
Mathematical Biosciences and Engineering, 2020, 17(4): 41474164. doi: 10.3934/mbe.2020230
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Modeling the effect of temperature on dengue virus transmission with periodic delay differential equations
1 Complex Systems Research Center, Shanxi University, Taiyuan 030006, China
2 Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on disease Control and Prevention, Shanxi University, Taiyuan 030006, China
3 Department of Mathematics and Statistics, The University of Toledo, Toledo 43606, USA
Received: , Accepted: , Published:
Special Issues: Applications of delay differential equations in biology
References
1. T. Bancroft, On the etiology of dengue fever, Austral. Med. Gaz., 25 (1906), 1718.
2. S. Halstead, Dengue, Lancet, 370 (2007), 16441652.
3. I. Kautner, M. Robinson, U. Kuhnle, Dengue virus infection: Epidemiology, pathogenesis, clinical presentation, diagnosis, and prevention, J. Pediatr., 131 (1997), 516524.
4. T. Senaratne, F. Noordeen, Diagnosis of dengue in Sri Lanka: Improvements to the existing state of the art in the island, Trans. R. Soc. Trop. Med. Hyg., 108 (2014), 685691.
5. C. Pagliari, J. Quaresma, E. Fermandes, F. Stegun, R. Brasil, H. de Andrade Jr, et al., Immunopathogenesis of dengue hemorrhagic fever: Contribution to the study of human liver lesions, J. Med. Virol., 86 (2014), 11931197.
6. Public Health Agency of Canada. Available from: https://www.canada.ca/en/publichealth.html.
7. Dengue and severe dengue, World Health Organization, 2020. Available from: https://www.who.int/en/newsroom/factsheets/detail/dengueandseveredengue.
8. J. Blaney, N. Sathe, C. Hanson, C. Firestone, B. Murphy, S. Whitehead, Vaccine candidates for dengue virus type 1 (DEN1) generated by replacement of the structural genes of rDEN4 and rDEN4Δ30 with those of DEN1, Virol. J., 4 (2007), 23.
9. S. Sang, B. Chen B, H. Wu, Z. Yang, B. Di, L. Wang, et al., Dengue is still an imported disease in China: A case study in Guangzhou, Infect. Genet. Evol., 32 (2015), 178190.
10. L. Esteva, C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), 131151.
11. L. Esteva, C. Vargas, Influence of vertical and mechanical transmission on the dynamics of dengue disease, Math. Biosci., 167 (2000), 5164.
12. G. Chowell, P. DiazDuenas, J. Miller, A. AlcazarVelazco, J. Fenimore, C. CastilloChavez, Estimation of the reproduction number of dengue fever from spatial epidemic data, Math. Biosci., 208 (2007), 571589.
13. A. Khan, M. Hassan, M. Imran, Estimating the basic reproduction number for singlestrain dengue fever epidemics, Infect. Dise. Poverty, 1 (2014), 12.
14. J. Tewa, J. Dimi, S. Bowong, Lyapunov functions for a dengue disease transmission model, Chaos, Solitons Fractals, 39 (2009), 936941.
15. H. Yang, C. Ferreira, Assessing the effects of vector control on dengue transmission, Appl. Math. Comput., 198 (2008), 401413.
16. S. Garba, A. Gumel, Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215 (2008), 1125.
17. A. Abdelrazec, J. Belair, C. Shan, H. Zhu, Modeling the spread and control of dengue with limited public health resources, Math. Biosci., 271 (2016), 136145.
18. S. Chen, C. Liao, C. Chio, H. Chou, S. You, Y. Cheng, Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis, Sci. Total Environ., 408 (2010), 40694075.
19. C. Shan, H. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds, J. Differ. Equ., 257 (2014), 16621688.
20. L. Rueda, K. Patel, R. Axtell, R. Stinner, Temperaturedependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae), J. Med. Entomol., 27 (1990), 892898.
21. W. TunLin, T. Burkot, B. Kay, Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia, Med. Vet. Entomol., 14 (2000), 3137.
22. M. Tong, A. Hansen, S. HansonEasey, J. Xiang, S. Cameron, Q. Liu, et al., Perceptions of capacity for infectious disease control and prevention to meet the challenges of dengue fever in the face of climate change: A survey among CDC staff in Guangdong Province, China, Environ. Res., 148 (2016), 295302.
23. G. Fan, J. Liu, P. Van den Driessche, J. Wu, H. Zhu, The impact of maturation delay of mosquitoes on the transmission of West Nile virus, Math. Biosci., 228 (2010), 119126.
24. M. Li, G. Sun, L. Yakob, H. Zhu, Z. Jin, W. Zhang, The driving force for 2014 dengue outbreak in Guangdong, China, PloS One, 11 (2016), e0166211.
25. L. Bai, L. Morton, Q. Liu, Climate change and mosquitoborne diseases in China: A review, Glob. Health, 9 (2013), 10.
26. J. Gubler, The Arboviruses: Epidemiology and Ecology, II. CRC Press, Florida, 1989.
27. C. Bowman, A. Gumel, P. Van den Driessche, J. Wu, H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67 (2005), 11071133.
28. Y. Lou, X. Zhao, A climatebased malaria transmission model with structured vector population, SIAM J. Appl. Math., 70 (2010), 20232044.
29. H. Wan, H. Zhu, A new model with delay for mosquito population dynamics, Math. Biosci. Eng., 11 (2014), 13951410.
30. X. Wang, Q. Zhao, A periodic vectorbias malaria model with incubation period, SIAM J. Appl. Math., 77 (2017), 181201.
31. K. Cooke, P. Van den Driessche, X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), 332352.
32. J. Velascohernandez, A model for Chagas disease involving transmission by vectors and blood transfusion, Theor. Popul. Biol., 46 (1994), 131.
33. Y. Lou, X. Zhao, Threshold dynamics in a timedelayed periodic SIS epidemic model, Discrete Cont. Dyn. B., 126 (2009), 169186.
34. W. Wang, Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 20 (2008), 699717.
35. D. Xu, Q. Zhao, Dynamics in a periodic competitive model with stage structure, J. Math. Anal. Appl., 311 (2005), 417438.
36. H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, 2008.
37. T. Kato, Perturbation Theory for Linear Operators, Springer Science and Business Media, 2013.
38. F. Zhang, Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496516.
39. Q. Zhao, J. Borwein, P. Borwein, Dynamical Systems in Population Biology, Springer, New York, 2017.
40. P. Magal, X. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251275.
41. E. Chikaki, H. Ishikawa, A dengue transmission model in Thailand considering sequential infections with all four serotypes, J. Infect. Dev. Ctries., 3 (2009), 711722.
42. M. Andraud, N. Hens, C. Marais, P. Beutels, Dynamic epidemiological models for dengue transmission: A systematic review of structural approaches, PloS One, 7 (2012), e49085.
43. Z. Feng, J. VelascoHernandez, Competitive exclusion in a vectorhost model for the dengue fever, J. Math. Biol., 35 (1997), 523544.
44. H. Yang, M. Ferreira, K. Galvani, M. Andrighetti, D. Wanderley, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiol. Infect., 137 (2009), 11881202.
45. D. Watts, D. Burke, B. Harrison, R. Whitmire, A. Nisalak, Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus, Am. J. Trop. Med. Hyg., 36 (1987), 143152.
46. S. Hales, N. De Wet, J. Maindonald, A. Woodward, Potential effect of population and climate changes on global distribution of dengue fever: An empirical model, Lancet, 360 (2002), 830 834.
47. C. Shan, G. Fan, H. Zhu, Periodic phenomena and driving mechanisms in transmission of West Nile virus with maturation time, J. Dyn. Differ. Equ., 32 (2020), 10031026.
48. X. Li, J. Cao, An impulsive delay inequality involving unbounded timevarying delay and applications, IEEE Trans. Automat.Contr., 7 (2017), 36183625.
49. X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130146.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)