
Mathematical Biosciences and Engineering, 2019, 16(3): 14711488. doi: 10.3934/mbe.2019071
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
On discrete time BevertonHolt population model with fuzzy environment
1 School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, China
2 Library, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, China
Received: , Accepted: , Published:
References
1. M. Kot, Elements of Mathematical Ecology, Cambridge University Press, New York, 2001.
2. R. Beverton and S. Holt, On the dynamics of exploited fish populations, Fish. Invest. Ser 2, 19 (1957), 1–533.
3. M. D. L. Sen, The generalized BevertonHolt equation and the control of populations, Appl. Math. Model., 32 (2008), 2312–2328.
4. M. D. L. Sen and S. AlonsoQuesada, Control issues for the BevertonHolt equation in ecology by locally monitoring the environment carrying capacity: Nonadaptive and adaptive cases, Appl. Math. Comput., 215 (2009), 2616–2633.
5. M. Bohner and S. Streipert, Optimal harvesting policy for the BevertonHolt model, Math. Biosci. Eng., 13 (2016), 673–695.
6. L. A. Zadeh, Fuzzy set, Inf. Control, 8 (1965), 338–353.
7. E. Y. Deeba, A. De Korvin and E. L. Koh, A fuzzy difference equation with an application, J. Differ. Equ. Appl., 2 (1996), 365–374.
8. E. Y. Deeba and A. De Korvin, Analysis by fuzzy difference equations of a model of CO_{2} level in the blood, Appl. Math. Lett., 12 (1999), 33–40.
9. G. Papaschinopoulos and B. K. Papadopoulos, On the fuzzy difference equation $x_{n+1} = A + B/x_n$, Soft Comput., 6 (2002), 456461.
10. G. Papaschinopoulos and B. K. Papadopoulos, On the fuzzy difference equation $x_{n+1}=A+x_n/x_{nm}$, Fuzzy Set. Syst., 129 (2002), 7381.
11. G. Stefanidou, G. Papaschinopoulos and C. J. Schinas, On an exponentialtype fuzzy difference equation, Adv. Differ. Equ., 2010 (2010), 1–19.
12. Q. Din, Asymptotic behavior of a second order fuzzy rational difference equations, J. Discrete Math., 2015 (2015), 1–7.
13. R. Memarbashi and A. Ghasemabadi, Fuzzy difference equations of volterra type, Int. J. Nonlinear Anal. Appl., 4 (2013), 74–78.
14. K. A. Chrysafis, B. K. Papadopoulos and G. papaschinopoulos, On the fuzzy difference equations of finance, Fuzzy Set. Syst., 159 (2008), 3259–3270.
15. Q. Zhang, L. Yang and D. Liao, Behaviour of solutions of to a fuzzy nonlinear difference equation, Iranian J. Fuzzy Syst., 9 (2012), 1–12.
16. Q. Zhang, L. Yang and D. Liao, On first order fuzzy riccati difference equation, Inform. Sciences, 270 (2014), 226–236.
17. Q. Zhang, J. Liu and Z. Luo, Dynamical behaviour of a thirdorder rational fuzzy difference equation, Adv. Differ. Equ., 2015 (2015).
18. S. P. Mondal, D. K. Vishwakarma and A. K. Saha, Solution of second order linear fuzzy difference equation by Lagranges multiplier method, J. Soft Comput. Appl., 1 (2016), 11–27.
19. Z. Alijani and F. Tchier, On the fuzzy difference equation of higher order, J. Comput. Complex. Appl., 3 (2017), 44–49.
20. A. Khastan, Fuzzy Logistic difference equation, Iranian J. Fuzzy Syst., (2017), In Press.
21. C. Wang, X. Su, P. Liu, et al., On the dynamics of a fiveorder fuzzy difference equation, J. Nonlinear Sci. Appl., 10 (2017), 3303–3319.
22. A. Khastan and Z. Alijani, On the new solutions to the fuzzy difference equation $x_{n+1} = A + B/x_n$, Fuzzy Set. Syst., (2018), In Press.
23. A. Khastan, New solutions for first order linear fuzzy difference equations, J. Comput. Appl. Math., 312 (2017), 156–166.
24. D. Dubois and H. Prade, Possibility theory: an approach to computerized processing of uncertainty, Plenum Publishing Corporation, New York, 1998.
25. L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Set. Sys., 161 (2010), 1564–1584.
26. V. L. Kocic and G. Ladas, Global behavior of nonlinear difference equations of higher order with application, Kluwer Academic Publishers, Dordrecht, 1993.
27. M. R. S. Kulenonvic and G. Ladas, Dynamics of second order rational difference equations with open problems and conjectures, Chapaman & Hall/CRC, Boca Raton, 2002.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)