Mathematical Biosciences and Engineering, 2016, 13(3): 569-578. doi: 10.3934/mbe.2016008.

Primary: 37C10, 65L05; Secondary: 92C20.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A model based rule for selecting spiking thresholds in neuron models

1. Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100

Determining excitability thresholds in neuronal models is of high interest due to its applicability in separating spiking from non-spiking phases of neuronal membrane potential processes. However, excitability thresholds are known to depend on various auxiliary variables, including any conductance or gating variables. Such dependences pose as a double-edged sword; they are natural consequences of the complexity of the model, but proves difficult to apply in practice, since gating variables are rarely measured.
   In this paper a technique for finding excitability thresholds, based on the local behaviour of the flow in dynamical systems, is presented. The technique incorporates the dynamics of the auxiliary variables, yet only produces thresholds for the membrane potential. The method is applied to several classical neuron models and the threshold's dependence upon external parameters is studied, along with a general evaluation of the technique.
  Figure/Table
  Supplementary
  Article Metrics

Keywords spiking; Hodgkin-Huxley; neuron modelling; excitability; threshold selection.; Dynamical systems

Citation: Frederik Riis Mikkelsen. A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences and Engineering, 2016, 13(3): 569-578. doi: 10.3934/mbe.2016008

References

  • 1. Lect. Notes Phys., 368 (1990), p5.
  • 2. J. Physiol., 213 (1971), 31-53.
  • 3. Computational Neuroscience, MIT Press, Cambridge, MA, 2001.
  • 4. J. Math. Biol., 67 (2012), 989-1017.
  • 5. J. Math. Biol., 67 (2013), 239-259.
  • 6. Biophys. J., 1 (1961), 445-466.
  • 7. Int. J. Bifurcat. Chaos, 16 (2006), 887-910.
  • 8. J. Physiol., 117 (1952), 500-544.
  • 9. The MIT Press, 2007.
  • 10. Biol. Cybern., 66 (1992), p381.
  • 11. Biofizika, 18 (1973), p506.
  • 12. Biol. Cybern., 67 (1992), 461-468.
  • 13. Biophys. J., 35 (1981), 193-213.
  • 14. Proc. IRE, 50 (1962), 2061-2070.
  • 15. J. Phys. Soc. Jpn., 41 (1976), 1815-1816.
  • 16. Phil. Trans. R Soc. Lond. A, 337 (1991), 275-289.
  • 17. $3^{rd}$ edition, Texts in Applied Mathematics, 7, Springer, 2000.
  • 18. PLoS Comput. Biol., 6 (2010), e1000850, 16 pp.
  • 19. IEEE T. Bio. Med. Eng., 51 (2004), 1665-1672.
  • 20. Phys. Rev. E, 90 (2014), 022701.
  • 21. in Nonautonomous Dynamical Systems in the Life Sciences, Lecture Nones in Math., 2102, Springer, 2013, 89-132.

 

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Frederik Riis Mikkelsen, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved