Citation: John Hargrove. An example from the world of tsetse flies[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 691-704. doi: 10.3934/mbe.2013.10.691
[1] | Jinliang Wang, Hongying Shu . Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences and Engineering, 2016, 13(1): 209-225. doi: 10.3934/mbe.2016.13.209 |
[2] | Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372 |
[3] | Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky . A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362 |
[4] | Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297 |
[5] | Andrei Korobeinikov, Philip K. Maini . A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and Engineering, 2004, 1(1): 57-60. doi: 10.3934/mbe.2004.1.57 |
[6] | Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369 |
[7] | Jun Zhai, Bilin Xu . Research on meme transmission based on individual heterogeneity. Mathematical Biosciences and Engineering, 2021, 18(5): 5176-5193. doi: 10.3934/mbe.2021263 |
[8] | Cheng-Cheng Zhu, Jiang Zhu, Xiao-Lan Liu . Influence of spatial heterogeneous environment on long-term dynamics of a reaction-diffusion SVIR epidemic model with relaps. Mathematical Biosciences and Engineering, 2019, 16(5): 5897-5922. doi: 10.3934/mbe.2019295 |
[9] | Shanjing Ren . Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1337-1360. doi: 10.3934/mbe.2017069 |
[10] | Junyuan Yang, Rui Xu, Xiaofeng Luo . Dynamical analysis of an age-structured multi-group SIVS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(2): 636-666. doi: 10.3934/mbe.2019031 |
[1] | John Wiley & Sons, Chichester, 1977 |
[2] | Bulletin de la Société de Pathologie Exotique, 58 (1965), 250-259. |
[3] | Bulletin of Entomological Research, 59 (1968), 651-658. |
[4] | Medical and Veterinary Entomology, 3 (1989), 83-95. |
[5] | Insect Science and its Application, 11 (1990), 323-330. |
[6] | in "Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques", International Atomic Energy Agency, Vienna, (1993), 549-556. |
[7] | Medical and Veterinary Entomology, 13 (1999), 165-176. |
[8] | Entomologia Experimentalis et Applicata, 92 (1999), 89-99. |
[9] | Entomologia Experimentalis et Applicata, 100 (2001), 151-164. |
[10] | DFID Animal Health Programme, Edinburgh, UK, (2003), 133 + ix pp. |
[11] | PowerPoint Presentation of a Talk Delivered at: Mathematical Methods in Systems Biology and Population Dynamics (4-7 January 2012, Cape Town, South Africa). Available from: http://www.sacema.com |
[12] | Medical and Veterinary Entomology, 25 (2011), 385-394. |
[13] | Acta Biotheoretica, 44 (1996), 317-33. |
[14] | Bulletin of Entomological Research, 89 (1999), 515-521. |
[15] | Biometrika, 52 (1965), 225-247. |
[16] | Bulletin of Entomological Research, 58 (1968), 399-410. |
[17] | Bulletin of the World Health Organisation, 46 (1972), 33-38. |
[18] | Bulletin of Entomological Research, 62 (1973), 423-438. |
[19] | Entomologia Experimentalis et Applicata, 12 (1969), 33-43. |
[20] | Bulletin of Entomological Research, 64 (1974), 313-324. |
[21] | Biometrika, 52 (1965), 249-259. |
[22] | Charles Griffin & Co, London, 1982. |
[23] | Bulletin of Entomological Research, 64 (1974), 545-588. |
[24] | Bulletin of Entomological Research, 72 (1982), 71-93. |
[25] | Bulletin of Entomological Research, 78 (1988), 51-61. |
1. | Ling Zhang, Jingmei Pang, Jinliang Wang, Stability Analysis of a Multigroup Epidemic Model with General Exposed Distribution and Nonlinear Incidence Rates, 2013, 2013, 1085-3375, 1, 10.1155/2013/354287 | |
2. | Lianwen Wang, Zhijun Liu, Xingan Zhang, Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence, 2016, 284, 00963003, 47, 10.1016/j.amc.2016.02.058 | |
3. | Wei Duan, Zhichao Song, Xiaogang Qiu, Heterogeneous edge weights promote epidemic diffusion in weighted evolving networks, 2016, 30, 0217-9849, 1650300, 10.1142/S0217984916503000 | |
4. | Aberrahman Iggidr, Gauthier Sallet, Max O. Souza, On the dynamics of a class of multi-group models for vector-borne diseases, 2016, 441, 0022247X, 723, 10.1016/j.jmaa.2016.04.003 | |
5. | Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, 2018, 77, 0303-6812, 1871, 10.1007/s00285-018-1227-9 | |
6. | Haitao Song, Weihua Jiang, Shengqiang Liu, Global dynamics of two heterogeneous SIR models with nonlinear incidence and delays, 2016, 09, 1793-5245, 1650046, 10.1142/S1793524516500467 | |
7. | Jinliang Wang, Xianning Liu, Modeling diseases with latency and nonlinear incidence rates: global dynamics of a multi-group model, 2016, 39, 01704214, 1964, 10.1002/mma.3613 | |
8. | Jinhu Xu, Yicang Zhou, Global stability of a multi-group model with vaccination age, distributed delay and random perturbation, 2015, 12, 1551-0018, 1083, 10.3934/mbe.2015.12.1083 | |
9. | GLOBAL DYNAMICS IN A MULTI-GROUP EPIDEMIC MODEL FOR DISEASE WITH LATENCY SPREADING AND NONLINEAR TRANSMISSION RATE, 2016, 6, 2156-907X, 47, 10.11948/2016005 | |
10. | F. Capone, V. De Cataldis, R. De Luca, On the Stability of a SEIR Reaction Diffusion Model for Infections Under Neumann Boundary Conditions, 2014, 132, 0167-8019, 165, 10.1007/s10440-014-9899-7 | |
11. | Matthias Ehrhardt, Ján Gašper, Soňa Kilianová, SIR-based mathematical modeling of infectious diseases with vaccination and waning immunity, 2019, 37, 18777503, 101027, 10.1016/j.jocs.2019.101027 | |
12. | Florinda Capone, Valentina De Cataldis, Roberta De Luca, Influence of diffusion on the stability of equilibria in a reaction–diffusion system modeling cholera dynamic, 2015, 71, 0303-6812, 1107, 10.1007/s00285-014-0849-9 | |
13. | R. N. Mohapatra, Donald Porchia, Zhisheng Shuai, 2015, Chapter 51, 978-81-322-2484-6, 619, 10.1007/978-81-322-2485-3_51 | |
14. | F. Capone, V. De Cataldis, R. De Luca, On the nonlinear stability of an epidemic SEIR reaction-diffusion model, 2013, 62, 0035-5038, 161, 10.1007/s11587-013-0151-y | |
15. | Xiaomei Feng, Zhidong Teng, Fengqin Zhang, Global dynamics of a general class of multi-group epidemic models with latency and relapse, 2015, 12, 1551-0018, 99, 10.3934/mbe.2015.12.99 | |
16. | Huicong Li, Rui Peng, An SIS epidemic model with mass action infection mechanism in a patchy environment, 2022, 0022-2526, 10.1111/sapm.12553 | |
17. | Lin Zhao, Propagation dynamics for a time-periodic reaction-diffusion two group SIR epidemic model, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024114 | |
18. | Hyukpyo Hong, Eunjin Eom, Hyojung Lee, Sunhwa Choi, Boseung Choi, Jae Kyoung Kim, Overcoming bias in estimating epidemiological parameters with realistic history-dependent disease spread dynamics, 2024, 15, 2041-1723, 10.1038/s41467-024-53095-7 |