
Mathematical Biosciences and Engineering, 2020, 17(1): 747775. doi: 10.3934/mbe.2020039.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Finite difference schemes for a structured population model in the space of measures
1 Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, USA
2 Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428) Pabellón ICiudad UniversitariaBuenos AiresArgentina
Received: , Accepted: , Published:
Special Issues: Mathematical Modeling with Measures
Keywords: finite difference schemes; highresolution methods; structured populations; nonnegative Radon measures; boundedLipschitz norm
Citation: Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier. Finite difference schemes for a structured population model in the space of measures. Mathematical Biosciences and Engineering, 2020, 17(1): 747775. doi: 10.3934/mbe.2020039
References:
 1. L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010.
 2. B. Perthame, Transport Equations in Biology, Birkhäuser Basel, 2007.
 3. T Hillen and K. P. Hadeler, Hyperbolic systems and transport equations in mathematical biology, In Analysis and numerics for conservation laws, Springer, (2005), 257279.
 4. J. A. Cañizo, J. A. Carrillo and S. Cuadrado, Measure solutions for some models in population dynamics, Acta Appl. Math., 123 (2013), 141156.
 5. J. Metz and O. E. Diekmann, The dynamics of physiologically structured populations (lecture notes in biomathematics), Lecture Notes Biomath., (1986), 68.
 6. J. Carrillo, R. M. Colombo, P. Gwiazda, et al., Structured populations, cell growth and measure valued balance laws, J. Differ. Equations, 252 (2012), 32453277.
 7. M. Iannelli, Mathematical theory of agestructured population dynamics, Giardini editori e stampatori in Pisa, 1995.
 8. A. S. Ackleh and B. Ma, A secondorder highresolution scheme for a juvenileadult model of amphibians, Numer. Func. Anal. Opt., 34 (2013), 365403.
 9. J. Shen, C. W. Shu and M. Zhang, High resolution schemes for a hierarchical sizestructured model, SIAM J. Numer. Anal., 45 (2007), 352370.
 10. A. S. Ackleh, J. Carter, K. Deng, et al., Fitting a structured juvenileadult model for green tree frogs to population estimates from capturemarkrecapture field data, Bull. Math. Biol., 74 (2012), 641665.
 11. K. Deng and Y. Wu, Extinction and uniform strong persistence of a sizestructured population model, Discrete Cont. DynS, 22 (2017), 831840.
 12. R. J. H. Beverton and S. J. Holt, On the dynamics of exploited fish populations, fishery investigations series ii, vol. xix, ministry of agriculture, Fisheries Food, 1957, 1957.
 13. W. E. Ricker, Stock and recruitment, J. Fish. Board Can., 11 (1954), 559623.
 14. D. Pauly, G. R. Morgan, et al., Lengthbased methods in fisheries research, volume 13. WorldFish, 1987.
 15. P. Gwiazda, T. Lorenz and A. MarciniakCzochra, A nonlinear structured population model: Lipschitz continuity of measurevalued solutions with respect to model ingredients, J. Differ. Equations, 248 (2010), 27032735.
 16. P. Gwiazda, J. Jablonski, A. MarciniakCzochra, et al., Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded lipschitz distance, Numer. Meth. Part. D. E., 30 (2014), 17971820.
 17. J Carrillo, P. Gwiazda and A. Ulikowska, Splittingparticle methods for structured population models: Convergence and applications, Math. Mod. Meth. Appl. S., 24 (2014), 21712197.
 18. A. de Roos, Numerical methods for structured population models, Numer. Meth. Part. D. E., 4 (2005), 173195.
 19. J. Smoller, Shock waves and reactiondiffusion equations, volume 258. Springer Science & Business Media, 2012.
 20. R. LeVeque, Numerical Mehtods for Conservation Laws. Springer Basel AG, 1992.
 21. A. S. Ackleh, V. K. Chellamuthu and K. Ito, Finite difference approximations for measurevalued solutions of a hierarchically sizestructured population model, Math. Biosci. Eng., 12 (2015), 233258.
 22. J. Jabłoński and D. Wrzosek, Measurevalued solutions to sizestructured population model of prey controlled by optimally foraging predator harvester, Math. Mod. Meth. Appl. S., 29, (2019), 16571689.
 23. H. Federer, Geometric measure theory, Springer, 2014.
 24. H. Federer, Colloquium lectures on geometric measure theory, B. Amer. Math. Soc., 84 (1978), 291338.
 25. R. M. Dudley, Distances of probability measures and random variables, In Selected Works of RM Dudley, Springer, (2010), 2837.
 26. J. H. Evers, S. C. Hille and A. Muntean, Mild solutions to a measurevalued mass evolution problem with flux boundary conditions, J. Differ. Equations, 259 (2015), 10681097.
 27. R. Fortet and E. Mourier, Convergence de la répartition empirique vers la répartition théorique, In Annales scientifiques de l'École Normale Supérieure, 70 (1953), 267285.
 28. A. Lasota, J. Myjak and T. Szarek, Markov operators with a unique invariant measure, J. Math. Anal. Appl., 276 (2002), 343356.
 29. P. Gwiazda, A. MarciniakCzochra and H. R. Thieme, Measures under the flat norm as ordered normed vector space, Positivity, 22 (2017), 105138.
 30. P. Gwiazda and A. MarciniakCzochra, Structured population equations in metric spaces, J. Hyperbol. Differ. Eq., 07 (2010), 733773.
 31. A. S. Ackleh and R. Miller, A numerical method for a nonlinear structured population model with an indefinite growth rate coupled with the environment, Numer. Meth. Part. D. E., 35 (2019), 23482374.
 32. J. L. Kelley, General Topology, D. Van Nostrand Company Inc., 1955.
 33. C. W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock capturing schemes, J. Comput. Physics, 77 (1988), 439471.
 34. J. Jabłoński and A. MarciniakCzochra, Efficient algorithms computing distances between radon measures on r, preprint, arXiv:1304.3501.
 35. N. N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a firstorder quasilinear equation^{*} 1, USSR Comp. Math. Math. Phys., 16 (1976), 105119.
 36. F. Delarue, F. Lagoutière and N. Vauchelet, Convergence order of upwind type schemes for transport equations with discontinuous coefficients, J. Math. Pures Appl., 108 (2017), 918951.
 37. B. A. Menge, Competition for food between two intertidal starfish species and its effect on body size and feeding, Ecology, 53 (1972), 635644.
 38. M. Huss, A. Gårdmark, A. Van Leeuwen, et al., Sizeand fooddependent growth drives patterns of competitive dominance along productivity gradients, Ecology, 93 (2012), 847857.
 39. A. S. Ackleh, J. Cleveland and H. R. Thieme, Population dynamics under selection and mutation: Longtime behavior for differential equations in measure spaces, J. Differ. Equations, 261 (2016), 14721505.
 40. A. S. Ackleh and K. Ito, Measurevalued solutions for a hierarchically sizestructured population, J. Differ. Equations, 217 (2005), 431455.
 41. P. Gwiazda, S. C. Hille, K. Łyczek, et al., Differentiability in perturbation parameter of measure solutions to perturbed transport equation, Kinet. Relat. Mod., 12 (2019), 10931108.
 42. J. Skrzeczkowski, Measure solutions to perturbed structured population modelsdifferentiability with respect to perturbation parameter, preprint arXiv:1812.01747.
 43. A. S. Ackleh, N. Saintier and J. Skrzeczkowski, Sensitivity equations for measurevalued solutions to transport equations, Math. Biosci. Eng., 17 (2020), 514537.
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *