
Mathematical Biosciences and Engineering, 2020, 17(2): 18081819. doi: 10.3934/mbe.2020095
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Combination of multivariable quadratic adaptive algorithm and hybrid operator splitting method for stability against acceleration in the Markov model of sodium ion channels in the ventricular cell model
1 School of Data and Computer Science, Sun YatSen University, Guangzhou 510006, China
2 Department of Mathematics, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan
Received: , Accepted: , Published:
References
1. A. Lopezperez, R. Sebastian, J. M. Ferrero, Threedimensional cardiac computational modelling: Methods, features and applications, Biomed. Eng. Online, 14 (2015), 35.
2. P. Pathmanathan, R. A. Gray, Validation and trustworthiness of multiscale models of cardiac electrophysiology, Front. Physiol., 9 (2018), 106.
3. C. P. Adler, U. Costabel, Cell number in human heart in atrophy, hypertrophy, and under the influence of cytostatics, Recent Adv. Stud. Card. Struct. Metab., 6 (1975), 343355.
4. Y. Xia, K. Wang, H. Zhang, Parallel optimization of 3d cardiac electrophysiological model using gpu, Comput. Math. Methods Med., 2015 (2015), 862735.
5. J. Langguth, L. Qiang, N. Gaur, C. Xing, Accelerating detailed tissuescale 3d cardiac simulations using heterogeneous cpuxeon phi computing, Int. J. Parallel Program., 45 (2016), 123.
6. R. Sachetto Oliveira, B. Martins Rocha, D. Burgarelli, W. Meira, C. Constantinides, R. Weber Dossantos, Performance evaluation of gpu parallelization, spacetime adaptive algorithms, and their combination for simulating cardiac electrophysiology, Int. J. Numer. Method Biomed. Eng., 34 (2017), e2913.
7. N. Altanaite, J. Langguth, Gpubased acceleration of detailed tissuescale cardiac simulations, in Proceedings of the 11th Workshop on General Purpose GPUs, ACM, 2018, 3138.
8. E. Esmaili, A. Akoglu, S. Hariri, T. Moukabary, Implementation of scalable bidomainbased 3d cardiac simulations on a graphics processing unit cluster, J. Supercomput., 75 (2019), 132.
9. V. M. GarciaMolla, A. Liberos, A. Vidal, M. S. Guillem, J. Millet, A. Gonzalez, et al., Adaptive step ode algorithms for the 3d simulation of electric heart activity with graphics processing units, Comput. Biol. Med, 44 (2014), 1526.
10. N. Chamakuri, Parallel and spacetime adaptivity for the numerical simulation of cardiac action potentials, Appl. Math. Comput., 353 (2019), 406417.
11. R. J. Spiteri, R. C. Dean, Stiffness analysis of cardiac electrophysiological models, Annals Biomed. Eng., 38 (2010), 3592.
12. Y. Coudire, C. DouanlaLontsi, C. Pierre, Exponential adams?bashforth integrators for stiff odes, application to cardiac electrophysiology, Math. Comput. Simul., 153 (2018), 1534.
13. K. R. Green, R. J. Spiteri, Gatingenhanced imex splitting methods for cardiac monodomain simulation, Numer. Algorithms, 81 (2019), 14431457.
14. A. C. Hindmarsh, R. Serban, D. R. Reynolds, Sundials: Suite of nonlinear and differential/algebraic equation solvers. Available from: https://computing.llnl.gov/projects/sundials/sundialssoftware.
15. J. R. Bankston, K. J. Sampson, S. Kateriya, I. W. Glaaser, D. L. Malito, W. K. Chung, et al., A novel lqt3 mutation disrupts an inactivation gate complex with distinct ratedependent phenotypic consequences, Channels, 1 (2007), 273280.
16. A. GreerShort, S. A. George, S. Poelzing, S. H. Weinberg, Revealing the concealed nature of longqt type 3 syndrome, Circ.: Arrhythmia Electrophysiol., 10 (2017), e004400.
17. C. Campana, I. Gando, R. B. Tan, F. Cecchin, W. A. Coetzee, E. A. Sobie, Populationbased mathematical modeling to deduce diseasecausing cardiac Na+ channel gating defects, Biophys. J., 114 (2018), 634635.
18. J. D. Moreno, T. J. Lewis, C. E. Clancy, Parameterization forinsilicomodeling of ion channel interactions with drugs, Plos One, 11 (2016), e0150761.
19. A. Tveito, M. Maleckar Mary, T. Lines Glenn, Computing optimal properties of drugs using mathematical models of single channel dynamics, Comput. Math. Biophys., 6 (2018), 41.
20. J. M. Gomes, A. Alvarenga, R. S. Campos, B. M. Rocha, A. P. C. da Silva, R. W. dos Santos, Uniformization method for solving cardiac electrophysiology models based on the markovchain formulation, IEEE Trans. Biomed. Eng., 62 (2015), 600608.
21. T. Stary, V. N. Biktashev, Exponential integrators for a markov chain model of the fast sodium channel of cardiomyocytes, IEEE Trans. Biomed. Eng., 62 (2015), 10701076.
22. M. H. Chen, P. Y. Chen, C. H. Luo, Quadratic adaptive algorithm for solving cardiac action potential models, Comput. Biol. Med., 77 (2016), 261273.
23. X. J. Chen, C. H. Luo, M. H. Chen, X. Zhou, Combination of "quadratic adaptive algorithm" and "hybrid operator splitting" or uniformization algorithms for stability against acceleration in the markov model of sodium ion channels in the ventricular cell model, Med. Biol. Eng. Comput., 57 (2019), 13671379.
24. M. E. Marsh, S. T. Ziaratgahi, R. J. Spiteri, The secrets to the success of the rushlarsen method and its generalizations, IEEE Trans. Biomed. Eng., 59 (2012), 25062515.
25. C. E. Clancy, R. Yoram, Na(+) channel mutation that causes both brugada and longqt syndrome phenotypes: A simulation study of mechanism, Circulation, 105 (2002), 12081213.
26. C. H. Luo, Y. Rudy, A dynamic model of the cardiac ventricular action potential. i. simulations of ionic currents and concentration changes, Circ. Res., 74 (1994), 10711096.
27. B. Hille, Ion channels of excitable membranes, 3rd edition, Sinauer Sunderland, MA, 2001.
28. R. B. Sidje, K. Burrage, S. MacNamara, Inexact uniformization method for computing transient distributions of markov chains, SIAM J. Sci. Comput., 29 (2007), 25622580.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)