezenwa, E. A. Archie, M. E. Craft, D. M. Hawley, L. B. Martin, J. Moore, et al., Host behaviour-parasite feedback: an essential link between animal behaviour and disease ecology, Proc. R. Soc. B, 283 (2016), 20153078.
    [174] L. A. White, J. D. Forester, M. E. Craft, Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges, J. Anim. Ecol., 87 (2018), 559-580.
    [175] K. Büttner, J. Salau, J., Krieter, Quality assessment of static aggregation compared to the temporal approach based on a pig trade network in Northern Germany, Prevent. Vet. Med., 129 (2016), 1-8.
    [176] M. J. Silk, D. J., Hodgson, C. Rozins, D. P. Croft, R. J. Delahay, M. Boots, et al., Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations, Phil. Trans. R. Soc. B, 374 (2019), 20180211.
    [177] M. E. Craft, E. Volz, C. Packer, L. A. Meyers, Disease transmission in territorial populations: The small-world network of Serengeti lions, J. R. Soc. Interface, 8 (2011), 776-786.
    [178] N. Weber, S. P. Carter, S. R. X. Dall, R. J. L. Delahay, J. L. McDonald, S. Bearhop, et al., Badger social networks correlate with tuberculosis infection, Curr. Biol., 23 (2013), R915-R916.
    [179] K. P. Huyvaert, R. E. Russell, K. A. Patyk, M. E. Craft, P. C. Cross, M. G. Garner, et al., Challenges and opportunities developing mathematical models of shared pathogens of domestic and wild animals, Vet. Sci., 5 (2018), 92.
    [180] S. Kraberger, N. M. Fountain-Jones, R. B. Gagne, J. Malmberg, N.G. Dannemiller, K. Logan, et al., Frequent cross-species transmissions of foamy virus between domestic and wild felids, Virus Evol., 6 (2020), vez058.
    [181] R. K. Plowright, C. R. Parrish, H. McCallum, P. J. Hudson, A. I. Ko, A. L. Graham, et al., Pathways to zoonotic spillover, Nat. Rev. Microbiol., 15 (2017), 502.
    [182] B. J. Coburn, B. G. Wagner, S. Blower, Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Med., 7 (2009), 30.
    [183] C. M. Scoglio, C. Bosca, M. H. Riad, F. D. Sahneh, S. C. Britch, L. W. Cohnstaedt, et al., Biologically informed individual-based network model for Rift Valley fever in the US and evaluation of mitigation strategies, PloS One, 11 (2016), e0162759.
    [184] S. K. Lau, P. C. Woo, K. S. Li, Y. Huang, H. W. Tsoi, B. H. Wong, et al., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats, Proc. Natl. Acad. Sci. USA, 102 (2005), 14040-14045.
    [185] C. M. Luo, N. Wang, X. L. Yang, H. Z. Liu, W. Zhang, B. Li, et al., Discovery of novel bat coronaviruses in south China that use the same receptor as Middle East respiratory syndrome coronavirus, J. Virol., 92 (2018), e00116-18.
    [186] N. Wang, S. Y. Li, X. L. Yang, H. M. Huang, Y. J. Zhang, H. Guo, et al., Serological evidence of bat SARS-related coronavirus infection in humans, China, Virol. Sin., 33 (2018),104-107.
    [187] L. E. Escobar, R. Moen, M. E. Craft, K. L. VanderWaal, Mapping parasite transmission risk from white-tailed deer to a declining moose population, Eur. J. Wildl. Res., 65 (2019), 60.
    [188] P. Sah, J. Mann, S. Bansal, Disease implications of animal social network structure: A synthesis across social systems, J. Anim. Ecol., 87 (2018), 546-558.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


Article views(213) PDF downloads(118) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors


DownLoad:  Full-Size Img  PowerPoint