
Mathematical Biosciences and Engineering, 2019, 16(6): 64676511. doi: 10.3934/mbe.2019324
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Modified dragonfly algorithm based multilevel thresholding method for color images segmentation
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
Received: , Accepted: , Published:
Special Issues: Bioinspired algorithms and Biosystems
References
1. C. Jung, M. Jian, J. Liu, et al., Interactive image segmentation via kernel propagation, Pattern Recognit., 47 (2014), 2745–2755.
2. S. H. Lee, H. I. Koo and N. I. Cho, Image segmentation algorithms based on the machine learning of features, Pattern Recognit. Lett., 31 (2010), 2325–2336.
3. W. Chen, H. Yue, J. Wang, et al., An improved edge detection algorithm for depth map inpainting, Opt. Lasers Eng., 55 (2014), 69–77.
4. J. Ye, G. Fu and U. P. Poudel, Highaccuracy edge detection with Blurred Edge Model, Image Vision Comput., 23 (2005), 453–467.
5. G. Zhang, H. Zhu and N. Xu, Flotation bubble image segmentation based on seed region boundary growing, Min. Sci. Technol., 21 (2011), 239–242.
6. K. Liu, L. Guo, H. Li, et al., Fusion of Infrared and Visible Light Images Based on Region Segmentation, Chin. J. Aeronaut., 22 (2009), 75–80.
7. N. Otsu, A threshold selection method from graylevel histograms, IEEE Trans. Syst. Man Cybern., 9 (1979), 62–66.
8. J. N. Kapur, P. K. Sahoo and A. K. C. Wong, A new method for graylevel picture thresholding using the entropy of the histogram, Comput. Vision Graphics Image Process., 29 (1985), 273–285.
9. C. H. Li and C. K. Lee, Minimum cross entropy thresholding, Pattern Recognit., 26 (1993), 617–625.
10. M. A. E. Aziz, A. A. Ewees and A. E. Hassanien, Whale Optimization Algorithm and MothFlame Optimization for multilevel thresholding image segmentation, Expert Syst. Appl., 83 (2017), 242–256.
11. G. Sun, A. Zhang, Y. Yao, et al., Multilevel thresholding using grey wolf optimizer for image segmentation, Expert Syst. Appl., 86 (2017), 64–76.
12. E. Cuevas, D. Zaldivar and M. Pérezcisneros, A novel multithreshold segmentation approach based on differential evolution optimization, Expert Syst. Appl., 37 (2010), 5265–5271.
13. G. Sun, A. Zhang, Y. Yao, et al., A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multilevel thresholding, Appl. Soft Comput., 46 (2016), 703–730.
14. A. K. Bhandari, V. K. Singh, A. Kumar, et al., Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy, Expert Syst. Appl., 41 (2014), 3538–3560.
15. A. K. Bhandari, V. K. Singh, A. Kumar, et al., A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging, Meas., 41 (2008), 1124–1134.
16. S. Ouadfel and A. TalebAhmed, Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study, Expert Syst. Appl., 55 (2016), 566–584.
17. U. Mlakar, B. Potočnik and J. Brest, A hybrid differential evolution for optimal multilevel image thresholding, Expert Syst. Appl., 65(2016), 221–232.
18. P. D. Sathya and R. Kayalvizhi, Modified bacterial foraging algorithm based multilevel thresholding for image segmentation, Eng. Appl. Artif. Intell., 24 (2011), 595–615.
19. W. A. Hussein, S. Sahran and S. N. H. S. Abdullah, A fast scheme for multilevel thresholding based on a modified bees algorithm, Knowled. Based Syst., 101 (2016), 114–134.
20. H. S. Gill, B. S. Khehra, A. Singh, et al., Teachinglearningbased optimization algorithm to minimize cross entropy for Selecting multilevel threshold values, Egypt. Inform. J., (2018).
21. K. P. B. Resma and S. N. Madhu, Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm, J. King Saud Univ. Comput. Inf. Sci., (2018).
22. S. Pare, A. K. Bhandari, A. Kumar, et al., A new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithm, Comput. Electr. Eng., 70 (2018), 476–495.
23. R. A. Ibrahim, M. A. Elaziz and S. Lu, Chaotic oppositionbased greywolf optimization algorithm based on differential evolution and disruption operator for global optimization, Expert Syst. Appl., 108 (2018), 1–27.
24. S. Mirjalili, Dragonfly algorithm: A new metaheuristic optimization technique for solving singleobjective, discrete, and multiobjective problems, Neural Comput. Appl., 27 (2016), 1053–1073.
25. F. Wilcoxon, Individual comparison by ranking methods, Biom. Bull., 1 (1945), 80–83.
26. C. Fan, H. Ouyang, Y. Zhang, et al., Optimal multilevel thresholding using molecular kinetic theory optimization algorithm, Appl. Math. Comput., 239 (2014), 391–408.
27. S. Manikandan, K. Ramar, M. W. Iruthayarajan, et al., Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm, Meas., 47 (2014), 558–568.
28. M. Horng, A multilevel image thresholding using the honey bee mating optimization, Appl. Math. Comput., 215 (2010), 3302–3310.
29. L. Cao, P. Bao and Z. Shi, The strongest schema learning GA and its application to multilevel thresholding, Image Vision Comput., 26 (2008), 716–724.
30. A. Bouaziz, A. Draa and S. Chikhi, Artificial bees for multilevel thresholding of iris images, Swarm Evol. Comput., 21 (2015), 32–40.
31. A. K. Bhandari, A. Kumar and G. K. Singh, Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms, Expert Syst. Appl., 42 (2015), 8707–8730.
32. S. Pare, A. Kumar, V. Bajaj, et al., An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy, Appl. Soft Comput., 61 (2017), 570–592.
33. K. Price, Differential evolution: A fast and simple numerical optimizer, Fuzzy Inf. Process. Soc., (1996), 524–527.
34. H. R. Tizhoosh, Oppositionbased learning: A new scheme for machine intelligence, Int. Conf. Computat. Intell. Modell., 1 (2005), 695–701.
35. T. Xiang, X. Liao and K. Wong, An improved particle swarm optimization algorithm combined with piecewise linear chaotic map, Appl. Math. Comput., 190 (2007), 1637–1645.
36. G. Kaur and S. Arora, Chaotic whale optimization algorithm, J. Comput. Des. Eng., 5 (2018), 275–284.
37. M. Kohli and S. Arora, Chaotic grey wolf optimization algorithm for constrained optimization problems, J. Comput. Des. Eng., 5 (2018), 458–472.
38. H. Wang, Z. Wu, S. Rahnamayan, et al., Enhancing particle swarm optimization using generalized oppositionbased learning, Inf. Sci., 181 (2011), 4699–4714.
39. H. Wang, Z. Wu and S. Rahnamayan, Enhanced oppositionbased differential evolution for highdimensional optimization problems, Soft Comput., 15 (2011), 2127–2140.
40. H. Wang, S. Rahnamayan, H. Sun, et al., Gaussian barebones differential evolution, IEEE Trans. Cybern., 43 (2013), 634–647.
41. H. Zorlu, Optimization of weighted myriad filters with differential evolution algorithm, AEU Int. J. Electron. Commun., 77 (2017), 1–9.
42. U. Yüzgeç and M. Eser, Chaotic based differential evolution algorithm for optimization of baker's yeast drying process, Egypt. Inf. J., 19 (2018), 151–163.
43. R. P. Parouha and K. N. Das, Economic load dispatch using memory based differential evolution, Int. J. Bioinspired. Comput., 11 (2018), 159–170.
44. H. Wang, Z. Wu and S. Rahnamayan, Differential evolution based on node strength, Int. J. Bioinspired. Comput., 11 (2018), 34–45.
45. S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, et al., Salp Swarm Algorithm: A bioinspired optimizer for engineering design problems, Adv. Eng. Software., 14 (2017), 163–191.
46. S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowled. Based Syst., 96 (2016), 120–133.
47. N. Singh and S. B. Singh, A novel hybrid GWOSCA approach for optimization problems, Eng. Sci. Technol. Int. J., 20 (2017), 1586–1601.
48. S. Mirjalili, The Ant Lion Optimizer, Adv. Eng. Software., 83(2015), 80–98.
49. E. Emary, H. M. Zawbaa and A. E. Hassanien, Binary ant lion approaches for feature selection, Neurocomput., 213 (2016), 54–65.
50. D. Manjarres, I. LandaTorres, S. GilLopez et al., A survey on applications of the harmony search algorithm, Eng. Appl. Artif. Intell., 26 (2013), 1818–1831.
51. A. H. Gandomi and X. Yang, Chaotic bat algorithm, Int. J. Comput. Sci. Eng. Int., 5 (2014), 224–232.
52. Z. Ye, M. Wang, W. Liu, et al., Fuzzy entropy based optimal thresholding using bat algorithm, Appl. Soft Comput., 31 (2015), 381–395.
53. N. S. M. Raja, S. A. Sukanya and Y. Nikita, Improved PSO based multilevel thresholding for cancer infected breast thermal images using otsu, Procedia Comput. Sci., 48 (2015), 524–529.
54. A. Chander, A. Chatterjee and P. Siarry, A new social and momentum component adaptive PSO algorithm for image segmentation, Expert Sys. Appl., 38 (2011), 4998–5004.
55. A. K. Bhandari, A novel beta differential evolution algorithmbased fast multilevel thresholding for color image segmentation, Neural Comput. Applic., (2018), 1–31. DOI:10.1007/s005210183771z.
56. M. AbdelBaset, H. Wu, Y. Zhou, et al., Elite oppositionflower pollination algorithm for quadratic assignment problem, J. Intell. Fuzzy Syst., 33 (2017), 901–911. DOI: 10.3233/jifs162141.
57. C. Li and A. C. Bovik, Contentpartitioned structural similarity index for image quality assessment, Signal Process. Image Commun., 25 (2010), 517–526.
58. J. John, M. S. Nair, P. R. A. Kumar, et al., A novel approach for detection and delineation of cell nuclei using feature similarity index measure, Biocybern. Biomed. Eng., 36 (2016), 76–88.
59. S. Pare, A. K. Bhandari, A. Kumar, et al., An optimal color image multilevel thresholding technique using greylevel cooccurrence matrix, Expert Syst. Appl., 87 (2017), 335–362.
60. D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, Evol. Comput. IEEE Trans., 1 (1997), 67–82.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)