Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Former gestational diabetes: Mathematical modeling of intravenous glucose tolerance test for the assessment of insulin clearance and its determinants

1 Department of Information Engineering, Università Politecnica delle Marche, Ancona 60131, Italy
2 Division of Obstetrics and Feto-maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna A-1090, Austria
3 Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna A-1090, Austria
4 Metabolic Unit, Institute of Neuroscience, National Research Council, Padova 35127, Italy

Special Issues: Computer Methods and Programs in Prenatal Medicine

Women with a previous history of gestational diabetes mellitus (GDM) have increased risk of developing GDM in future pregnancies (i.e. recurrent GDM) and also Type 2 Diabetes (T2D). Insulin clearance represents one of the processes regulating glucose tolerance but has been scarcely investigated for its possible impairment in high-risk subjects. The aim of this study was to identify possible determinants of insulin clearance in women with a previous history of GDM. A detailed model-based analysis of a regular 3-hour, insulin-modified intravenous glucose tolerance test (IM-IVGTT) has been performed in women with a previous history of GDM (pGDM, n = 115) and in women who had a healthy pregnancy (CNT, n = 41) to assess total, first-phase and second-phase insulin clearance (ClINS-TOT, ClINS-FP and ClINS-SP) and other metabolic parameters (insulin sensitivity SI, glucose effectiveness SG, beta-cell function and disposition index DI). CLINS-SP was found increased in pGDM with respect to CNT and was found significantly inversely linearly correlated with SG (r = -0.20, p = 0.03, slope: -16.2, 95% CI -30.9 to -1.4, intercept: 1.1, 95% CI 0.7–1.4) and also with DI (r = -0.22, p = 0.02, slope: -10.0, 95% CI -18.5 to -1.6, intercept: 0.9, 95% CI 0.7–1.3). Disposition index, accounting for the combined contribution of insulin sensitivity and beta-cell function, and glucose effectiveness were identified as possible determinants of insulin clearance in women with a previous history of GDM. This may be of relevance for more accurate estimation and prevention of the risk for recurrent GDM and T2D.
  Article Metrics


1. American Diabetes Association, 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2019, Diabetes Care, 42 (2019), S13-S28.

2. C. Kim, Maternal outcomes and follow-up after gestational diabetes mellitus, Diabetic Med., 31 (2014), 292-301.

3. B. E. Metzger, T. A. Buchanan, D. R. Coustan, A. de Leiva, D. B. Dunger, D. R. Hadden, et al., Summary and recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus, Diabetes Care, 30 (2007), S251-S260.

4. A. Kautzky-Willer, R. Prager, W. Waldhäusl, G. Pacini, K. Thomaseth, O. F Wagner, et al., Pronounced insulin resistance and inadequate β-cell secretion characterize lean gestational diabetes during and after pregnancy, Diabetes Care, 20 (1997), 1717-1723.

5. C. S. Göbl, L. Bozkurt, T. Prikoszovich, C. Winzer, G. Pacini, A. Kautzky-Willer, Early possible risk factors for overt diabetes after gestational diabetes mellitus, Obstet. Gynecol., 118 (2011), 71-78.

6. A. Tura, A. Grassi, Y. Winhofer, A. Guolo, G. Pacini, A. Mari, et al., Progression to type 2 diabetes in women with former gestational diabetes: Time trajectories of metabolic parameters, PLoS One, 7 (2012), e50419.

7. L. Bozkurt, C. S. Göbl, A. Tura, M. Chmelik, T. Prikoszovich, L. Kosi, et al., Fatty liver index predicts further metabolic deteriorations in women with previous gestational diabetes, PLoS One, 7 (2012), e32710.

8. M. Morettini, C. Castriota, C. Göbl, A. Kautzky-Willer, G. Pacini, L. Burattini, et al., Glucose effectiveness from short insulin-modified IVGTT and its application to the study of women with previous gestational diabetes mellitus, Diabetes Metab. J., in press.

9. D. C. Polidori, R. N. Bergman, S. T. Chung, A. E. Sumner, Hepatic and extrahepatic insulin clearance are differentially regulated: Results from a novel model-based analysis of intravenous glucose tolerance data, Diabetes, 65 (2016), 1556-1564.

10. E. Van Cauter, F. Mestrez, J. Sturis, K. S. Polonsky, Estimation of insulin secretion rates from C-peptide levels: Comparison of individual and standard kinetic parameters for C-peptide clearance, Diabetes, 41 (1992), 368-377.

11. G. Pacini, G. Tonolo, M. Sambataro, M. Maioli, M. Ciccarese, E. Brocco, et al., Insulin sensitivity and glucose effectiveness: Minimal model analysis of regular and insulin-modified FSIGT, Am. J. Physiol. Metab., 274 (2017), E592-E599.

12. S. E. Kahn, R. L. Prigeon, D. K. McCulloch, E. J. Boyko, R. N. Bergman, M. W. Schwartz, et al., Quantification of the relationship between insulin sensitivity and β-cell function in human subjects: Evidence for a hyperbolic function, Diabetes, 42 (1993), 1663-1672.

13. A. Tura, A. Mari, T. Prikoszovich, G. Pacini, A. Kautzky-Willer, Value of the intravenous and oral glucose tolerance tests for detecting subtle impairments in insulin sensitivity and beta-cell function in former gestational diabetes, Clin. Endocrinol., 69 (2008), 237-243.

14. A. Mari, A. Tura, G. Pacini, A. Kautzky-Willer, E. Ferrannini, Relationships between insulinsecretion after intravenous and oral glucose administration in subjects with glucose toleranceranging from normal to overt diabetes, Diabet. Med., 25 (2008), 671-677.

15. A. Caumo, L. Luzi, First-phase insulin secretion: Does it exist in real life? Considerations on shape and function, Am. J. Physiol. Endocrinol. Metab., 287 (2004), E371-E385.

16. I. Blumer, E. Hadar, D. R. Hadden, L. Jovanovič, J. H. Mestman, M. H. Murad, et al., Diabetes and pregnancy: An endocrine society clinical practice guideline, J. Clin. Endocrinol. Metab., 98 (2013), 4227-4249.

17. R. Retnakaran, Y. Qi, C. Ye, A. J. G. Hanley, P. W. Connelly, M. Sermer, et al., Hepatic insulin resistance is an early determinant of declining β-cell function in the first year postpartum after glucose intolerance in pregnancy, Diabetes Care, 34 (2011), 2431-2434.

18. S. D. Mittelman, G. W. Van Citters, S. P. Kim, D. A. Davis, M. K. Dea, M. Hamilton-Wessler, et al., Longitudinal compensation for fat-induced insulin resistance includes reduced insulin clearance and enhanced β-cell response, Diabetes, 49 (2000), 2116-2125.    

19. M. Ader, D. Stefanovski, S. P. Kim, J. M. Richey, V. Ionut, K. J. Catalano, et al., Hepatic insulin clearance is the primary determinant of insulin sensitivity in the normal dog, Obesity, 22 (2014), 1238-1245.

20. M. O. Goodarzi, C. D. Langefeld, A. H. Xiang, Y. I. Chen, X. Guo, A. J. G. Hanley, et al., Insulin sensitivity and insulin clearance are heritable and have strong genetic correlation in mexican americans, Obesity, 22 (2014), 1157-1164.

21. K. Ohashi, M. Fujii, S. Uda, H. Kubota, H. Komada, K. Sakaguchi, et al., Increase in hepatic and decrease in peripheral insulin clearance characterize abnormal temporal patterns of serum insulin in diabetic subjects, NPJ Syst. Biol. Appl., 4 (2018), 14.

22. J. Ling, L. Ge, D. H. Zhang, Y. Wang, Z. Xie, J. Tian, et al., DPP-4 inhibitors for the treatment of type 2 diabetes: A methodology overview of systematic reviews, Acta Diabetol., 56 (2019), 7-27.

23. R. M. Goldenberg, L. Berard, Adding prandial GLP-1 receptor agonists to basal insulin: A promising option for type 2 diabetes therapy, Curr. Med. Res. Opin., 34 (2018), 1-10.

24. A. Tura, G. Pacini, Y. Yamada, Y. Seino, B. Ahrén, Glucagon and insulin secretion, insulin clearance, and fasting glucose in GIP receptor and GLP-1 receptor knockout mice, Am. J. Physiol. Integr. Comp. Physiol., 316 (2019), R27-R37.

25. A. Tura, R. Bizzotto, Y. Yamada, Y. Seino, G. Pacini, B. Ahrén, Increased insulin clearance in mice with double deletion of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptors, Am. J. Physiol. Integr. Comp. Physiol., 314 (2018), R639-R646.

26. A. Shah, M. M. Holter, F. Rimawi, V. Mark, R. Dutia, J. McGinty, et al., Insulin clearance after oral and intravenous glucose following gastric bypass and gastric banding weight loss, Diabetes Care, 42 (2019), 311-317.

27. M. Morettini, F. Di Nardo, L. Ingrillini, S. Fioretti, C. Göbl, A. Kautzky-Willer, et al., Glucose effectiveness and its components in relation to body mass index, Eur. J. Clin. Invest., 49 (2019), e13099.

28. G. Toffolo, R. N. Bergman, D. T. Finegood, C. R. Bowden, C. Cobelli, Quantitative estimation of beta cell sensitivity to glucose in the intact organism. A minimal model of insulin kinetics in the dog, Diabetes, 29 (1980), 979-990.

29. F. Di Nardo, M. Mengoni, M. Morettini, MATLAB-implemented estimation procedure for model-based assessment of hepatic insulin degradation from standard intravenous glucose tolerance test data, Comput. Methods Programs Biomed., 110 (2012), 215-225.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved