Citation: Md Masud Rana, Chandani Dissanayake, Lourdes Juan, Kevin R. Long, Angela Peace. Mechanistically derived spatially heterogeneous producer-grazer model subject to stoichiometric constraints[J]. Mathematical Biosciences and Engineering, 2019, 16(1): 222-233. doi: 10.3934/mbe.2019012
[1] | Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu . Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences and Engineering, 2015, 12(3): 503-523. doi: 10.3934/mbe.2015.12.503 |
[2] | Wei Feng, Michael T. Cowen, Xin Lu . Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences and Engineering, 2014, 11(4): 823-839. doi: 10.3934/mbe.2014.11.823 |
[3] | Anthony Tongen, María Zubillaga, Jorge E. Rabinovich . A two-sex matrix population model to represent harem structure. Mathematical Biosciences and Engineering, 2016, 13(5): 1077-1092. doi: 10.3934/mbe.2016031 |
[4] | J. M. Cushing, Simon Maccracken Stump . Darwinian dynamics of a juvenile-adult model. Mathematical Biosciences and Engineering, 2013, 10(4): 1017-1044. doi: 10.3934/mbe.2013.10.1017 |
[5] | Zheng Liu, Lingling Lang, Lingling Li, Yuanjun Zhao, Lihua Shi . Evolutionary game analysis on the recycling strategy of household medical device enterprises under government dynamic rewards and punishments. Mathematical Biosciences and Engineering, 2021, 18(5): 6434-6451. doi: 10.3934/mbe.2021320 |
[6] | Lina Hao, Meng Fan, Xin Wang . Effects of nutrient enrichment on coevolution of a stoichiometric producer-grazer system. Mathematical Biosciences and Engineering, 2014, 11(4): 841-875. doi: 10.3934/mbe.2014.11.841 |
[7] | Xiaochun Chen, Jie Zhao, Yingying Ma, Bo Lv, Xuanjin Du . Tripartite evolutionary game study on coordination information security in prescription circulation. Mathematical Biosciences and Engineering, 2023, 20(12): 21120-21146. doi: 10.3934/mbe.2023934 |
[8] | Rinaldo M. Colombo, Mauro Garavello . Stability and optimization in structured population models on graphs. Mathematical Biosciences and Engineering, 2015, 12(2): 311-335. doi: 10.3934/mbe.2015.12.311 |
[9] | Bo Lan, Lei Zhuang, Qin Zhou . An evolutionary game analysis of digital currency innovation and regulatory coordination. Mathematical Biosciences and Engineering, 2023, 20(5): 9018-9040. doi: 10.3934/mbe.2023396 |
[10] | Andrzej Swierniak, Michal Krzeslak . Application of evolutionary games to modeling carcinogenesis. Mathematical Biosciences and Engineering, 2013, 10(3): 873-911. doi: 10.3934/mbe.2013.10.873 |
[1] | T. Andersen (1997) Pelagic nutrient cycles; herbivores as sources and sinks. Springer, Berlin. |
[2] | T. Andersen , J. J. Elser and D. O. Hessen, Stoichiometry and population dynamics. Ecol. Lett., 7 (2004), 884–900. |
[3] | S. A. Berger, S. Diehl, T. J. Kunz, D. Albrecht, A. M. Oucible and S. Ritzer, Light supply, plankton biomass, and seston stoichiometry in a gradient of lake mixing depths. Limnol. Oceanogr., 51 (2006), 1898–1905. |
[4] | E. L. Cussler (1996) Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press. |
[5] |
S. Diehl, S. Berger and R. W¨ohrl, Flexible nutrient stoichiometry mediates environmental influences on phytoplankton and its resources. Ecology , 86 (2005), 2931–2945. |
[6] | C. Dissanayake (2016) Finite element simulation of space/time behavior in a two species ecological stoichiometric model. PhD thesis, Texas Tech University. |
[7] | C. Dissanayake, L. Juan, K. R. Long, A. Peace and M. M. Rana (under review 2018) Genotypic selection in spatially heterogeneous producer-grazer systems subject to stoichiometric constraints. Bulletin of Mathematical Biology. |
[8] | J. Huisman, J. Sharples, J. M. Stroom, P. M. Visser, W. E. A. Kardinaal, J. M. Verspagen and Sommeijer B, Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology, 85 (2004), 2960–2970. |
[9] | J. T. Kirk (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press. |
[10] | D. Kuefler, T. Avgar and J. M. Fryxell, Rotifer population spread in relation to food, density and predation risk in an experimental system. J. Anim. Ecol., 81 (2012), 323–329. |
[11] | D. Kuefler, T. Avgar and J. M. Fryxell, Density-and resource-dependent movement characteristics in a rotifer. Funct. Ecol., 27 (2013), 323–328. |
[12] | I. Loladze, Y. Kuang and J. J. Elser, Stoichiometry in producer–grazer systems: linking energy flow with element cycling. Bull. Math. Biol., 62 (2000), 1137–1162. |
[13] | A. Lorke, Investigation of turbulent mixing in shallow lakes using temperature microstructure measurements. Aquat. Sci.-Research Across Boundaries, 60 (1998), 210–219. |
[14] | A. Peace, H.Wang and Y. Kuang, Dynamics of a producer–grazer model incorporating the effects of excess food nutrient content on grazer's growth. Bull. Math. Biol., 76 (2014), 2175–2197. |
[15] | F. H. Shu (1991) The Physics of Astrophysics, Vol. 2: Radiation. Univ. Sci. Books, Mill Valley CA. |
[16] | R. W. Sterner and J. J. Elser (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press. |
[17] | H. Wang, H. L. Smith, Y. Kuang and J. J. Elser, Dynamics of stoichiometric bacteria-algae interactions in the epilimnion. SIAM J. Appl. Math., 68 (2007), 503–522. |
[18] | H. Wang, Y. Kuang and I. Loladze, Dynamics of a mechanistically derived stoichiometric producer-grazer model. J. Biol. Dynam., 2 (2008), 286–296. |
1. | Jining Wang, Tingqiang Chen, Junyong Wang, Research on Cooperation Strategy of Enterprises’ Quality and Safety in Food Supply Chain, 2015, 2015, 1026-0226, 1, 10.1155/2015/301245 | |
2. | Piotr Gwiazda, Anna Marciniak-Czochra, Horst R. Thieme, Measures under the flat norm as ordered normed vector space, 2018, 22, 1385-1292, 105, 10.1007/s11117-017-0503-z | |
3. | Anuraag Bukkuri, Joel S. Brown, Integrating eco‐evolutionary dynamics into matrix population models for structured populations: Discrete and continuous frameworks, 2023, 2041-210X, 10.1111/2041-210X.14111 |