
Mathematical Biosciences and Engineering, 2019, 16(4): 23532370. doi: 10.3934/mbe.2019118
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The minimal model of Hahn for the Calvin cycle
Institut für Mathematik, Johannes GutenbergUniversität, Staudingerweg 9, 55128 Mainz, Germany
Received: , Accepted: , Published:
Special Issues: Mathematical analysis of reaction networks: theoretical advances and applications
References
1. A. Arnold and Z. Nikoloski, A quantitative comparison of CalvinBenson cycle models, Trends in Plant Sci., 16 (2011), 676–683.
2. A. Arnold and Z. Nikoloski, In search for an accurate model of the photosynthetic carbon metabolism, Math. Comp. in Sim., 96 (2014), 171–194.
3. J. Jablonsky, H. Bauwe and O.Wolkenhauer, Modelling the CalvinBenson cycle, BMC Syst. Biol. 5 (2011), 185.
4. A. D. Rendall, A Calvin bestiary, in Patterns of Dynamics (eds. P. Gurevich, J. Hell, B. Sanstede and A. Scheel), Springer, Berlin, 2017.
5. B. D. Hahn, Photosynthesis and photorespiration: modelling the essentials, J. Theor. Biol. 151 (1991), 123–139.
6. H.W. Heldt and B. Piechulla, Plant biochemistry, Academic Press, New York, 2011.
7. C. Kuehn, Multiple scale dynamics, Springer, Berlin, 2015.
8. L. Perko, Differential Equations and Dynamical Systems, Springer, Berlin, 2001.
9. F. Dumortier, J. Llibre and J. C. Artés, Qualitative theory of planar differential systems, Springer, Berlin, 2006.
10. J. Carr, Applications of centre manifold theory, Springer, Berlin, 1981.
11. A. D. Rendall and J. J. L. Velázquez, Dynamical properties of models for the Calvin cycle, J. Dyn. Diff. Eq., 26 (2014), 673–705.
12. J. D. Murray, Mathematical Biology, Springer, Berlin, 1989.
13. B. D. Hahn, A mathematical model of leaf carbon metabolism, Ann. Botany 54 (1984), 325–339.
14. B. D. Hahn, A mathematical model of photorespiration and photosynthesis, Ann. Botany 60 (1987), 157–189.
15. M. Banaji and C. Pantea, The inheritance of nondegenerate multistationarity in chemical reaction networks, SIAM J. Appl. Math., 78 (2018), 1105–1130.
16. E. Feliu and C. Wiuf, Simplifying biochemical models with intermediate species, J. R. Soc. Interface 10 (2013), 20132484.
17. S. Grimbs, A. Arnold, A. Koseska, et al., Spatiotemporal dynamics of the Calvin cycle: multistationarity and symmetry breaking instabilities, Biosystems 103 (2011), 212–223.
18. G. Petterson and U. RydePetterson, A mathematical model of the Calvin photosynthesis cycle. Eur. J. Biochem., 175 (1988), 661672.
19. D. Möhring and A. D. Rendall, Overload breakdown in models of photosynthesis, Dyn. Sys. 32 (2017), 234–248.
20. M. G. Poolman, Computer modelling applied to the Calvin cycle, PhD Thesis, Oxford Brookes University, 1999.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)