Citation: Jacek Banasiak, Aleksandra Falkiewicz. A singular limit for an age structured mutation problem[J]. Mathematical Biosciences and Engineering, 2017, 14(1): 17-30. doi: 10.3934/mbe.2017002
[1] | Nara Bobko, Jorge P. Zubelli . A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences and Engineering, 2015, 12(1): 1-21. doi: 10.3934/mbe.2015.12.1 |
[2] | Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz . A singularly perturbed SIS model with age structure. Mathematical Biosciences and Engineering, 2013, 10(3): 499-521. doi: 10.3934/mbe.2013.10.499 |
[3] | Shaoli Wang, Jianhong Wu, Libin Rong . A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044 |
[4] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[5] | Asma Alshehri, John Ford, Rachel Leander . The impact of maturation time distributions on the structure and growth of cellular populations. Mathematical Biosciences and Engineering, 2020, 17(2): 1855-1888. doi: 10.3934/mbe.2020098 |
[6] | Jordi Ripoll, Jordi Font . Numerical approach to an age-structured Lotka-Volterra model. Mathematical Biosciences and Engineering, 2023, 20(9): 15603-15622. doi: 10.3934/mbe.2023696 |
[7] | Juan Pablo Aparicio, Carlos Castillo-Chávez . Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences and Engineering, 2009, 6(2): 209-237. doi: 10.3934/mbe.2009.6.209 |
[8] | Jacques Demongeot, Pierre Magal . Population dynamics model for aging. Mathematical Biosciences and Engineering, 2023, 20(11): 19636-19660. doi: 10.3934/mbe.2023870 |
[9] | Diène Ngom, A. Iggidir, Aboudramane Guiro, Abderrahim Ouahbi . An observer for a nonlinear age-structured model of a harvested fish population. Mathematical Biosciences and Engineering, 2008, 5(2): 337-354. doi: 10.3934/mbe.2008.5.337 |
[10] | Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073 |
An important problem related to mutations is to understand how a particular trait spreads in a population. One of the simplest ways to model this is to describe the change in the sizes of subpopulations having this trait. It can be done by the standard balancing argument: the rate of change of the number of, say, cells with a particular genome
u′0=a0u0+d1u1,u′1=a1u1+d2u2,u′n=anun+bn−1un−1+dn+1un+1,n≥2, | (1) |
where
It is clear that, in principle, jumps between arbitrary populations can occur and thus there is no need to restrict our attention to tridiagonal matrices. We can consider a general model
u′=Lu, | (2) |
where
At the same time it is recognized that the cells have their own vital dynamics that should be taken into account if a more detailed model of the evolution of the whole population is to be built. Also, the mutations can be divided into various groups. Here, we distinguish two types of mutations: those that are due to the replication errors and occur when the cell divides, and others, due to external factors (mutagenes), that may happen at any moment of the cell's life cycle. This results in a model of the form
∂tu(x,t)+V∂xu(x,t)=−Mu(x,t)+Ru(x,t),x∈(0,1),t≥0,u(x,0)=˚u(x),u(0,t)=Ku(1,t), | (3) |
where we consider a population of cells described by their density
The main objective of this paper is to determine under what conditions can solutions to (3) be approximated by the solutions of (2). There could be several ways to approach this problem and the answer may be not unique. Our approach is to assume that the maturation velocities are very large or, in other words, the cells divide many times in the reference unit of time, while the deaths and mutations due to external causes remain at fixed, independent of the maturation velocity, levels. To balance the fact that there is a large number of cell divisions in the unit time, we assume that the daughter cells have a tendency to be of the same genotype as the mother (see e.g. [18,p. 19]), which is represented by splitting the boundary operator as
∂tuϵ(x,t)+ϵ−1V∂xuϵ(x,t)=−Muϵ(x,t)+Ruϵ(x,t),x∈(0,1),t≥0,uϵ(x,0)=˚u(x),uϵ(0,t)=(I+ϵB)uϵ(1,t), | (4) |
where
∂tuϵ(x,t)+ϵ−1V∂xuϵ(x,t)=0,x∈(0,1),t≥0,uϵ(x,0)=˚u(x),uϵ(0,t)=(I+ϵB)uϵ(1,t). | (5) |
We will be working in
0<vmin≤vj≤vmax<+∞,j∈N. | (6) |
If
The paper is organized as follows. In Section 2 we show the convergence of the resolvents of (4) as
Lemma 2.1. The operators
Proof. We begin with
In the general case, we rewrite the main formulae from the proof of [5,Theorem 3.1], specified for (5). First, we solve
λϵuϵ,j+vj∂xuϵ,j=ϵfj,j∈N,x∈(0,1), | (7) |
with
uϵ(x)=Eϵλ(x)cϵ+ϵV−11∫0Eϵλ(x−s)f(s)ds, | (8) |
where
(I−(I+ϵB)Eϵλ(1))cϵ=ϵ(I+ϵB)V−11∫0Eϵλ(1−s)f(s)ds. | (9) |
If
Since
\sum\limits_{j\in \mathsf{N}} c_{\epsilon,j} = \sum\limits_{j\in \mathsf{N}} (1+\epsilon \mathsf{b}_j)e^{-\frac{\epsilon \lambda }{v_j}}c_{\epsilon,j} + \epsilon \sum\limits_{j\in \mathsf{N}} \frac{1+\epsilon \mathsf{b}_j}{v_j} \int\limits_0^1 {e^{\frac{\epsilon \lambda }{v_j}(s-1)}} f_j(s)ds, \label{res2} | (10) |
where
\|\mathbf{u}_\epsilon\|_v = \label{vest} \frac{1}{\lambda} \sum\limits_{j\in \mathsf{N}}\! c_{\epsilon,j}e^{-\frac{\epsilon \lambda }{v_j}}\mathsf{b}_j + \frac{\epsilon}{\lambda} \sum\limits_{j\in \mathsf{N}}\frac{\mathsf{b}_j}{v_j}\!\! \int\limits_0^1 \!\! e^{\frac{\epsilon \lambda }{v_j}(s-1)}f_j(s)ds + \frac{1}{\lambda} \|\mathbf{f}\|_v, | (11) |
see [5,Theorem 3.1] for details. The case when
Using, for instance, the proof given in [3,Theorem 3.39], a densely defined resolvent positive operator
\|\lambda^n R(\lambda, S)^n x\| \leq c^{-1}\|R(0,S)\|\|x\|= c^{-1}\|R(\omega, T)\|\|x\|, \lambda>0. \label{abr} | (12) |
Hence, we have to show that
\begin{array}{l} \|(\mathbf{I} - (\mathbf{I}+\epsilon \mathbf{B})\mathbf{E}_{\epsilon \lambda }(1))^{-1}\| &\leq& \sum\limits_{n=0}^\infty (1+\epsilon \|\mathbf{B}\|)^n e^{-\frac{\epsilon \lambda n}{v_{\max}}}\leq \sum\limits_{n=0}^\infty e^{\epsilon \|\mathbf{B}\|n } e^{-\frac{\epsilon \lambda n}{v_{\max}}}\\&=& \frac{1}{1-e^{\epsilon(\|\mathbf{B}\| - v_{\max}^{-1}\lambda)}}, \end{array} | (13) |
provided
Next, using l'Hôspital's rule, we find
\lim\limits_{\epsilon \to 0^+} \frac{\epsilon}{1-e^{\epsilon(\|\mathbf{B}\| - v_{\max}^{-1}\lambda)}} = \frac{1}{v_{\max}^{-1}\lambda-\|\mathbf{B}\|} |
and hence
\|\mathbf{c}_\epsilon\| = \epsilon \left\|(\mathbf{I} - (\mathbf{I}+\epsilon \mathbf{B})\mathbf{E}_{\epsilon \lambda }(1))^{-1}(\mathbf{I}+\epsilon \mathbf{B})\mathbf{V}^{-1} \int\limits_0^1 \mathbf{E}_{\epsilon \lambda }(1-s)\mathbf{f}(s)ds\right\|\leq L_2\|\mathbf{f}\| \label{cep} | (14) |
for some constant
\|R(\omega, \mathbf{A}_{0,\epsilon})\|\leq {L}. \label{abr0} | (15) |
Then, using (11), the equivalence of the norms
\|R(\lambda, \mathbf{A}_{0,\epsilon})^n\| \leq \frac{M}{(\lambda-\omega)^n} \label{abr1} | (16) |
for some constant
\|e^{t\mathbf{A}_{0,\epsilon}}\| \leq Me^{\omega t} |
with constants
The result for
Now let us pass to the question of the convergence of the resolvents. We introduce the projection operator
\mathbf{P} f = \int\limits_0^1 \mathbf{f}(s)ds = (\int\limits_0^1 f_1(s)ds, \ldots, \int\limits_0^1 f_n(s)ds,\ldots). \label{mbP} | (17) |
Theorem 2.2. If
\lim\limits_{\epsilon \to 0^+}R(\lambda, \mathbf{A}_\epsilon) = R(\lambda, \mathbf{V}\mathbf{B} +\mathbf{Q})\mathbf{P}. \label{limae} | (18) |
in the uniform operator topology.
Proof. By the previous proof, the resolvent of
[R(\lambda,\mathbf{A}_{0,\epsilon})\mathbf{f}](x) = \mathbf{E}_{\epsilon \lambda }(x)\mathbf{c}_\epsilon +\epsilon \mathbf{V}^{-1} \int\limits_0^1 \mathbf{E}_{\epsilon \lambda }(x-s)\mathbf{f}(s)ds, \lambda>v_{\max}\|\mathbf{B}\|, \label{res1a} | (19) |
where
\mathbf{c}_\epsilon = \epsilon(\mathbf{I} - (\mathbf{I}+\epsilon \mathbf{B})\mathbf{E}_{\epsilon \lambda }(1))^{-1}(\mathbf{I}+\epsilon \mathbf{B})\mathbf{V}^{-1} \int\limits_0^1 \mathbf{E}_{\epsilon \lambda }(1-s)\mathbf{f}(s)ds. \label{resk1} | (20) |
We observe that for any
\mathbf{E}_{\epsilon \lambda }(\alpha) = \mathbf{I}+\epsilon \mathbf{R}_0(\alpha) = \mathbf{I} -\epsilon \lambda \alpha\mathbf{V}^{-1} + \epsilon^2\mathbf{R}_1(\alpha), \label{E} | (21) |
where, using the integral form of the reminders, we find
\|\mathbf{R}_0(\alpha)\|\leq \frac{\lambda\alpha}{v_{\max}} \|\mathbf{R}_1(\alpha)\|\leq\frac{\lambda^2\alpha^2}{2v^2_{\max}}. |
First we see that
\begin{array}{l} \left\|\epsilon \mathbf{V}^{-1} \int\limits_0^1 \mathbf{E}_{\epsilon \lambda }(x-s)\mathbf{f}(s)ds\right\| &\leq& \epsilon \|\mathbf{V}^{-1}\| \int\limits_0^1 \left\| \int\limits_0^1 \left(e^{-\frac{\lambda\epsilon(x-s)}{v_j}} f_j(s)\right)_{j\in \sf N}ds\right\|dx \\ \leq \epsilon \|\mathbf{V}^{-1}\| \int\limits_0^1 \int\limits_0^1 \| \mathbf{f}(s)\|ds dx&\leq& \epsilon \|\mathbf{V}^{-1}\| \|\mathbf{f}\| \end{array} |
and hence the last term in (19) converges to zero as
Next, using the second equality in (21) with
\begin{array}{l} \epsilon(\mathbf{I} - (\mathbf{I}+\epsilon \mathbf{B})\mathbf{E}_{\epsilon \lambda }(1))^{-1} &=& \epsilon(\mathbf{I} - (\mathbf{I}+\epsilon \mathbf{B})(\mathbf{I} -\epsilon \lambda \mathbf{V}^{-1} + \epsilon^2\mathbf{R}_1))^{-1} \\ &=& (\lambda \mathbf{V}^{-1}-\mathbf{B} -\epsilon \mathbf{R}_1 +\epsilon \lambda \mathbf{B}\mathbf{V}^{-1} - \epsilon^2\mathbf{B}\mathbf{R}_1)^{-1}. \end{array} |
Since
\lim\limits_{\epsilon \to 0^+}\epsilon(\mathbf{I} - (\mathbf{I}+\epsilon \mathbf{B})\mathbf{E}_{\epsilon \lambda }(1))^{-1} = (\lambda -\mathbf{V} \mathbf{B})^{-1}\mathbf{V}. \label{limres} | (22) |
Next, using the first equation in (21) we see that
\|\!\!\int\limits_0^1 \!\!\mathbf{E}_{\epsilon \lambda }(1-s)\mathbf{f}(s)ds - \int\limits_0^1 \!\mathbf{f}(s)ds\| \leq \epsilon \|\mathbf{f}\|\!\int\limits_0^1 \! \|R_0(1-s)\|ds \leq \epsilon \frac{\lambda\|\mathbf{f}\|}{v_{\max}} \int\limits_0^1 \!(1-s)ds = \epsilon \frac{\lambda\|\mathbf{f}\|}{2v_{\max}}. |
Thus
\lim\limits_{\epsilon \to 0^+}\mathbf{c}_\epsilon = (\lambda -\mathbf{V}\mathbf{B})^{-1}\int\limits_0^1 \mathbf{f}(s)ds. \label{clim} | (23) |
Finally, treating
\|\mathbf{E}_{\epsilon \lambda }(x)\mathbf{c} - \mathbf{c}\| = \int\limits_0^1 \|(\mathbf{E}_{\epsilon \lambda }(x)-\mathbf{I})\mathbf{c} \|dx \leq \epsilon \|\mathbf{c}\|\int\limits_0^1 \|\mathbf{R}_0(x)\| dx \leq \epsilon \frac{\lambda}{2v_{\max}}\|\mathbf{c}\|. |
This actually shows that the operators converge in the uniform operator norm. Combining all estimates and using the projection operator
\lim\limits_{\epsilon \to 0^+} R(\lambda,\mathbf{A}_{0,\epsilon})= (\lambda -\mathbf{V}\mathbf{B})^{-1}\mathbf{P}. \label{a0conv} | (24) |
From (16) and (15) we have, in particular,
\| R(\lambda, \mathbf{A}_{0,\epsilon})\| \leq \frac{\|R(\omega, \mathbf{A}_{0,\epsilon} )\|}{c(\lambda-\omega)}\leq \frac{L}{\omega(\lambda-\omega)}. \label{abr2} | (25) |
for some fixed
\|(\mathbf{Q} R(\lambda,\mathbf{A}_{0,\epsilon}))^n\|\leq \frac{\|\mathbf{Q}\|^nL^n}{\omega^n(\lambda-\omega)^n}. |
Hence, for
R(\lambda, \mathbf{A}_\epsilon) = R(\lambda, \mathbf{A}_{0,\epsilon})\sum\limits_{n=1}^\infty (\mathbf{Q} R(\lambda,\mathbf{A}_{0,\epsilon}))^n \label{resae} | (26) |
and the series converges uniformly in
\lim\limits_{\epsilon \to 0^+}R(\lambda, \mathbf{A}_\epsilon) = R(\lambda, \mathbf{V}\mathbf{B})\mathbf{P}\sum\limits_{n=1}^\infty (\mathbf{Q} R(\lambda,\mathbf{V}\mathbf{B})\mathbf{P})^n = R(\lambda, \mathbf{V}\mathbf{B} +\mathbf{Q})\mathbf{P}. |
Corollary 1. If
\lim\limits_{\epsilon \to 0^+} e^{t\mathbf{A}_\epsilon} \mathring{\mathbf{u}} = e^{t(\mathbf{V}\mathbf{B} +\mathbf{Q})}\mathring{\mathbf{u}} \label{semconv} | (27) |
almost uniformly (that is, uniformly on compact subsets) on
Proof. According to the version of the Trotter-Kato approximation theorem given in [9,Theorem 8.4.3], if the resolvents of the generators of an equibounded family of semigroups (strongly) converge to an operator
This result is not very satisfactory. In asymptotic theory, [6,7,10], the convergence obtained in Corollary 1 is referred to as the regular convergence. However, typically it is possible to extend the convergence to initial data from the whole space, albeit at the cost of losing the convergence at t = 0; or adding necessary initial or boundary layers. The following example shows that this is impossible to achieve in our context. Consider the scalar problem
\begin{array}{l} {\partial _t}{u_\epsilon}\left( {x,t} \right) + {\epsilon^{ - 1}}{\partial _x}{u_\epsilon}\left( {x,t} \right) &=&0, x\in(0,1), t\geq 0,\\ u_\epsilon(x,0) &=& \mathring{u}(x),\\ u_\epsilon(0,t) &=& (1 +\epsilon b) u_\epsilon(1,t), \end{array} |
where
u_\epsilon(x,t) = \left\{\begin{array}{lcl}(1+\epsilon b)^{\lfloor\frac{t}e\rfloor+1}\mathring u\left(x+\lfloor \frac{t}e\rfloor+1-\frac{t}e\right)&\mathrm{for}& 0\leq x \leq \frac{t}e -\lfloor \frac{t}e\rfloor,\\ (1+\epsilon b)^{\lfloor \frac{t}e\rfloor}\mathring u\left(x+\lfloor \frac{t}e\rfloor-\frac{t}e\right)&\mathrm{for}& \frac{t}e -\lfloor \frac{t}e\rfloor\leq x \leq 1. \end{array}\right. \label{usol} | (28) |
Then
\lim\limits_{\epsilon \to 0^+} (1+\epsilon b)^{n} = \lim\limits_{\epsilon \to 0^+} \left((1+\epsilon b)^{\frac{1}{\epsilon b}}\right)^{\lfloor t/\epsilon \rfloor \epsilon b} = e^{bt}, |
where we used
\mathop {\lim }\limits_{\epsilon \to {0^ + }} {\rm{ }}\left\lfloor {\frac{t}{\epsilon}} \right\rfloor \epsilon = t. | (29) |
The above is obvious for
\frac{n}{n+1}\leq \left\lfloor \frac{t}e\right\rfloor\frac{\epsilon}{t}\leq 1 |
and
At the same time, let us consider
u_{\frac{1}{k}}(x,1) = \left(1+\frac{1}{k} b\right)^{k}\mathring u(x), 0\leq x\leq 1, |
while for
u_{\frac{2}{2k+1}}(x,1)= \left\{\begin{array}{lcl}(1+\frac{2}{2k+1} b)^{k+1}\mathring u\left(x+\frac{1}{2}\right)&\mathrm{for}& 0\leq x <\frac{1}{2},\\ \left(1+\frac{2}{2k+1}b\right)^{k}\mathring u\left(x-\frac{1}{2}\right)&\mathrm{for}& \frac{1}{2} \leq x \leq 1. \end{array}\right. |
From this it follows that
\lim\limits_{k \to \infty} e^{\mathbf{A}_{0,\frac{1}{k}}}\mathring u = e^b \mathring u |
and
\lim\limits_{k \to \infty} e^{\mathbf{A}_{0,\frac{2}{2k+1}}}\mathring u = e^b \mathring v |
in
\lim\limits_{\epsilon \to 0^+} e^{t\mathbf{A}_{0,\epsilon}}\mathring u = e^{bt} \mathring u, |
provided
As demonstrated in Section 3, we should not expect the convergence of
\lim\limits_{\epsilon \to 0^+} \mathbf{P}e^{t\mathbf{A}_\epsilon}\mathring{\mathbf{u} } = e^{t\mathbf{H}}\mathbf{P}\mathring{\mathbf{u}} \label{quest} | (30) |
hold for some some matrix
In this section we shall focus on problem (5) and adopt the assumption from [17] that the speeds
\exists_{v\in \mathbb{R}}\forall_{j \in \mathsf{N} } \; \frac{v}{v_j} = l_j \in\mathbb{N}. \label{LD} | (31) |
In our interpretation of the model, this corresponds to the situation that the maturation times
Condition (31) allows the problem to be transformed into an analogous problem with unit velocities. Such a transformation appeared in [17] (and in a more detailed version in [20]) in the context of transport on networks and thus, even though (5) is not necessarily related to the network transport, see [4], its interpretation as a network problem allows for a better description of the construction.
Using the graph theoretical terminology, we identify the
To proceed with the construction, first we re-scale time as
\mathcal{T} + \epsilon \mathcal{C} = \left(\begin{array}{cccccc}\mathcal{T}_1&0&0&\ldots&0&\ldots\\ \vdots&\ddots&\vdots&\vdots&\vdots&\vdots\\ 0&\ldots&\mathcal{T}_j&\ldots&0&\ldots\\ \vdots&\vdots&\vdots&\ddots&\vdots&\ldots\end{array}\right) + \epsilon \left(\begin{array}{cccc}\mathcal{C}_{11}&\ldots&\mathcal{C}_{1j}&\ldots\\ \vdots&\vdots&\ddots&\vdots\\ \mathcal{C}_{j1}&\ldots&\mathcal{C}_{jj}&\ldots\\ \vdots&\vdots&\vdots&\vdots\end{array}\right). |
Here,
\mathcal{T}_j = \left(\begin{array}{ccccc}0&0&\ldots&0&1\\ 1&0&\ldots&0&0\\ \vdots&\vdots&\vdots&\vdots&0\\ 0&0&\ldots&1&0\end{array}\right), \mathcal{C}_{ij} = \left(\begin{array}{ccccc}0&0&\ldots&0&b_{ij}\\ 0&0&\ldots&0&0\\ \vdots&\vdots&\vdots&\vdots&0\\ 0&0&\ldots&0&0\end{array}\right). |
Summarizing, we converted (5) into
\begin{array}{l} \partial_t \boldsymbol \upsilon_\epsilon(x,t) + \epsilon^{-1}v\partial_x\mathcal{v}_\epsilon(x,t) &=&0, x\in(0,1), t\geq 0,\\ \mathcal{v}_\epsilon(x,0) &=& \mathring{\mathcal{v}}(x),\\ \mathcal{v}_\epsilon(0,t) &=& (\mathcal{T} +\epsilon \mathcal{C})\mathcal{v}_\epsilon(1,t). \end{array} | (32) |
Since (32) has the same structure as (5), there is a semigroup
To be more precise, the above construction defines an operator
\phi_{j,s} (y)= f_j|_{\left[\frac{s-1}{l_j},\frac{s}{l_j}\right)}\left(\frac{s+y-1}{l_j}\right). \label{Uu} | (33) |
It is easy to see that the inverse
f_j(x) = \phi_{j,s}(l_jx +1-s), x \in \left[\frac{s-1}{l_j}, \frac{s}{l_j}\right), \;s \in\{1,\ldots,l_j\},\;j \in \mathsf{N}. \label{uU} | (34) |
By direct calculation, see also [20],
e^{t\mathbf{A}_{0,\epsilon}} \mathbf{f} = \mathbb{S}^{-1} e^{tv\mathcal{A}_{0,\epsilon}} \mathbb{S} \mathbf{f}, \mathbf{f} \in \mathbf{X}. \label{sim} | (35) |
The motivation behind (35), see [13] and [20,Proposition 4.5.1], is the fact that for any
(e^{tv \mathcal{A}_{0,\epsilon}}\varphi )(x) = (\mathcal{T}+\epsilon \mathcal{C})^n \varphi \left(n+x-\frac{vt}e\right), n\in\mathbb{N}, 0\leq n+x-\frac{vt}e<1, \label{TB} | (36) |
with
Let
(\mathcal{T} +\epsilon \mathcal{C})^l = \mathcal{I}+ \epsilon \widetilde{\mathcal{C}} +\epsilon^2\mathcal{D}, \label{kexp} | (37) |
where
\widetilde{\mathcal{C}} = \sum\limits_{i=0}^l \mathcal{T}^{l-1-i}\mathcal{C}\mathcal{T}^{i}. |
For any
The next result is not strictly necessary but it relates operators on
Proposition 1. For
\left(\lambda v -l^{-1}\widetilde{\mathcal{C}}\right)^{-1}\Pi \mathbf{P}_\mathsf{M}\varphi = \mathbb{S}(\lambda - \mathbf{V}\mathbf{B})^{-1}\mathbf{P}_\mathsf{N}\mathbb{S}^{-1}\varphi , \label{reseq1} | (38) |
where
\Pi= l^{-1}\sum\limits_{i=0}^{l-1} \mathcal{T}^i. \label{Pi} | (39) |
Proof. The estimate (13) carries over to this case by (35), which also gives
R(\lambda , v \mathcal{A}_{0,\epsilon}) \varphi = \mathbb{S} R(\lambda,\mathbf{A}_{0,\epsilon}) \mathbb{S}^{-1} \varphi , \varphi \in \mathcal{X}, \lambda>v_{\max}\|\mathbf{B}\|, \label{sim1} | (40) |
and, by Theorem 2.2 and the continuity of
\lim\limits_{\epsilon \to 0^+}R(\lambda, v\mathcal{A}_{0,\epsilon}) \varphi = \mathbb{S}(\lambda - \mathbf{V}\mathbf{B})^{-1}\mathbf{P}_\mathsf{N}\mathbb{S}^{-1}\varphi . \label{ressim} | (41) |
To find the limit resolvent in terms of
\mathbf{c}_\epsilon = \epsilon(\mathcal{I} - (\mathcal{T}+\epsilon \mathcal{C})\mathcal{E}_{\epsilon \lambda }(1))^{-1}(\mathcal{T}+\epsilon \mathcal{C}) \int\limits_0^1 \mathcal{E}_{\epsilon \lambda }(1-s)\mathbf{f}(s)ds, \label{resk1'} | (42) |
where here
\begin{array}{l} (\mathcal{I} - (\mathcal{T}+\epsilon \mathcal{C})\mathcal{E}_{\epsilon \lambda }(1))^{-1} &=& \sum\limits_{k=0}^\infty e^{-\epsilon \lambda v^{-1} k}(\mathcal{T}+\epsilon \mathcal{C})^k \\ &=&\sum\limits_{i=0}^{l-1} (\mathcal{T}+\epsilon \mathcal{C})^i\left( \sum\limits_{j=0}^\infty (\mathcal{T}+\epsilon \mathcal{C})^{lj}e^{-\epsilon \lambda v^{-1} (lj+i)}\right)\\ &=& \sum\limits_{j=0}^\infty (\mathcal{I}+\epsilon \widetilde{\mathcal{C}} +\epsilon^2\mathcal{D})^j\mathcal{E}_{\epsilon l\lambda}(j)\left( \sum\limits_{i=0}^{l-1} (\mathcal{T}+\epsilon \mathcal{C})^i e^{-\epsilon \lambda v^{-1} i}\right). \end{array} |
Hence, as in (22) with
\lim\limits_{\epsilon \to 0^+} \epsilon(\mathcal{I} - (\mathcal{T}+\epsilon \mathcal{C})\mathcal{E}_{\epsilon \lambda }(1))^{-1} = \left(\lambda -vl^{-1}\widetilde {\mathcal{C}}\right)^{-1}\left(l^{-1}\sum\limits_{i=0}^{l-1} \mathcal{T}^i\right)=\left(\lambda -vl^{-1}\widetilde {\mathcal{C}}\right)^{-1}\Pi. |
Since
\Pi_j = l^{-1}\sum\limits_{j=0}^{l-1} \mathcal{T}_j^i = l_j^{-1}\sum\limits_{j=0}^{l_j-1} \mathcal{T}_j^i |
amounts to
\Pi_j\mathcal{v}_j = \frac{1}{l_j}\left(\sum\limits_{r=1}^{l_j}\upsilon_{j,r},\ldots,\sum\limits_{r=1}^{l_j}\upsilon_{j,r} \right). \label{PiS} | (43) |
Then the operator
Now, proceeding as in the proof of Theorem 2.2, we find
\begin{array}{l} \lim\limits_{\epsilon \to 0^+} R(\lambda, v\mathcal{A}_{0,\epsilon})\varphi = \left(\lambda -vl^{-1}\widetilde {\mathcal{C}}\right)^{-1}\left(l^{-1}\sum\limits_{i=0}^{l-1} \mathcal{T}^i\right)\int\limits_0^1 \varphi (s)ds\\ \;\;\;\;\;\;\;\;\;\;\;= \left(\lambda -vl^{-1}\widetilde {\mathcal{C}}\right)^{-1}\Pi \mathbf{P}_\mathsf{M}\varphi , \end{array} |
where we used
\left(\sum\limits_{i=0}^{l-1} \mathcal{T}^i\right)\mathcal{T} = \sum\limits_{i=0}^{l-1} \mathcal{T}^i,\label{per} | (44) |
by periodicity. This, combined with (40), ends the proof.
Using (43) and (34), we see that
\mathbf{P}_\mathsf{N}\mathbb{S}^{-1}\varphi = \int\limits_0^1 [\mathbb{S}^{-1}\varphi ](x)dx = \left(l_j^{-1} \sum\limits_{s=1}^{l_j}\int\limits_0^1 \phi_{j,s}(y)dy\right)_{j\in \mathsf{N}} = \mathbb{S}^{-1}\Pi\mathbf{P}_{\mathsf{M}}\varphi .\label{bof'} | (45) |
Theorem 4.1. For any
\lim\limits_{\epsilon \to 0^+} \mathbf{P}_{\mathsf{N}}e^{t \mathbf{A}_{0,\epsilon}}\mathbf{f} = e^{t\mathbf{V}\mathbf{B}}\mathbf{P}_\mathsf{N}\mathbf{f}. \label{main} | (46) |
Proof. Let us write
\mathbf{f} = \mathbf{P}_{\mathsf{N}}\mathbf{f} + \mathbf{f} - \mathbf{P}_{\mathsf{N}}\mathbf{f} = \mathbf{P}_{\mathsf{N}}\mathbf{f} +\mathsf{w}, |
where
By Corollary 1 and the continuity of
\lim\limits_{\epsilon \to 0^+}\mathbf{P}_\mathsf{N} [e^{t\mathbf{A}_{0,\epsilon}}\mathbf{P}_\mathsf{N} \mathbf{f}] = \mathbf{P}_\mathsf{N} e^{t \mathbf{V}\mathbf{B}}\mathbf{P}_\mathsf{N}\mathbf{f} = e^{t \mathbf{V}\mathbf{B}}\mathbf{P}_\mathsf{N}\mathbf{f}. |
Hence, by linearity, it suffices to show that
\lim\limits_{\epsilon \to 0^+}\mathbf{P}_\mathsf{N} [e^{t\mathbf{A}_{0,\epsilon}}\mathsf{w}] = 0, \label{w0} | (47) |
provided
\mathbf{P}_\mathsf{N} [e^{t\mathbf{A}_{0,\epsilon}}\mathbf{f}] = \mathbf{P}_\mathsf{N} \mathbb{S}^{-1} [e^{tv\mathcal{A}_{0,\epsilon}}\mathbb{S}\mathbf{f}] = \mathbb{S}^{-1}\Pi\mathbf{P}_\mathsf{M} [e^{tv\mathcal{A}_{0,\epsilon}}\mathbb{S}\mathbf{f}], \mathbf{f} \in \mathbf{X}. \label{go} | (48) |
Further, for
\begin{array}{l} \mathbf{P}_\mathsf{M} e^{tv \mathcal{A}_{0,\epsilon} }\varphi \label{mcP}\\ \phantom{}=(\mathcal{T}+\epsilon \mathcal{C})^{n}\!\!\!\!\!\!\! \int\limits_{0}^{\frac{vt}{\epsilon}-n+1} \!\!\!\!\!\varphi \left(n+x-\frac{vt}{\epsilon}\right)dx+ (\mathcal{T}+\epsilon \mathcal{C})^{n-1}\!\!\!\!\!\!\! \int\limits_{\frac{vt}{\epsilon}-n+1}^{1}\!\!\!\!\!\varphi \left(n-1+x-\frac{vt}{\epsilon}\right)dx, \end{array} | (49) |
hence, by (44),
\Pi\mathbf{P}_\mathsf{M} e^{tv \mathcal{A}_{0,\epsilon} }\varphi =\Pi(\mathcal{T}+\epsilon \mathcal{C})^{n-1}\!\!\int\limits_0^1 \!\!\varphi (z)dz+\epsilon \Pi\mathcal{C}(\mathcal{T}+\epsilon \mathcal{C})^{n-1}\!\!\!\int\limits_{n-\frac{vt}{\epsilon}}^{1} \!\!\!\varphi (z)dz. |
Let us denote
\begin{array}{l} \Pi(\mathcal{T}+\epsilon \mathcal{C})^{n-1}&=&\frac{1}{l} \sum\limits_{j=0}^{l-1}\mathcal{T}^j(\mathcal{T}+\epsilon \mathcal{C})^{n-1} \label{hm}\\ &=& \frac{1}{l} \sum\limits_{j=0}^{l-1}\left((\mathcal{T}+\epsilon \mathcal{C})^{n-1+j} -\epsilon \mathcal{R}_j(\mathcal{T}+\epsilon \mathcal{C})^{n-1}\right)\\ &=&\frac{1}{l}\sum\limits_{j=0}^{l-1}\left((\mathcal{T}+\epsilon \mathcal{C})^{n-1}(\mathcal{T}^j +\epsilon \mathcal{R}_j) -\epsilon \mathcal{R}_j(\mathcal{T}+\epsilon \mathcal{C})^{n-1}\right) \\ &=& (\mathcal{T}+\epsilon \mathcal{C})^{n-1}\Pi + \epsilon \left((\mathcal{T}+\epsilon \mathcal{C})^{n-1}\mathcal{R} -\mathcal{R}(\mathcal{T}+\epsilon \mathcal{C})^{n-1}\right), \end{array} | (50) |
where
\begin{array}{l} \lim\limits_{\epsilon \to 0}\Pi\mathbf{P}_\mathsf{M} e^{tv \mathcal{A}_{0,\epsilon} }\mathbb{S}\mathsf{w} &=\lim\limits_{\epsilon \to 0}\epsilon \Pi \mathcal{C}(\mathcal{T}+\epsilon \mathcal{C})^{n-1}\!\!\! \int\limits_{n-\frac{vt}{\epsilon}}^{1}\!\!\!\mathbb{S}\mathsf{w}(z)dz\\ &\phantom{xx} + \lim\limits_{\epsilon \to 0}\epsilon \left((\mathcal{T}+\epsilon \mathcal{C})^{n-1}\mathcal{R} -\mathcal{R}(\mathcal{T}+\epsilon \mathcal{C})^{n-1}\right)\mathbf{P}_\mathsf{M}\mathbb{S}\mathsf{w} =0, \end{array} |
which proves (47).
The authors are indebted to Professor Adam Bobrowski for taking interest in the paper, suggesting corrections to its early version and many stimulating discussions.
[1] | [ H. Amann and J. Escher, Analysis II Birkhäuser, Basel 2008. |
[2] | [ W. Arendt, Resolvent positive operators, Proc. Lond. Math. Soc., 54 (1987): 321-349. |
[3] | [ J. Banasiak,L. Arlotti, null, Positive Perturbations of Semigroups with Applications, Springer Verlag, London, 2006. |
[4] | [ J. Banasiak and A. Falkiewicz, Some transport and diffusion processes on networks and their graph realizability Appl. Math. Lett. ,45 (2015), 25-30 |
[5] | [ J. Banasiak, A. Falkiewicz and P. Namayanja, Semigroup approach to diffusion and transport problems on networks Semigroup Forum. [DOI 10.1007/s00233-015-9730-4] |
[6] | [ J. Banasiak,A. Falkiewicz,P. Namayanja, Asymptotic state lumping in transport and diffusion problems on networks with applications to population problems, Math. Models Methods Appl. Sci., 26 (2016): 215-247. |
[7] | [ J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology Birkhäuser/Springer, Cham, 2014. |
[8] | [ J. Banasiak,M. Moszyński, Dynamics of birth-and-death processes with proliferation -stability and chaos, Discrete Contin. Dyn. Syst., 29 (2011): 67-79. |
[9] | [ A. Bobrowski, null, Functional Analysis for Probability and Stochastic Processes, Cambridge University Press, Cambridge, 2005. |
[10] | [ A. Bobrowski, null, Convergence of One-parameter Operator Semigroups. In Models of Mathematical Biology and Elsewhere, Cambridge University Press, Cambridge, 2016. |
[11] | [ A. Bobrowski, On Hille-type approximation of degenerate semigroups of operators, Linear Algebra and its Applications, 511 (2016): 31-53. |
[12] | [ A. Bobrowski,M. Kimmel, Asymptotic behaviour of an operator exponential related to branching random walk models of DNA repeats, J. Biol. Systems, 7 (1999): 33-43. |
[13] | [ B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008): 341-356. |
[14] | [ K. J. Engel,R. Nagel, null, One-Parameter Semigroups for Linear Evolution Equations, Springer Verlag, New York, 1999. |
[15] | [ M. Kimmel,D. N. Stivers, Time-continuous branching walk models of unstable gene amplification, Bull. Math. Biol., 50 (1994): 337-357. |
[16] | [ M. Kimmel,A. Świerniak,A. Polański, Infinite-dimensional model of evolution of drug resistance of cancer cells, J. Math. Systems Estimation Control, 8 (1998): 1-16. |
[17] | [ M. Kramar,E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005): 139-162. |
[18] | [ J. L. Lebowitz,S. I. Rubinov, A theory for the age and generation time distribution of a microbial population, J. Theor. Biol., 1 (1974): 17-36. |
[19] | [ C. D. Meyer, Matrix Analysis and Applied Linear Algebra SIAM, Philadelphia, 2000. |
[20] | [ P. Namayanja, Transport on Network Structures Ph. D thesis, UKZN, 2012. |
[21] | [ M. Rotenberg, Transport theory for growing cell population, J. Theor. Biol., 103 (1983): 181-199. |
[22] | [ A. Świerniak, A. Polański and M. Kimmel, Control problems arising in chemotherapy under evolving drug resistance, Preprints of the 13th World Congress of IFAC 1996, Volume B, 411-416. |
[23] | [ H. T. K. Tse, W. McConnell Weaver and D. Di Carlo, Increased asymmetric and multi-daughter cell division in mechanically confined microenvironments PLoS ONE, 7 (2012), e38986. |
1. | Marjeta Kramar Fijavž, Aleksandra Puchalska, Semigroups for dynamical processes on metric graphs, 2020, 378, 1364-503X, 20190619, 10.1098/rsta.2019.0619 | |
2. | Jacek Banasiak, Aleksandra Puchalska, 2019, Chapter 14, 978-3-030-12231-7, 439, 10.1007/978-3-030-12232-4_14 | |
3. | Adam Bobrowski, A note on generalized Euler's formula, 2019, 473, 0022247X, 1155, 10.1016/j.jmaa.2019.01.012 | |
4. | Jacek Banasiak, Aleksandra Falkiewicz, Milaine S. S. Tchamga, 2018, Chapter 13, 978-3-319-71485-1, 249, 10.1007/978-3-319-71486-8_13 | |
5. | Christian Budde, Marjeta Kramar Fijavž, Bi-Continuous semigroups for flows on infinite networks, 2021, 16, 1556-1801, 553, 10.3934/nhm.2021017 | |
6. | Christian Budde, Semigroups for flows on limits of graphs, 2021, 58, 20843828, 7, 10.4467/20843828AM.21.001.14982 |