Mathematical Biosciences and Engineering, 2016, 13(6): 1185-1206. doi: 10.3934/mbe.2016038.

Primary: 92C50; Secondary: 37N25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases

1. Department of Biology, The College of New Jersey, Ewing, NJ
2. Integrated Mathematical Oncology Department and Center of Excellence in Cancer Imaging and Technology, H. Lee Mott Cancer Center and Research Institute, Department of Oncologic Sciences, University of South Florida, Tampa, FL
3. Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ

While chemoresistance in primary tumors is well-studied, much less is known about the influence of systemic chemotherapy on the development of drug resistance at metastatic sites. In this work, we use a hybrid spatial model of tumor response to a DNA damaging drug to study how the development of chemoresistance in micrometastases depends on the drug dosing schedule. We separately consider cell populations that harbor pre-existing resistance to the drug, and those that acquire resistance during the course of treatment. For each of these independent scenarios, we consider one hypothetical cell line that is responsive to metronomic chemotherapy, and another that with high probability cannot be eradicated by a metronomic protocol. Motivated by experimental work on ovarian cancer xenografts, we consider all possible combinations of a one week treatment protocol, repeated for three weeks, and constrained by the total weekly drug dose. Simulations reveal a small number of fractionated-dose protocols that are at least as effective as metronomic therapy in eradicating micrometastases with acquired resistance (weak or strong), while also being at least as effective on those that harbor weakly pre-existing resistant cells. Given the responsiveness of very different theoretical cell lines to these few fractionated-dose protocols, these may represent more effective ways to schedule chemotherapy with the goal of limiting metastatic tumor progression.
  Figure/Table
  Supplementary
  Article Metrics

Keywords chemoresistance; metronomic chemotherapy; fractionated therapy; Maximum tolerated dose; micrometastases; hybrid model.

Citation: Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz. Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences and Engineering, 2016, 13(6): 1185-1206. doi: 10.3934/mbe.2016038

References

  • 1. Mol. Biotechnol., 46 (2010), 308-316.
  • 2. Journal of Theoretical Biology, 335 (2013), 235-244.
  • 3. eLife, 2 (2013), e00747.
  • 4. Curr. Breast Cancer Rep., 6 (2014), 110-120.
  • 5. Lung Cancer, 54 (2006), 353-357.
  • 6. J. Cellular Physiol., 151 (1992), 386-394.
  • 7. Bull. Math. Biol., 48 (1986), 279-292.
  • 8. Evolution, Medicine, and Public Health, 2015 (2015), 76-87.
  • 9. Mol. Pharm., 8 (2011), 2094-2100.
  • 10. Mol. Cancer Ther., 10 (2011), 1289-1299.
  • 11. Neoplasia, 13 (2011), 40-48.
  • 12. Evol. Appl., 6 (2013), 54-69.
  • 13. PLoS Comput. Biol., 5 (2009), e1000557, 17pp.
  • 14. J. Theor. Biol., 263 (2010), 179-188.
  • 15. J. Theor. Biol., 355 (2014), 10-20.
  • 16. J. Cellular Physiol., 124 (1985), 516-524.
  • 17. PLoS Comput. Biol., 11 (2015), e1004142.
  • 18. Cancer Res., 69 (2009), 4894-4903.
  • 19. in Applications of Dynamical Systems in Biology and Medicine (eds. T. Jackson and A. Radunskaya), vol. 158 of The IMA Volumes in Mathematics and its Applications, Springer-Verlag, 2015, 1-34.
  • 20. Bull. Math. Biol., 76 (2014), 627-653.
  • 21. IEEE Trans. Biomed. Eng., 61 (2013), 415-425.
  • 22. The Journal of Clinical Investigations, 105 (2000), 1045-1047.
  • 23. Math. Biosci., 164 (2000), 17-38.
  • 24. Nat. Rev. Cancer, 5 (2005), 516-525.
  • 25. Proc. Natl. Acad. Sci., 102 (2005), 9714-9719.
  • 26. Theor. Popul. Biol., 72 (2007), 523-538.
  • 27. Drug Resist. Update, 15 (2012), 90-97.
  • 28. Cancer Res., 73 (2013), 7168-7175.
  • 29. Mathematical Biosciences and Engineering, 12 (2015), 1257-1275.
  • 30. Discret. Contin. Dyn-B, 6 (2006), 129-150.
  • 31. Math. Biosci. Eng., 10 (2013), 803-819.
  • 32. Bull. Math. Biol., 77 (2015), 1-22.
  • 33. ESAIM: Math. Model. Num. Anal., 47 (2013), 377-399.
  • 34. Front. Oncol., 4 (2014), article 76.
  • 35. Cell Prolif., 34 (2001), 253-266.
  • 36. Acta Biother., 63 (2015), 113-127.
  • 37. Journal of Cancer Therapeutics & Research, 1 (2012), 1-32.
  • 38. Mol. Pharm., 8 (2011), 2069-2079.
  • 39. Current Oncology, 16 (2012), 7-15.
  • 40. Phys. Biol., 9 (2012), 065007.
  • 41. J. Clinical Oncology, 23 (2005), 939-952.
  • 42. Br. J. Cancer, 112 (2015), 1725-1732.
  • 43. arXiv:1407.0865.
  • 44. Molecular Oncology, 7 (2013), 283-296.
  • 45. Biol. Direct., 5 (2010), p25.
  • 46. J. Natl. Cancer Inst., 99 (2007), 1441-1454.
  • 47. Assay Drug Dev Technol., 3 (2005), 525-531.
  • 48. International Journal of Cancer, 133 (2013), 2464-2472.
  • 49. Nature, 525 (2015), 261-264.
  • 50. Proc. Natl. Acad. Sci., 110 (2013), 16103-16108.
  • 51. Front. Pharmacol., 4 (2013), e28.<br/

 

This article has been cited by

  • 1. Angela M Jarrett, David A Hormuth, Stephanie L Barnes, Xinzeng Feng, Wei Huang, Thomas E Yankeelov, Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results, Physics in Medicine & Biology, 2018, 63, 10, 105015, 10.1088/1361-6560/aac040
  • 2. Urszula Ledzewicz, Heinz Schättler, Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models?, Cancer Letters, 2017, 401, 74, 10.1016/j.canlet.2017.03.021
  • 3. Aleksandra Karolak, Saharsh Agrawal, Samantha Lee, Katarzyna A. Rejniak, , Reference Module in Biomedical Sciences, 2018, 10.1016/B978-0-12-801238-3.64117-X
  • 4. Baohua Fan, Cunfang Shen, Milu Wu, Junhui Zhao, Qijing Guo, Yushuang Luo, miR-17–92 cluster is connected with disease progression and oxaliplatin/capecitabine chemotherapy efficacy in advanced gastric cancer patients, Medicine, 2018, 97, 35, e12007, 10.1097/MD.0000000000012007
  • 5. Hang Xie, Yang Jiao, Qihui Fan, Miaomiao Hai, Jiaen Yang, Zhijian Hu, Yue Yang, Jianwei Shuai, Guo Chen, Ruchuan Liu, Liyu Liu, Nils Cordes, Modeling three-dimensional invasive solid tumor growth in heterogeneous microenvironment under chemotherapy, PLOS ONE, 2018, 13, 10, e0206292, 10.1371/journal.pone.0206292
  • 6. Li You, Maximilian Knobloch, Teresa Lopez, Vanessa Peschen, Sidney Radcliffe, Praveen Koshy Sam, Frank Thuijsman, Kateřina Staňková, Joel Brown, Including Blood Vasculature into a Game-Theoretic Model of Cancer Dynamics, Games, 2019, 10, 1, 13, 10.3390/g10010013
  • 7. James M. Greene, Jana L. Gevertz, Eduardo D. Sontag, Mathematical Approach to Differentiate Spontaneous and Induced Evolution to Drug Resistance During Cancer Treatment, JCO Clinical Cancer Informatics, 2019, 3, 1, 10.1200/CCI.18.00087

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Ami B. Shah, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved