Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Exploring the mechanisms behind the country-specific time of Zika virusimportation

1 Graduate School of Medicine, Hokkaido University, Sapporo, Japan
2 CREST, Japan Science and Technology Agency, Saitama, Japan

Special Issues: Inverse problems in the natural and social sciences

The international spread of Zika virus (ZIKV) began in Brazil in 2015. To estimate the riskof observing imported ZIKV cases, we calculated effective distance, typically an excellent predictorof arrival time, from airline network data. However, we eventually concluded that, for ZIKV, effectivedistance alone is not an adequate predictor of arrival time, which we partly attributed to the difficultyof diagnosing and ascertaining ZIKV infections. Herein, we explored the mechanisms behind theobserved time delay of ZIKV importation by country, statistically decomposing the delay into twoparts: the actual time to importation from Brazil and the reporting delay. The latter was modeled as afunction of the gross domestic product (GDP) and other variables that influence underlying diagnosticcapacity in a given country. We showed that a high GDP per capita is a good predictor of shortreporting delay. ZIKV infection is generally mild and, without substantial laboratory capacity, casescan be underestimated. This study successfully demonstrates this phenomenon and emphasizes theimportance of accounting for reporting delays as part of the data generating process for estimatingtime to importation.
  Figure/Table
  Supplementary
  Article Metrics

Keywords effective distance ; network ; prediction ; pandemic ; probabilistic models ; global spread

Citation: Nao Yamamoto, Hyojung Lee, Hiroshi Nishiura. Exploring the mechanisms behind the country-specific time of Zika virusimportation. Mathematical Biosciences and Engineering, 2019, 16(5): 3272-3284. doi: 10.3934/mbe.2019163

References

  • 1. G. Benelli and H. Mehlhorn, Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control, Parasitol Res., 115 (2016), 17471754.
  • 2. G. W. Dick, Zika virus. II. Pathogenicity and physical properties, Trans. R. Soc. Trop. Med. Hyg., 46 (1952), 521–534.
  • 3. I. I. Bogoch, O. J. Brady, M. U. G. Kraemer, et al., Anticipating the international spread of Zika virus from Brazil, Lancet, 387 (2016), 335336.
  • 4. E. M. Netto, A. Moreira-Soto, C. Pedroso, et al., High Zika virus seroprevalence in Salvador, Northeastern Brazil limits the potential for further outbreaks, MBio, 8 (2017), e01390–17.
  • 5. D. P. Shutt, C. A. Manore, S. Pankavich, et al., Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America, Epidemics, 21 (2017), 63–79.
  • 6. L. Dinh, G. Chowell, K. Mizumoto, et al., Estimating the subcritical transmissibility of the Zika outbreak in the State of Florida, USA, 2016, Theor. Biol. Med. Model., 13 (2016), 20.
  • 7. A. J. Kucharski, S. Funk, R. M. Eggo, et al., Transmission dynamics of Zika virus in island popu- lations: a modelling analysis of the 201314 French Polynesia outbreak, PLoS Negl. Trop. Dis., 10 (2016), e0004726.
  • 8. H. Nishiura, R Kinoshita, K. Mizumoto, et al., Transmission potential of Zika virus infection in the South Pacific, Int. J. Infect. Dis., 45 (2016), 95–97.
  • 9. N. H. Ogden, A. Fazil, D. Safronetz, et al., Risk of travel-related cases of Zika virus infection is predicted by transmission intensity in outbreak-affected countries, Parasit. Vectors, 10 (2017), 41.
  • 10. S. Cauchemez, M. Besnard, P. Bompard, et al., Association between Zika virus and microcephaly in French Polynesia, 20132015: a retrospective study, Lancet, 387 (2016), 2125–2132.
  • 11. J. Mlakar, M. Korva, N. Tul, et al., Zika virus associated with microcephaly, N. Engl. J. Med., 374 (2016), 951–958.
  • 12. V. Sikka, V. K. Chattu, R. K. Popli, et al., The emergence of Zika virus as a global health security threat: A review and a consensus statement of the INDUSEM Joint working Group (JWG). J. Glob. Infect. Dis., 8 (2016), 3–15.
  • 13. R. W. Malone, J. Homan, M. V. Callahan, et al., Zika Virus: Medical Countermeasure Develop- ment Challenges, PLoS Negl. Trop. Dis., 10 (2016), 1–26.
  • 14. S. A. Rasmussen, D. J. Jamieson, M. A. Honein, et al., Zika virus and birth defects reviewing the evidence for causality, N. Engl. J. Med., 374 (2016), 1981–1987.
  • 15. F. J. Colón-González, C. A. Peres, C. S. S˜ ao Bernardo, et al., After the epidemic: Zika virus projections for Latin America and the Caribbean, PLoS Negl. Trop. Dis., 11 (2017), e0006007.
  • 16. N. D. Grubaugh, J. T. Ladner, M. U. G. Kraemer, et al., Genomic epidemiology reveals multiple introductions of Zika virus into the United States, Nature, 546 (2017), 401–405.
  • 17. J. P. Messina, M. U. Kraemer, O. J. Brady, et al., Mapping global environmental suitability for Zika virus, Elife, 5 (2016), e15272.
  • 18. R. N. Faria, J. Quick, I. Morales, et al., Establishment and cryptic transmission of Zika virus in Brazil and the Americas, Nature, 546 (2017), 406–410.
  • 19. World Health Organization, Situation ReportZika virus, microcephaly, GuillainBarr syn- drome, 2017. Available from: http://apps.who.int/iris/bitstream/10665/254714/1/ zikasitrep10Mar17-eng.pdf?ua=1.
  • 20. I. I. Bogoch, O. J. Brady, M. U. G. Kraemer, et al., Potential for Zika virus introduction and transmissioninresource-limitedcountriesinAfricaandtheAsia-Pacificregion: amodellingstudy, Lancet Infect. Dis, 16 (2016), 1237–1245.
  • 21. R. Mgling, H. Zeller, J. Revez, et al., ZIKV reference laboratory group and C. Reusken, Status, quality and specific needs of Zika virus (ZIKV) diagnostic capacity and capability in National Reference Laboratories for arboviruses in 30 EU/EEA countries, May 2016, Euro. Surveill., 22 (2017), 30609.
  • 22. J. M. Marshall, S. L. Wu, H. M. Sanchez, et al., Mathematical models of human mobility of relevance to malaria transmission in Africa, Sci. Rep., 8 (2018), 1–12.
  • 23. J. Riou, C. Poletto and P. Y. Bolle, A comparative analysis of Chikungunya and Zika transmission, Epidemics, 19 (2017), 43–52.
  • 24. N. M. Ferguson, Z. M. Cucunub, I. Dorigatti, et al., Countering the Zika epidemic in Latin Amer- ica, Science, 353 (2016), 353–354.
  • 25. K. Sun, Q. Zhang, A. Pastore-Piontti, et al., Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015-2016 ZIKV epidemic, BMC Med., 16 (2018), 195.
  • 26. S. Towers, F. Brauer, C. Castillo-Chavez, et al., Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual trans- mission, Epidemics, 17 (2016), 50–55.
  • 27. Q. Zhang, K. Sun, M. Chinazzi, et al., Spread of Zika virus in the Americas, Proc. Natl. Acad. Sci. USA, 114 (2017), E4334–E4343.
  • 28. L. T. Keegan, J. Lessler and M. A. Johansson, Quantifying Zika: advancing the epidemiology of Zika with quantitative models, J. Infect. Dis., 216 (2017), S884–S890.
  • 29. S. M. Moghadas, A. Shoukat, A. L. Espindola, et al., Asymptomatic transmission and the dynam- ics of Zika infection, Sci. Rep., 7 (2017), 5829.
  • 30. A. Wiratsudakul, P. Suparit and C. Modchang, Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches, Peer. J., 6 (2018), e4526.
  • 31. E. Massad, S. H. Tan, K. Khan, et al., Estimated Zika virus importations to Europe by travellers from Brazil, Glob. Health. Action, 9 (2016), 31669.
  • 32. D. Balcan, B. Gonalves, H. Hu, et al., Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model, J. Comput. Sci., 1 (2010), 132–145.
  • 33. D. Balcan, V. Colizza, B. Goncalves, et al., Multiscale mobility networks and the spatial spreading of infectious diseases, Proc. Natl. Acad. Sci. USA, 106 (2009), 21484–21489.
  • 34. D. Brockmann and D. Helbing, The hidden geometry of complex , network-driven contagion phe- nomena, Science, 342 (2013), 1337–1342.
  • 35. M. R. T. Nunes, G. Palacios, N. R. Faria, et al., Air travel is associated with intracontinental spread of dengue virus serotypes 13 in Brazil, PLoS Negl. Trop. Dis., 8 (2014), e2769.
  • 36. K. Nah, K. Mizumoto, Y. Miyamatsu, et al., Estimating risks of importation and local transmission of Zika virus infection, Peer. J., 4 (2016), e1904.
  • 37. J. Patokallio, Openflights data, 2016. Available from: http://openflights.org/.
  • 38. Central Intelligence Agency, The World Factbook 2017. Available from: https://www.cia. gov/library/publications/the-world-factbook/rankorder/2004rank.html.
  • 39. World Health Organization, Global Health Observatory data repository 2017. Avail- able from: http://data.un.org/Data.aspx?q=Health+expenditure&d=WHO&f=MEASURE_ CODE%3aWHS7_108.
  • 40. S. Otsuki and H. Nishiura, Reduced Risk of Importing Ebola Virus Disease because of Travel Restrictions in 2014: A Retrospective Epidemiological Modeling Study, PLoS One, 11 (2016), e0163418.
  • 41. K. Nah, S. Otsuki, G. Chowell, et al., Predicting the international spread of Middle East respiratory syndrome (MERS), BMC Infect. Dis., 16 (2016), 356.
  • 42. M. N. Burattini, F. A. B. Coutinho, L. F. Lopez, et al., Potential exposure to Zika virus for foreign tourists during the 2016 Carnival and Olympic Games in Rio de Janeiro, Brazil, Epidemiol. Infect., 144 (2016), 1904–1906.

 

This article has been cited by

  • 1. Wei Gao, Behzad Ghanbari, Haci Mehmet Baskonus, New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative, Chaos, Solitons & Fractals, 2019, 128, 34, 10.1016/j.chaos.2019.07.037

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved