Research article

Embedded system for road damage detection by deep convolutional neural network

  • Received: 02 June 2019 Accepted: 15 August 2019 Published: 03 September 2019
  • Road pavement could be damaged due to various reasons, causing damages such as cracks and pits. These damages cause potential dangers in traffic safety. It is necessary for road maintenance departments to find damages in time before maintenance. At present, maintenance departments of some high-level roads are equipped with specialized detection vehicles such as laser scanning vehicles to detect road damages. These kinds of devices can get good detection performance, but the economic cost is very high. In this paper, we use a road damage image dataset to train an object detection model based on deep convolutional neural network and deploy it on a low-cost embedded platform to form an embedded system. The system uses a common camera mounted on windshield of a common vehicle as sensor to detect road damages. The embedded system consumes about 352 ms to process one frame of image and can achieve a recall rate of about 76% which is higher than some previous related works. The recall rate of this scheme using common cameras is less than that of high-level specialized detectors, but the economic cost is much lower than them. After subsequent development, the road maintenance department with limited funds can consider about schemes like this.

    Citation: Siyu Chen, Yin Zhang, Yuhang Zhang, Jiajia Yu, Yanxiang Zhu. Embedded system for road damage detection by deep convolutional neural network[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7982-7994. doi: 10.3934/mbe.2019402

    Related Papers:

    [1] Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu . A final size relation for epidemic models. Mathematical Biosciences and Engineering, 2007, 4(2): 159-175. doi: 10.3934/mbe.2007.4.159
    [2] Fred Brauer, Zhisheng Shuai, P. van den Driessche . Dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1335-1349. doi: 10.3934/mbe.2013.10.1335
    [3] Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035
    [4] Jianquan Li, Yiqun Li, Yali Yang . Epidemic characteristics of two classic models and the dependence on the initial conditions. Mathematical Biosciences and Engineering, 2016, 13(5): 999-1010. doi: 10.3934/mbe.2016027
    [5] Christine K. Yang, Fred Brauer . Calculation of R0 for age-of-infection models. Mathematical Biosciences and Engineering, 2008, 5(3): 585-599. doi: 10.3934/mbe.2008.5.585
    [6] Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez . The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, 2005, 2(4): 753-769. doi: 10.3934/mbe.2005.2.753
    [7] Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580
    [8] Yu Tsubouchi, Yasuhiro Takeuchi, Shinji Nakaoka . Calculation of final size for vector-transmitted epidemic model. Mathematical Biosciences and Engineering, 2019, 16(4): 2219-2232. doi: 10.3934/mbe.2019109
    [9] Yuri Amemiya, Tianwen Li, Hiroshi Nishiura . Age-dependent final size equation to anticipate mortality impact of COVID-19 in China. Mathematical Biosciences and Engineering, 2023, 20(6): 11353-11366. doi: 10.3934/mbe.2023503
    [10] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
  • Road pavement could be damaged due to various reasons, causing damages such as cracks and pits. These damages cause potential dangers in traffic safety. It is necessary for road maintenance departments to find damages in time before maintenance. At present, maintenance departments of some high-level roads are equipped with specialized detection vehicles such as laser scanning vehicles to detect road damages. These kinds of devices can get good detection performance, but the economic cost is very high. In this paper, we use a road damage image dataset to train an object detection model based on deep convolutional neural network and deploy it on a low-cost embedded platform to form an embedded system. The system uses a common camera mounted on windshield of a common vehicle as sensor to detect road damages. The embedded system consumes about 352 ms to process one frame of image and can achieve a recall rate of about 76% which is higher than some previous related works. The recall rate of this scheme using common cameras is less than that of high-level specialized detectors, but the economic cost is much lower than them. After subsequent development, the road maintenance department with limited funds can consider about schemes like this.




    [1] E. Chuo, Research history and prospect of domestic pavement automatic detection system, China High-Tech. Enterp., 1 (2011), 1-3.
    [2] G. E. Hinton, S. Osindero and Y. W. Teh, A fast learning alg Comput., 18 (2006), 1527-1554. rithm for deep belief nets, Neural
    [3] L. Zhang, F. Yang, Y. D. Zhang, et al., Road crack detection using deep convolutional neural network, 2016 IEEE Int. Conf. Image Process. (ICIP), 3708-3712.
    [4] H. Maeda, Y. Sekimoto, T. Seto, et al., Road damage detection using deep neural networks with images captured through a smartphone, Comput. Aided Civ. Infrastruct. Eng., 33 (2018), 1127-1141. doi: 10.1111/mice.12387
    [5] W. Liu, D. Anguelov, D. Erhan, et al., SSD:Single shot multiBox detector, 2016 European Conf. Comput. Vision (ECCV), 21-37.
    [6] A. G. Howard, M. Zhu, B. Chen, et al., MobileNets:Efficient convolutional neural networks for mobile vision applications, preprint, arXiv:1704.04861.
    [7] A. He, Advantages of JG-1 laser 3D pavement inspection system, China Highw., 16 (2005), 94-95.
    [8] R. Girshick, J. Donahue, T. Darrell, et al., Rich feature hierarchies for accurate object detection and semantic segmentation, 2014 IEEE Conf. Comput. Vision Pattern 587. Recogn. (CVPR), 580-587
    [9] S. Ren, K. He, R. Girshick, et al., Faster R-CNN:Towards real-time object detection with region Proposal networks, Adv. Neural Inf. Process. Syst., (2015), 91-99.
    [10] J. Redmon, S. Divvala, R. Girshick, et al., You only look once:Unified, Real-Time object detection, 2016 IEEE Conf. Comput. Vision Pattern Recogn. (CVPR), 779-788.
    [11] R. Joseph and A. Farhadi, YOLO v3:An incremental improvement, preprint, arXiv:1804.02767.
    [12] S. Karen and A. Zisserman, Very recognition, preprint, arXiv:1409.1556. deep convolutional networks for Large-Scale image
    [13] Z. Zhou, Model evaluating and selecting, in Machine Learn ng (eds. Zhihua Zhou), Tsinghua University Press, (2016), 23-52.
    [14] T. Lin, M. Maire, S. Belongie, et al., Microsoft COCO:Common objects in context, 2014 European Conf. Comput. Vision (ECCV), 740-755.
  • This article has been cited by:

    1. Menachem Lachiany, Yoram Louzoun, Effects of distribution of infection rate on epidemic models, 2016, 94, 2470-0045, 10.1103/PhysRevE.94.022409
    2. Nancy Hernandez-Ceron, Zhilan Feng, Carlos Castillo-Chavez, Discrete Epidemic Models with Arbitrary Stage Distributions and Applications to Disease Control, 2013, 75, 0092-8240, 1716, 10.1007/s11538-013-9866-x
    3. Pandemic influenza: Modelling and public health perspectives, 2011, 8, 1551-0018, 1, 10.3934/mbe.2011.8.1
    4. L.F. Mondolfo, 1976, 9780408709323, 385, 10.1016/B978-0-408-70932-3.50088-7
    5. Guy Katriel, The size of epidemics in populations with heterogeneous susceptibility, 2012, 65, 0303-6812, 237, 10.1007/s00285-011-0460-2
    6. Arun Solanki, Tarana Singh, 2021, Chapter 3, 978-3-030-60038-9, 57, 10.1007/978-3-030-60039-6_3
    7. Fan Bai, Uniqueness of Nash equilibrium in vaccination games, 2016, 10, 1751-3758, 395, 10.1080/17513758.2016.1213319
    8. Joel C. Miller, A Note on the Derivation of Epidemic Final Sizes, 2012, 74, 0092-8240, 2125, 10.1007/s11538-012-9749-6
    9. Baltazar Espinoza, Victor Moreno, Derdei Bichara, Carlos Castillo-Chavez, 2016, Chapter 9, 978-3-319-40411-0, 123, 10.1007/978-3-319-40413-4_9
    10. Fred Brauer, General compartmental epidemic models, 2010, 31, 0252-9599, 289, 10.1007/s11401-009-0454-1
    11. L.F. Mondolfo, 1976, 9780408709323, 384, 10.1016/B978-0-408-70932-3.50087-5
    12. L.F. Mondolfo, 1976, 9780408709323, 335, 10.1016/B978-0-408-70932-3.50058-9
    13. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 1, 978-1-4939-9826-5, 3, 10.1007/978-1-4939-9828-9_1
    14. P. van den Driessche, Zhisheng Shuai, Fred Brauer, Dynamics of an age-of-infection cholera model, 2013, 10, 1551-0018, 1335, 10.3934/mbe.2013.10.1335
    15. L.F. Mondolfo, 1976, 9780408709323, 380, 10.1016/B978-0-408-70932-3.50083-8
    16. Mahnaz Alavinejad, Jianhong Wu, Coupled Systems of Renewal Equations for Forces of Infection through a Contact Network, 2020, 63, 0008-4395, 624, 10.4153/S0008439519000705
    17. G. Katriel, R. Yaari, A. Huppert, U. Roll, L. Stone, Modelling the initial phase of an epidemic using incidence and infection network data: 2009 H1N1 pandemic in Israel as a case study, 2011, 8, 1742-5689, 856, 10.1098/rsif.2010.0515
    18. Jummy Funke David, Epidemic models with heterogeneous mixing and indirect transmission, 2018, 12, 1751-3758, 375, 10.1080/17513758.2018.1467506
    19. David J. D. Earn, Paul W. Andrews, Benjamin M. Bolker, Population-level effects of suppressing fever, 2014, 281, 0962-8452, 20132570, 10.1098/rspb.2013.2570
    20. Calistus N. Ngonghala, Enahoro Iboi, Steffen Eikenberry, Matthew Scotch, Chandini Raina MacIntyre, Matthew H. Bonds, Abba B. Gumel, Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus, 2020, 325, 00255564, 108364, 10.1016/j.mbs.2020.108364
    21. Hiroshi Nishiura, Gerardo Chowell, Carlos Castillo-Chavez, Alessandro Vespignani, Did Modeling Overestimate the Transmission Potential of Pandemic (H1N1-2009)? Sample Size Estimation for Post-Epidemic Seroepidemiological Studies, 2011, 6, 1932-6203, e17908, 10.1371/journal.pone.0017908
    22. Fred Brauer, Mathematical epidemiology: Past, present, and future, 2017, 2, 24680427, 113, 10.1016/j.idm.2017.02.001
    23. Bahman Davoudi, Joel C. Miller, Rafael Meza, Lauren Ancel Meyers, David J. D. Earn, Babak Pourbohloul, Early Real-Time Estimation of the Basic Reproduction Number of Emerging Infectious Diseases, 2012, 2, 2160-3308, 10.1103/PhysRevX.2.031005
    24. Fred Brauer, A simple model for behaviour change in epidemics, 2011, 11, 1471-2458, 10.1186/1471-2458-11-S1-S3
    25. Ping Yan, Zhilan Feng, Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness, 2010, 224, 00255564, 43, 10.1016/j.mbs.2009.12.007
    26. GUY KATRIEL, STOCHASTIC DISCRETE-TIME AGE-OF-INFECTION EPIDEMIC MODELS, 2013, 06, 1793-5245, 1250066, 10.1142/S1793524512500660
    27. Karyn L. Sutton, Danielle Robbins, H.Thomas Banks, Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations, 2013, 10, 1551-0018, 1301, 10.3934/mbe.2013.10.1301
    28. G. Röst, Z. Vizi, I. Z. Kiss, Pairwise approximation for SIR -type network epidemics with non-Markovian recovery , 2018, 474, 1364-5021, 20170695, 10.1098/rspa.2017.0695
    29. L.F. Mondolfo, 1976, 9780408709323, 413, 10.1016/B978-0-408-70932-3.50098-X
    30. Eleonora Messina, Mario Pezzella, Antonia Vecchio, A non-standard numerical scheme for an age-of-infection epidemic model, 2022, 9, 2158-2491, 239, 10.3934/jcd.2021029
    31. Xiaohao Guo, Yichao Guo, Zeyu Zhao, Shiting Yang, Yanhua Su, Benhua Zhao, Tianmu Chen, Computing R0 of dynamic models by a definition-based method, 2022, 7, 24680427, 196, 10.1016/j.idm.2022.05.004
    32. Raphaël Forien, Guodong Pang, Étienne Pardoux, Epidemic Models with Varying Infectivity, 2021, 81, 0036-1399, 1893, 10.1137/20M1353976
    33. Raphaël Forien, Guodong Pang, Étienne Pardoux, Multi-patch multi-group epidemic model with varying infectivity, 2022, 7, 2095-9672, 333, 10.3934/puqr.2022019
    34. Scott Greenhalgh, Carly Rozins, A generalized differential equation compartmental model of infectious disease transmission, 2021, 6, 24680427, 1073, 10.1016/j.idm.2021.08.007
    35. Jingan Cui, Yucui Wu, Songbai Guo, Effect of Non-homogeneous Mixing and Asymptomatic Individuals on Final Epidemic Size and Basic Reproduction Number in a Meta-Population Model, 2022, 84, 0092-8240, 10.1007/s11538-022-00996-7
    36. Alison Adams, Quiyana M. Murphy, Owen P. Dougherty, Aubrey M. Sawyer, Fan Bai, Christina J. Edholm, Evan P. Williams, Linda J.S. Allen, Colleen B. Jonsson, Data-driven models for replication kinetics of Orthohantavirus infections, 2022, 349, 00255564, 108834, 10.1016/j.mbs.2022.108834
    37. Dmitry V. Boguslavsky, Natalia P. Sharova, Konstantin S. Sharov, Cryptocurrency as Epidemiologically Safe Means of Transactions: Diminishing Risk of SARS-CoV-2 Spread, 2021, 9, 2227-7390, 3263, 10.3390/math9243263
    38. Sarafa A. Iyaniwura, Musa Rabiu, Jummy F. David, Jude D. Kong, Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study, 2021, 18, 1551-0018, 8905, 10.3934/mbe.2021439
    39. Eleonora Messina, Mario Pezzella, Antonia Vecchio, Positive Numerical Approximation of Integro-Differential Epidemic Model, 2022, 11, 2075-1680, 69, 10.3390/axioms11020069
    40. Guodong Pang, Étienne Pardoux, Functional central limit theorems for epidemic models with varying infectivity, 2022, 1744-2508, 1, 10.1080/17442508.2022.2124870
    41. Jummy F. David, Sarafa A. Iyaniwura, Effect of Human Mobility on the Spatial Spread of Airborne Diseases: An Epidemic Model with Indirect Transmission, 2022, 84, 0092-8240, 10.1007/s11538-022-01020-8
    42. Luis Almeida, Pierre-Alexandre Bliman, Grégoire Nadin, Benoît Perthame, Nicolas Vauchelet, Final size and convergence rate for an epidemic in heterogeneous populations, 2021, 31, 0218-2025, 1021, 10.1142/S0218202521500251
    43. Jummy F. David, Sarafa A. Iyaniwura, Michael J. Ward, Fred Brauer, A novel approach to modelling the spatial spread of airborne diseases: an epidemic model with indirect transmission, 2020, 17, 1551-0018, 3294, 10.3934/mbe.2020188
    44. Fan Bai, An age-of-infection model with both symptomatic and asymptomatic infections, 2023, 86, 0303-6812, 10.1007/s00285-023-01920-w
    45. Eleonora Messina, Mario Pezzella, Antonia Vecchio, A long-time behavior preserving numerical scheme for age-of-infection epidemic models with heterogeneous mixing, 2023, 01689274, 10.1016/j.apnum.2023.04.009
    46. Maximilian M. Nguyen, Ari S. Freedman, Sinan A. Ozbay, Simon A. Levin, Fundamental bound on epidemic overshoot in the SIR model, 2023, 20, 1742-5662, 10.1098/rsif.2023.0322
    47. Jummy David, Gabrielle Brankston, Idriss Sekkak, Sungju Moon, Xiaoyan Li, Sana Jahedi, Zahra Mohammadi, Ao Li, Martin Grunnil, Pengfei Song, Woldegebriel Assefa, Nicola Bragazzi, Jianhong Wu, 2023, Chapter 1, 978-3-031-40804-5, 1, 10.1007/978-3-031-40805-2_1
    48. Aditi Ghosh, Pradyuta Padmanabhan, Anuj Mubayi, Padmanabhan Seshaiyer, Influence of distinct social contexts of long-term care facilities on the dynamics of spread of COVID-19 under predefine epidemiological scenarios, 2023, 11, 2544-7297, 10.1515/cmb-2023-0102
    49. Donald S. Burke, Origins of the problematic E in SEIR epidemic models, 2024, 24680427, 10.1016/j.idm.2024.03.003
    50. Phyu Phyu Win, Zhigui Lin, Mengyun Zhang, The final size and critical times of an SIVR epidemic model, 2025, 2025, 2731-4235, 10.1186/s13662-025-03902-2
    51. Sani Musa, Salisu Usaini, Idris Ahmed, Chanakarn Kiataramkul, Jessada Tariboon, Dynamics of the Diphtheria Epidemic in Nigeria: Insights from the Kano State Outbreak Data, 2025, 13, 2227-7390, 1189, 10.3390/math13071189
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8374) PDF downloads(882) Cited by(16)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog