Mathematical Biosciences and Engineering, 2016, 13(5): 1043-1058. doi: 10.3934/mbe.2016029.

Primary: 92B05; Secondary: 92C50.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Development of a computational model of glucose toxicity in the progression of diabetes mellitus

1. Department of Chemistry, University of Puerto Rico at Cayey, Cayey, PR 00736-9997
2. Department of Natural Sciences, University of Puerto Rico at Cayey, Cayey, PR 00736-9997
3. Department of Mathematics - Physics, University of Puerto Rico at Cayey, Cayey, PR 00736-9997

Diabetes mellitus is a disease characterized by a range of metabolic complications involving an individual's blood glucose levels, and its main regulator, insulin. These complications can vary largely from person to person depending on their current biophysical state. Biomedical research day-by-day makes strides to impact the lives of patients of a variety of diseases, including diabetes. One large stride that is being made is the generation of techniques to assist physicians to ``personalize medicine''.From available physiological data, biological understanding of the system, and dimensional analysis, a differential equation-based mathematical model was built in a sequential matter, to be able to elucidate clearly how each parameter correlates to the patient's current physiological state. We developed a simple mathematical model that accurately simulates the dynamics between glucose, insulin, and pancreatic $\beta$-cells throughout disease progression with constraints to maintain biological relevance. The current framework is clearly capable of tracking the patient's current progress through the disease, dependent on factors such as latent insulin resistance or an attrite $\beta$-cell population. Further interests would be to develop tools that allow the direct and feasible testing of how effective a given plan of treatment would be at returning the patient to a desirable biophysical state.
  Figure/Table
  Supplementary
  Article Metrics

Keywords $\beta$-cells; glucose toxicity; mathematical modeling; diabetes mellitus; computational model; dynamical systems; mathematical biology.

Citation: Danilo T. Pérez-Rivera, Verónica L. Torres-Torres, Abraham E. Torres-Colón, Mayteé Cruz-Aponte. Development of a computational model of glucose toxicity in the progression of diabetes mellitus. Mathematical Biosciences and Engineering, 2016, 13(5): 1043-1058. doi: 10.3934/mbe.2016029

References

  • 1. Accessed: 2014-04-03.
  • 2. Metabolism, 61 (2012), 221-228.
  • 3. 5th edition, 2002.
  • 4. in Biochemistry, 5th edition, Section 21.5, W H Freeman, New York, 2002.
  • 5. Journal of Clinical Investigation, 68 (1981), 1456-1467.
  • 6. Journal of Clinical Investigation, 108 (2001), 655-659.
  • 7. Biochem. J, 15 (1998), 19-31.
  • 8. Physiological reviews, 85 (2005), 1255-1270.
  • 9. Diabetes, 52 (2003), 102-110.
  • 10. http://www.mayoclinic.org/diseases-conditions/type-2-diabetes/expert-answers/hyperinsulinemia/faq-20058488, Accessed: 2014-04-03.
  • 11. American Journal of Physiology-Renal Physiology, 296 (2009), F298-F305.
  • 12. Endocrinology, 133 (1993), 208-214.
  • 13. Journal of Clinical Investigation, 50 (1971), 1702-1711.
  • 14. Endocrine reviews, 19 (1998), 491-503.
  • 15. Journal of Biological Chemistry, 272 (1997), 30261-30269.
  • 16. Pediatric Clinics of North America, 52 (2005), 1553-1578.
  • 17. Journal of Clinical Investigation, 81 (1988), 872-878.
  • 18. Diabetes & metabolism, 34 (2008), S56-S64.
  • 19. Applied numerical mathematics, 56 (2006), 559-573.
  • 20. Diabetes, 48 (1999), 524-530.
  • 21. Diabetes care, 28 (2005), S37.
  • 22. http://www.healthline.com/health/diabetes/insulin-and-glucagon#Overview1, Accessed: 2014-04-03.
  • 23. McGraw Hill Professional, 2012.
  • 24. The American Journal of Medicine, 79 (1985), 1-7.
  • 25. Diabetologia, 38 (1995), 1295-1299.
  • 26. The American journal of medicine, 119 (2006), S10-S16.
  • 27. Endocrinology, 143 (2002), 339-342.
  • 28. Journal of Clinical Investigation, 81 (1988), 435-441.
  • 29. Role of Insulin Resistance in Human Disease, 1 (1992), 91-97.
  • 30. Pearson Higher Education AU, 2011.
  • 31. Diabetes, 52 (2003), 581-587.
  • 32. Diabetes, 53 (2004), S119-S124.
  • 33. Diabetes, 43 (1994), 1085-1089.
  • 34. http://healthyeating.sfgate.com/expected-blood-glucose-after-highcarb-meal-3529.html, Accessed: 2014-04-03.
  • 35. http://www.phlaunt.com/diabetes/14046621.php, Accessed: 2014-04-03.
  • 36. Endocrinology, 127 (1990), 1580-1589.
  • 37. http://www.diabetesselfmanagement.com/managing-diabetes/blood-glucose-management/strike-the-spike-ii/, Accessed: 2014-04-03.
  • 38. Molecular Systems Biology, 4 (2008), p214.
  • 39. http://www.medicinenet.com/hyperglycemia/article.htm, Accessed: 2014-04-03.
  • 40. Diabetes care, 23 (2000), 295-301.
  • 41. Journal of the Intensive Care Society, 10 (2009), 216-217.
  • 42. Journal of Theoretical Biology, 206 (2000), 605-619.
  • 43. Mathematical biosciences, 235 (2012), 8-18.
  • 44. Diabetes, 53 (2004), S16-S21.
  • 45. Journal of Biological Chemistry, 279 (2004), 12126-12134.
  • 46. Journal of Clinical Investigation, 93 (1994), 870-876.

 

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Danilo T. Pérez-Rivera, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved