
Mathematical Biosciences and Engineering, 2019, 16(5): 46224644. doi: 10.3934/mbe.2019232
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Gradient and Hamiltonian coupled systems on undirected networks
1 Centro de Matemática, Universidade do Porto, Rua do Campo Alegre, 687, 4169007 Porto, Portugal
2 Faculdade de Economia, Universidade do Porto, Rua Dr Roberto Frias, 4200464 Porto, Portugal
3 Departamento de Matemática, Universidade do Porto, Rua do Campo Alegre, 687, 4169007 Porto, Portugal
4 Departamento de Matemática, ICMC, Universidade de São Paulo, 13560970 Caixa Postal 668, São Carlos, SP  Brazil
Received: , Accepted: , Published:
Special Issues: Mathematical Methods in the Biosciences
References
1. J. C. Bronski, L. De Ville and M. J. Park, Fully synchronous solutions and the synchronization phase transition for the finiteN Kuramoto model, Chaos: an Int. J. Non. Sci., 22 (2012), 033133.
2. M. Manoel and M. R. Roberts, Gradient systems on coupled cell networks, Nonlinearity, 28 (2015), 3487–3509.
3. M. Plank, On the dynamics of LotkaVolterra equations having an invariant hyperplane, SIAM J. Appl. Math., 59 (1999), 1540–1551.
4. P.L. Buono, B. Chan and A. Palacios, Dynamics and Bifurcations in a D n symmetric Hamiltonian Network. Application to Coupled Gyroscopes, Phys. D, 290 (2015), 8–23.
5. B. S. Chan, P. L. Buono and A. Palacios, Topology and Bifurcations in Hamiltonian Coupled Cell Systems, Dyn. Syst., 32 (2017), 23–45.
6. D. S Tourigny, Networks of planar Hamiltonian systems, Comm. in Non. Sci. and Num. Sim., 53 (2017), 263–277.
7. V. V. Gafiychuk and A. K. Prykarpatsky, Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures, Cond. Matt. Phys., 7 (2004), 551– 563.
8. E. Lee and D. Terman, Oscillatory rhythms in a model network of excitatory and inhibitory Neurons, SIAM J. Appl. Dyn. Syst, 18 (2019), 354–392.
9. P. J. Uhlhaas and W. Singer, Neural Synchrony in Brain Review Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology, Neuron, 52 (2006), 155–168.
10. P. Duarte, R. L. Fernandes and W. M. Oliva, Dynamics of the attractor in the LotkaVolterra equations, J. Diff. Eq., 149 (1998), 143–189.
11. J. M. Neuberger, N. Sieben and J. W. Swift, Synchrony and antisynchrony for differencecoupled vector fields on graph network systems, preprint, arXiv:1805.04144.
12. R. E. Mirollo and S. H. Strogatz. The spectrum of the locked state for the Kuramoto model of coupled oscillators, Physica D, 205 (2005), 249–266.
13. S. E. Korshunov, Phase diagram of the antiferromagnetic XY model with a triangular lattice in an external magnetic field, J. Phys. C: Solid State Phys., 19 (1986), 5927–5935.
14. D. H. Lee, R. G. Caflisch, J. D. Joannopoulos, et al., Antiferromagnetic classical XFmodel: A meanfield analysis, Phys. Rev. B, 29 (1984), 2680–2684.
15. J. C. Walter and C. Chatelain, Numerical investigation of the ageing of the fully frustrated XY model, J. Stat. Mech., 10 (2009), P10017117.
16. E. Goles and G. A. Ruz, Dynamics of neural networks over undirected graphs, Neural Networks, 63 (2015), 156–169.
17. M. Golubitsky and I. Stewart, Nonlinear dynamics of networks: the groupoid formalism, B. Am. Math. Soc., 43 (2006), 305–364.
18. M. Golubitsky, I. Stewart and A. Török, Patterns of synchrony in coupled cell networks with multiple arrows, SIAM J. Appl. Dyn. Syst., 4 (2005), 78–100.
19. I. Stewart, M. Golubitsky and M. Pivato, Symmetry groupoids and patterns of synchrony in coupled cell networks, SIAM J. Appl. Dyn. Syst., 2 (2003), 609–646.
20. M. Denaxa, G. Neves, A. Rabinowitz, S. Kemlo, P. Liodis, J. Burrone and V. Pachnis, Modulation of apoptosis controls inhibitory interneuron number in the cortex, Cell Rep., 22 (2018), 1710–1721.
21. I. Stewart, The lattice of balanced equivalence relations of a coupled cell network, Math. Proc. Cambridge Philos. Soc., 143 (2007), 165–183.
22. M. A. D. Aguiar and A. P. S. Dias, The Lattice of Synchrony Subspaces of a Coupled Cell Network: Characterization and Computation Algorithm, J. Nonlinear Sci., 24 (2014), 949–996.
23. M. A. D. Aguiar, A. P. S. Dias., M. Golubitsky, et al., Bifurcations from regular quotient networks: a first insight, Physica D, 238 (2009), 137–155.
24. A. P. S. Dias and E. M. Pinho, Spatially Periodic Patterns of Synchrony in Lattice Networks, SIAM J. Appl. Dyn. Syst., 8 (2009), 641–675.
25. M. Aguiar, P. Ashwin, A. Dias, et al., Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation, J. Nonlinear Sci., 21 (2011), 271–323.
26. M. A. D. Aguiar and A. P. S. Dias, Heteroclinic network dynamics on joining coupled cell networks, Dyn. Syst Int. J., 32 (2017), 4–22.
27. S. Alford and M. Alpert, A synaptic mechanism for network synchrony, Front Cell Neurosci., 8 (2014), 290.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)