Citation: David F. Anderson, Tung D. Nguyen. Results on stochastic reaction networks with non-mass action kinetics[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2118-2140. doi: 10.3934/mbe.2019103
[1] | D. F. Anderson, G. Craciun and T. G. Kurtz, Product-form stationary distributions for deficiency zero chemical reaction networks, B. Math. Biol., 72 (2010), 1947–1970. |
[2] | D. F. Anderson, G. Craciun, M. Gopalkrishnan, et al., Lyapunov functions, stationary distributions, and non-equilibrium potential for reaction networks, B. Math. Biol., 77 (2015), 1744–1767. |
[3] | D. Cappelletti and C.Wiuf, Product-form poisson-like distributions and complex balanced reaction systems, SIAM . Appl. Math., 76 (2016), 411–432. |
[4] | D. F. Anderson and S. L. Cotter, Product form stationary distributions for deficiency zero networks with non-mass action kinetics, B. Math. Biol., 78(2016), 2390–2407. |
[5] | D. F. Anderson, D. Cappelletti, M. Koyama, et al., Non-explosivity of stochastically modeled reaction networks that are complex balanced, B. Math. Biol., 80 (2018), 2561–2579. |
[6] | A. Agazzi, A. Dembo and J. P. Eckmann, Large deviations theory for Markov jump models of chemical reaction networks, Ann. Appl. Probab., 28 (2018), 1821–1855. |
[7] | H. Ge and H. Qian, Mathematical formalism of nonequilibrium thermodynamics for nonlinear chemical reaction systems with general rate law, J. Stat. Phys., 166 (2017), 190–209. |
[8] | T. G. Kurtz, Representations of markov processes as multiparameter time changes, Ann. Prob., 8 (1980), 682–715. |
[9] | C. Chan, X. Liu, L. Wang, et al., Protein scaffolds can enhance the bistability of multisite phosphorylation systems, PLoS Comput. Biol., 8 (2012), 1–9. |
[10] | G. Gnacadja, Univalent positive polynomial maps and the equilibrium state of chemical networks of reversible binding reactions, Adv. Appl. Math., 43 (2009), 394–414. |
[11] | H. W. Kang, L. Zheng and H. G. Othmer, A new method for choosing the computational cell in stochastic reaction–diffusion systems, J. Mathe. Biol., 65 (2012), 1017–1099. |
[12] | E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading of t-cell receptor signal transduction, IEEE Trans. Auto. Cont., 46 (2001), 1028– 1047. |
[13] | F. J. M. Horn and R. Jackson, General mass action kinetics, Arch. Rat. Mech. Anal, 47 (1972), 81–116. |
[14] | M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors - I. the deficiency zero and deficiency one theorems, review article 25, Chem. Eng. Sci., 42 (1987), 2229–2268. |
[15] | M. Feinberg, Lectures on chemical reaction networks, Delivered at the Mathematics Research Center, Univ. Wisc.-Madison, (1979). Available from http://www.che.eng.ohio-state. edu/~feinberg/LecturesOnReactionNetworks. |
[16] | J. Gunawardena, Chemical reaction network theory for in-silico biologists. Available from http: //vcp.med.harvard.edu/papers/crnt.pdf, (2003). |
[17] | F. P. Kelly, Reversibility and stochastic networks, J. Wiley, 1979. |
[18] | P. Whittle, Systems in stochastic equilibrium, J. Wiley, 1986. |
[19] | H. G. Othmer, Y. Kim and M. A. Stolarska, The role of the microenvironment in tumor growth and invasion, Prog. Biophys. Mol. Bio., 106 (2011), 353–379. |
[20] | D. F. Anderson and T. G. Kurtz, Continuous time Markov chain models for chemical reaction networks, in Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology, Springer, (2011), 3–42. |
[21] | D. F. Anderson and T. G. Kurtz, Stochastic analysis of biochemical systems, Springer, 2015. |
[22] | T. G. Kurtz, Strong approximation theorems for density dependent Markov chains, Stoch. Proc. Appl., 6 (1977/78), 223–240. |
[23] | R. B. Paris and A. D. Wood, Asymptotics of high order differential equations, Pitman Research Notes in Mathematics Series, 1986. |
[24] | G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, preprint, arXiv:1501.02860. |
[25] | F. J. M. Horn, Necessary and sufficient conditions for complex balancing in chemical kinetics, Arch. Rat. Mech. Anal, 49 (1972), 172–186. |
[26] | V. Kazeev, M. Khammash, M. Nip, et al., Direct solution of the chemical master equation using quantized tensor trains, PLoS Comput. Biol., 10 (2014) ,e1003359. Available from: https:// doi.org/10.1371/journal.pcbi.1003359. |