
Mathematical Biosciences and Engineering, 2020, 17(1): 418441. doi: 10.3934/mbe.2020023.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Analysis on a diffusive SIS epidemic system with linear source and frequencydependent incidence function in a heterogeneous environment
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
Received: , Accepted: , Published:
Special Issues: Spatial dynamics for epidemic models with dispersal of organisms and heterogenity of environment
Keywords: SIS model with linear source; frequencydependent incidence function; basic reproduction number; diseasefree equilibrium and endemic equilibrium; global attractivity; uniform persistence; asymptotic profile
Citation: Jinzhe Suo, Bo Li. Analysis on a diffusive SIS epidemic system with linear source and frequencydependent incidence function in a heterogeneous environment. Mathematical Biosciences and Engineering, 2020, 17(1): 418441. doi: 10.3934/mbe.2020023
References:
 1. L. J. S. Allen, B. M. Bolker, Y. Lou, et al., Asymptotic profiles of the steady states for an SIS epidemic reactiondiffusion model, Dis. Contin. Dyn. Syst. A, 21 (2008), 120.
 2. R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reactiondiffusion model. Part I, J. Differ. Equations, 247 (2009), 10961119.
 3. R. M. Anderson and R. M. May, Populaition biology of infectious diseases, Nature 280 (1979), 361367.
 4. R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differ. Equations, 261 (2016), 33053343.
 5. R. Cui, K.Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differ. Equations, 263 (2017), 23432373.
 6. Z. Du and R. Peng, A priori L^{∞}estimates for solutions of a class of reactiondiffusion systems, J. Math. Biol., 72 (2016), 14291439.
 7. H. W. Hethcote, Epidemiology models with variable population size, Mathematical understanding of infectious disease dynamics, 6389, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 16, World Sci. Publ., Hackensack, NJ, 2009.
 8. W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemicsI, Proc. Roy. Soc. London Ser. A, 115 (1927), 700721.
 9. M. Martcheva, An introduction to mathmatical epidemiology, Springer,New York, (2015).
 10. H. W Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599653.
 11. B. Li, H. Li and Y. Tong, Analysis on a diffusive SIS epidemic model with logistic source, Z. Angew. Math. Phys., 68 (2017), Art. 96, 25pp.
 12. H. Li, R. Peng and F. B. Wang, Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model, J. Differ. Equations, 262 (2017), 885913.
 13. M. E. Alexander and S. M. Moghadas, Bifurcation Analysis of an SIRS Epidemic Model with Generalized Incidence, SIAM J. Appl. Math., 65 (2001), 17941816.
 14. R. M. Anderson and R. M. May, Regulation and stability of hostparasite interactions.I. Regulatory processes, J. Anim. Ecol., 47 (1978), 219247.
 15. O. Diekmann and M. Kretzschmar, Patterns in the effects of infectious diseases on population growth, J. Math. Biol., 29 (1991), 539570.
 16. J. A. P. Heesterbeck and J. A. J. Metz, The saturating contact rate in marriage and epidemic models, J. Math. Biol., 31 (1993), 529539.
 17. M. G. Roberts, The dynamics of bovine tuberculosis in possum populations and its eradication or control by culling or vaccination, J. Anim. Ecol., 65 (1996), 451464.
 18. Y. Cai, K. Wang and W. Wang, Global transmission dynamics of a Zika virus model, Appl. Math. Lett., 92 (2019), 190195.
 19. L. Chen and J. Sun, Optimal vaccination and treatment of an epidemic network model, Physics Lett. A, 378 (2014), 30283036.
 20. L. Chen and J. Sun, Global stability and optimal control of an SIRS epidemic model on heterogeneous networks, Physica A, 410 (2014), 196204.
 21. K. Deng and Y. Wu, Dynamics of a susceptibleinfectedsusceptible epidemic reactiondiffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929946.
 22. X. Gao, Y. Cai, F. Rao, et al., Positive steady states in an epidemic model with nonlinear incidence rate, Comput. Math. Appl., 75 (2018), 424443.
 23. J. Ge, C. Lei and Z. Lin, Reproduction numbers and the expanding fronts for a diffusionadvection SIS model in heterogeneous timeperiodic environment, Nonlinear Anal. Real World Appl., 33 (2017), 100120.
 24. K. Kuto, H. Matsuzawa and R. Peng, Concentration profile of endemic equilibrium of a reactiondiffusionadvection SIS epidemic model, Calc. Var. Partial Dif., 56 (2017), Art. 112, 28 pp.
 25. C. Lei, F. Li and J. Liu, Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4499 4517.
 26. B. Li and Q. Bie, Longtime dynamics of an SIRS reactiondiffusion epidemic model, J. Math. Anal. Appl., 475 (2019), 19101926.
 27. H. Li, R. Peng and Z. Wang, On a diffusive SIS epidemic model with mass action mechanism and birthdeath effect: analysis, simulations and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 21292153.
 28. H. Li, R. Peng and T. Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequencydependent SIS epidemic models with crossdiffusion, Eur. J. Appl. Math., 2019, https://doi.org/10.1017/S0956792518000463, in press.
 29. Z. Lin, Y. Zhao and P. Zhou, The infected frontier in an SEIR epidemic model with infinite delay, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 23552376.
 30. R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reactiondiffusion model, Nonlinear Anal., 71 (2009), 239247.
 31. L. Pu and Z. Lin, A diffusive SIS epidemic model in a heterogeneous and periodically evolving environment, 16 (2019), 30943110.
 32. X. Wen, J. Ji and B. Li, Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism, J. Math. Anal. Appl., 458 (2018), 715729.
 33. Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differ. Equations, 261 (2016), 44244447.
 34. M. Zhu, X. Guo and Z. Lin, The risk index for an SIR epidemic model and spatial spreading of the infectious disease, Math. Biosci. Eng., 14 (2017), 15651583.
 35. R. Peng and X. Zhao, A reactiondiffusion SIS epidemic model in a timeperiodic environment, Nonlinearity, 25 (2012), 14511471.
 36. P. Magal and X.Q Zhao, Global attractive and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251275.
 37. X.Q. Zhao, Dynamical Systems in Populaition Biology, SpringerVerlag, New York,(2003)
 38. M. Wang, Nonlinear Partial Differential Equations of Parabolic Type, Science Press, Beijing, 1993(in chinese).
 39. K. J. Brown, P. C. Dunne and R. A. Gardner, A semilinear parabolic system arising in the theory of superconductivity, J. Differ. Equations, 40 (1981), 232252.
 40. G. M. Lieberman, Bounds for the steadystate Sel'kov model for arbitrary p in any number of dimensions, SIAM J. Math. Anal., 36 (2005), 14001406.
 41. R. Peng, J. Shi and M. Wang, On stationary patterns of a reactiondiffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 14711488.
 42. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equation of Second Order, Springer, (2001).
 43. Y. Du, R. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predatorprey model, J. Differ. Equations, 246 (2009), 39323956.
 44. Y. Lou and W.M. Ni, Diffusion, selfdiffusion and crossdiffusion, J. Differ. Equations, 131 (1996), 79131.
 45. W.M. Ni and I. Takagi, On the Neumann problem for some semilinear elliptic equations and eystems of activatorinhibitor type, Trans. Amer. Math. Soc., 297 (1986), 351368.
 46. H. Brezis and W. A. Strauss, Semilinear secondorder elliptic equations in L1, J. Math. Soc. Japan, 25 (1973), 565590.
 47. R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reactiondiffusion model: Effects of epidemic risk and population movement, Phys. D, 259 (2013), 825.
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *