$R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission

  • Received: 01 January 2013 Accepted: 29 June 2018 Published: 01 March 2014
  • MSC : Primary: 92D30, 35Q92; Secondary: 45P05.

  • In this paper, we study an age-structured SIS epidemic model with periodicity and vertical transmission. We show that the spectral radius of the Fréchet derivative of a nonlinear integral operator plays the role of a threshold value for the global behavior of the model, that is, if the value is less than unity, then the disease-free steady state of the model is globally asymptotically stable, while if the value is greater than unity, then the model has a unique globally asymptotically stable endemic (nontrivial) periodic solution. We also show that the value can coincide with the well-know epidemiological threshold value, the basic reproduction number $\mathcal{R}_0$.

    Citation: Toshikazu Kuniya, Mimmo Iannelli. $R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission[J]. Mathematical Biosciences and Engineering, 2014, 11(4): 929-945. doi: 10.3934/mbe.2014.11.929

    Related Papers:

    [1] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [2] Simone De Reggi, Francesca Scarabel, Rossana Vermiglio . Approximating reproduction numbers: a general numerical method for age-structured models. Mathematical Biosciences and Engineering, 2024, 21(4): 5360-5393. doi: 10.3934/mbe.2024236
    [3] Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva . Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060
    [4] Joan Ponce, Horst R. Thieme . Can infectious diseases eradicate host species? The effect of infection-age structure. Mathematical Biosciences and Engineering, 2023, 20(10): 18717-18760. doi: 10.3934/mbe.2023830
    [5] Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu . A final size relation for epidemic models. Mathematical Biosciences and Engineering, 2007, 4(2): 159-175. doi: 10.3934/mbe.2007.4.159
    [6] Christine K. Yang, Fred Brauer . Calculation of $R_0$ for age-of-infection models. Mathematical Biosciences and Engineering, 2008, 5(3): 585-599. doi: 10.3934/mbe.2008.5.585
    [7] Zhen Jin, Guiquan Sun, Huaiping Zhu . Epidemic models for complex networks with demographics. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295
    [8] Jianquan Li, Zhien Ma, Fred Brauer . Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences and Engineering, 2007, 4(4): 699-710. doi: 10.3934/mbe.2007.4.699
    [9] Lin Zhao, Haifeng Huo . Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission. Mathematical Biosciences and Engineering, 2021, 18(5): 6012-6033. doi: 10.3934/mbe.2021301
    [10] Tailei Zhang, Hui Li, Na Xie, Wenhui Fu, Kai Wang, Xiongjie Ding . Mathematical analysis and simulation of a Hepatitis B model with time delay: A case study for Xinjiang, China. Mathematical Biosciences and Engineering, 2020, 17(2): 1757-1775. doi: 10.3934/mbe.2020092
  • In this paper, we study an age-structured SIS epidemic model with periodicity and vertical transmission. We show that the spectral radius of the Fréchet derivative of a nonlinear integral operator plays the role of a threshold value for the global behavior of the model, that is, if the value is less than unity, then the disease-free steady state of the model is globally asymptotically stable, while if the value is greater than unity, then the model has a unique globally asymptotically stable endemic (nontrivial) periodic solution. We also show that the value can coincide with the well-know epidemiological threshold value, the basic reproduction number $\mathcal{R}_0$.


    [1] in Mathematical Population Dynamics: Analysis of Heterogeneity, Theory of Epidemics (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Wuerz Publ., (1995), 3-14.
    [2] Bull. Math. Biol., 69 (2007), 1067-1091.
    [3] J. Math. Biol., 53 (2006), 421-436.
    [4] SIAM J. Math. Anal., 22 (1991), 1065-1080.
    [5] in Dynamical Systems, World Scientific, (1993), 1-19.
    [6] Springer-Verlag, Berlin-New York, 1993.
    [7] Dynam. Syst. Appl., 9 (2000), 361-376.
    [8] J. Math. Biol., 28 (1990), 365-382.
    [9] Nonlinear Anal., 35 (1999), 797-814.
    [10] J. Math. Biol., 28 (1990), 411-434.
    [11] Discrete Contin. Dyn. Syst., Ser. B, 6 (2006), 69-96.
    [12] J. Math. Biol., 65 (2012), 309-348.
    [13] J. Math. Anal. Appl., 402 (2013), 477-492.
    [14] Amer. Math. Soc. Translation, 1950 (1950), 128pp.
    [15] J. Math. Anal. Appl., 213 (1997), 511-533.
    [16] J. Math. Anal. Appl., 363 (2010), 230-237.
    [17] in Differential Equations Models in Biology, Epidemiology and Ecology (eds. S. Busenberg and M. Martelli), Springer, 92 (1991), 139-158.
    [18] SIAM J. Appl. Math., 70 (2009), 188-211.
    [19] J. Dyn. Diff. Equat., 20 (2008), 699-717.
    [20] $6^{th}$ edition, Springer-Verlag, Berlin-New York, 1980.
    [21] J. Math. Anal. Appl., 325 (2007), 496-516.
  • This article has been cited by:

    1. Hisashi Inaba, 2017, Chapter 9, 978-981-10-0187-1, 443, 10.1007/978-981-10-0188-8_9
    2. Mimmo Iannelli, Fabio Milner, 2017, Chapter 10, 978-94-024-1145-4, 277, 10.1007/978-94-024-1146-1_10
    3. Hisashi Inaba, 2017, Chapter 6, 978-981-10-0187-1, 287, 10.1007/978-981-10-0188-8_6
    4. Vladimir Kozlov, Sonja Radosavljevic, Vladimir Tkachev, Uno Wennergren, Global stability of an age-structured population model on several temporally variable patches, 2021, 83, 0303-6812, 10.1007/s00285-021-01701-3
    5. Hao Kang, Shigui Ruan, Mathematical analysis on an age-structured SIS epidemic model with nonlocal diffusion, 2021, 83, 0303-6812, 10.1007/s00285-021-01634-x
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3161) PDF downloads(546) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog