Mathematical Biosciences and Engineering, 2013, 10(4): 1095-1133. doi: 10.3934/mbe.2013.10.1095.

Primary: 92C45, 92C50; Secondary: 92B05.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Regulation of Th1/Th2 cells in asthma development: A mathematical model

1. Department of Mathematics, Konkuk University, Seoul
2. Department of Mathematics, Pohang University of Science and Technology, Pohang, Gyeongbuk
3. Department of Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk
4. Leeds Institute of Molecular Medicine, University of Leeds, Leeds

Airway exposure levels of lipopolysaccharide (LPS) determine type I versus type IIhelper T cell induced experimental asthma. While high LPS levels induce Th1-dominantresponses, low LPS levels derive Th2 cell inducedasthma. The present paper develops a mathematical model of asthma development whichfocuses on the relative balance of Th1 and Th2 cell induced asthma. In the present workwe representthe complex network of interactions between cells and molecules by a mathematical model.The model describes the behaviors of cells (Th0, Th1, Th2 and macrophages)and regulatory molecules (IFN-$\gamma$, IL-4, IL-12, TNF-α) in response tohigh, intermediate, and low levels of LPS.The simulations show howvariations in the levels of injected LPSaffect the development ofTh1 or Th2 cell responses through differential cytokine induction.The model also predicts the coexistence ofthese two types of responseunder certain biochemical and biomechanical conditions in the microenvironment.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Th1/Th2 cells; LPS; Asthma; microenvironment; inflammation.

Citation: Yangjin Kim, Seongwon Lee, You-Sun Kim, Sean Lawler, Yong Song Gho, Yoon-Keun Kim, Hyung Ju Hwang. Regulation of Th1/Th2 cells in asthma development: A mathematical model. Mathematical Biosciences and Engineering, 2013, 10(4): 1095-1133. doi: 10.3934/mbe.2013.10.1095

References

  • 1. J. Immunol., 166 (2001), 7556-7562.
  • 2. Nat. Med., 8 (2002), 1024-1032.
  • 3. J. Clin. Invest., 102 (1998), 98-106.
  • 4. J. Allergy Clin. Immunol., 119 (2007), 780-791.
  • 5. Prog. Biophys. Mol. Biol., 85 (2004), 451-472.
  • 6. Annu. Rev. Physiol., 72 (2010), 495-516.
  • 7. Immunity, 27 (2007), 89-99.
  • 8. Curr. Opin. HIV AIDS, 5 (2010), 114-119.
  • 9. Respir. Res., 2 (2001), 64-65.
  • 10. J. Theor. Biol., 190 (1998), 161-178.
  • 11. in "Dynamical Modeling In Biotechnology," Lectures Presented at the EU Advanced Workshop, Universität Leipzig NTZ 48/1997, World Scientific, Singapore, (2000), 227-243.
  • 12. Curr. Opin. Pharmacol., 7 (2007), 279-282.
  • 13. Annu. Rev. Immunol., 12 (1994), 295-335.
  • 14. Clin. Pharm., 11 (1992), 834-850.
  • 15. JAMA, 295 (2006), 2275-2285.
  • 16. Am. J. Respir. Crit. Care Med., 160 (1999), 1816-1823.
  • 17. Garland Pub., 2000.
  • 18. J. Exp. Med., 186 (1997), 1223-1232.
  • 19. Immunology, 115 (2005), 21-33.
  • 20. Int. Immunol., 7 (1995), 1265-1277.
  • 21. Am. J. Respir. Crit. Care Med., 171 (2005), 224-230.
  • 22. Biophys. J., 87 (2004), 2215-2220.
  • 23. Allergy, 66 (2011), 989-998.
  • 24. J. Allergy Clin. Immunol., 125 (2010), 222-230.
  • 25. Histopathology, 2 (1978), 407-421.
  • 26. J. Immunol., 170 (2003), 4963-4972.
  • 27. Clin. Exp. Metastasis, 18 (2000), 589-597.
  • 28. Immunopharmacology, 4 (1982), 23-39.
  • 29. J. Exp. Med., 196 (2002), 1645-1651.
  • 30. J. Theor. Biol., 160 (1993), 311-342.
  • 31. J. Theor. Biol., 170 (1994), 25-56.
  • 32. Bull. Math. Biol., 61 (1999), 403-436.
  • 33. Proc. Natl. Acad. Sci. USA, 94 (1997), 12258-12262.
  • 34. J. Immunol., 166 (2001), 6855-6860.
  • 35. Lancet., 355 (2000), 1680-1683.
  • 36. Nat. Immunol., 1 (2000), 239-244.
  • 37. Am. Rev. Respir. Dis., 139 (1989), 320-329.
  • 38. J. Theor. Biol., 269 (2011), 70-78.
  • 39. Science, 282 (1998), 2261-2263.
  • 40. J. Immunol., 162 (1999), 5212-5223.
  • 41. Annu. Rev. Physiol., 71 (2009), 489-507.
  • 42. Expert. Rev. Mol. Med., 2 (2000), 1-20.
  • 43. J. Neurooncol., 67 (2004), 147-157.
  • 44. Journal of Controlled Release, 118 (2007), 161-168.
  • 45. Thorax, 60 (2005), 1012-1018.
  • 46. Immunol. Cell Biol., 84 (2006), 218-226.
  • 47. Immunology and Cell Biology, 85 (2007), 189-196.
  • 48. J. Allergy Clin. Immunol., 120 (2007), 803-812.
  • 49. Int. Immunol., 10 (1998), 1325-1334.
  • 50. Bull. Math. Biol., 72 (2010), 1029-1068.
  • 51. J. Theo. Biol., 260 (2009), 359-371.
  • 52. 2009 Proceedings of the Fourth SIAM Conference on Mathematics for Industry (MI09), (2010), 84-92.
  • 53. J. Immunol., 178 (2007), 5375-5382.
  • 54. Progress in Biophysics and Molecular Biology, 106 (2011), 353-379.
  • 55. J. Immunol., 183 (2009), 5113-5120.
  • 56. J. Math. Biol., 61 (2010), 401-421.
  • 57. J. Exp. Med., 186 (1997), 1269-1275.
  • 58. J. Math. Biol., 37 (1998), 235-252.
  • 59. J. Bacteriology, 89 (1965), 462-469.
  • 60. J. Immunol., 171 (2003), 3645-3654.
  • 61. Inflamm. Allergy Drug Targets, 5 (2006), 253-256.
  • 62. J. Exp. Med., 201 (2005), 233-240.
  • 63. Immunity, 30 (2009), 92-107.
  • 64. Immunity, 31 (2009), 438-449.
  • 65. The Journal of Biological Chemistry, 271 (1996), 16139-16143.
  • 66. Proc. Natl. Acad. Sci. USA, 100 (2003), 7749-7754.
  • 67. Am. J. Respir. Crit. Care Med., 161 (2000), 1790-1796.
  • 68. J. Theor. Biol., 254 (2008), 178-196.
  • 69. Allergy, 59 (2004), 469-478.
  • 70. Allergy, 55 (2000), 6-9.
  • 71. Clin. Exp. Allergy, 21 (1991), 441-448.
  • 72. Science, 296 (2002), 1869-1873.
  • 73. Allergy, 65 (2010), 1093-1103.
  • 74. in "Theoretical and Experimental Insights into Immunology" (eds. A. S. Perelson and G. Weisbuch), chapter H66 Nato ASI, Springer-Verlag, Berlin, Germany, (1992), 171-189.
  • 75. Drug Discovery Today: Therapeutic Strategies, 3 (2006), 309-316.
  • 76. Exp. Rev. Resp. Med., 1 (2007), 51-63.
  • 77. J. Immunol., 136 (1986), 2348-2357.
  • 78. Annu. Rev. Immunol., 7 (1989), 145-173.
  • 79. J. Biol. Syst., 3 (1995), 397-408.
  • 80. In Focus Series, Pharmaceutical Press, 2007.
  • 81. $7^{th}$ edition, Garland Science Publishing, New York, 2007.
  • 82. Biochemistry, 35 (1996), 11454-11460.
  • 83. J. Immunol, 160 (1998), 3705-3712.
  • 84. Prog. Clin. Biol. Res., 231 (1987), 475-487.
  • 85. Lymphokine Cytokine Res., 12 (1993), 115-120.
  • 86. Math. Bios., 136 (1996), 35-63.
  • 87. Mucosal. Immunol., 3 (2010), 216-229.
  • 88. Journal of Theoretical Medicine, 4 (2002), 119-132.
  • 89. Clin. Exp. Allergy., 39 (2009), 1314-1323.
  • 90. Immunity, 7 (1997), 123-134.
  • 91. Eur. J. Immunol., 30 (2000), 2056-2064.
  • 92. Cell, 101 (2000), 455-458.
  • 93. Toxicol. in Vitro, 23 (2009), 531-538.
  • 94. J. Allergy Clin. Immunol., 104 (1999), 983-990.
  • 95. J. Leukoc. Biol., 38 (1985), 383-401.
  • 96. J. Theor. Biol., 152 (1991), 377-403.
  • 97. Int. J. Mol. Med., 17 (2006), 801-809.
  • 98. J. Immunol., 166 (2001), 232-240.
  • 99. Immunity, 5 (1996), 217-228.
  • 100. J. Math. Biol., 41 (2000), 455-475.
  • 101. in "Mathematical Modeling of Biological Systems," Volume II (eds. A. Deutsch, R. Parra, R. J. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky, and H. Metz), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, (2008), 145-155.
  • 102. Immunology, 130 (2010), 166-171.
  • 103. J. Exp. Med., 207 (2010), 2479-2491.
  • 104. Science, 282 (1998), 2258-2261.
  • 105. Nat. Rev. Immunol., 1 (2001), 69-75.
  • 106. J. Exp. Med., 191 (2000), 355-364.
  • 107. Clin. Exp. Allergy, 40 (2010), 163-173.
  • 108. Chest., 138 (2010), 1282-1283.
  • 109. J. Theor. Biol., 206 (2000), 539-560.
  • 110. J. Theor. Biol., 231 (2004), 181-196.
  • 111. Science, 296 (2002), 490-494.
  • 112. Int. Arch. Allergy Immunol., 151 (2010), 297-307.
  • 113. Nat. Immunol., 8 (2007), 967-974.
  • 114. Proc. Natl. Acad. Sci. USA, 94 (1997), 11875-11880.

 

This article has been cited by

  • 1. Zhijin Lin, Dan Norback, Tingting Wang, Xin Zhang, Jingjin Shi, Haidong Kan, Zhuohui Zhao, The first 2-year home environment in relation to the new onset and remission of asthmatic and allergic symptoms in 4246 preschool children, Science of The Total Environment, 2016, 553, 204, 10.1016/j.scitotenv.2016.02.040
  • 2. T Karelina, V Voronova, O Demin, G Colice, BM Agoram, A Mathematical Modeling Approach to Understanding the Effect of Anti-Interleukin Therapy on Eosinophils, CPT: Pharmacometrics & Systems Pharmacology, 2016, 5, 11, 608, 10.1002/psp4.12129
  • 3. Nicoline Y. den Breems, Raluca Eftimie, The re-polarisation of M2 and M1 macrophages and its role on cancer outcomes, Journal of Theoretical Biology, 2016, 390, 23, 10.1016/j.jtbi.2015.10.034
  • 4. Akane Hara, Yoh Iwasa, When is allergen immunotherapy effective?, Journal of Theoretical Biology, 2017, 425, 23, 10.1016/j.jtbi.2017.04.030
  • 5. Junehyuk Lee, Frederick R. Adler, Peter S. Kim, A Mathematical Model for the Macrophage Response to Respiratory Viral Infection in Normal and Asthmatic Conditions, Bulletin of Mathematical Biology, 2017, 79, 9, 1979, 10.1007/s11538-017-0315-0
  • 6. Jong Chul Han, Da Ye Choi, Changwon Kee, The Different Characteristics of Cirrus Optical Coherence Tomography between Superior Segmental Optic Hypoplasia and Normal Tension Glaucoma with Superior Retinal Nerve Fiber Defect, Journal of Ophthalmology, 2015, 2015, 1, 10.1155/2015/641204
  • 7. Guilherme Costa Silva, Walmir Matos Caminhas, Reinaldo Martinez Palhares, Artificial immune systems applied to fault detection and isolation: A brief review of immune response-based approaches and a case study, Applied Soft Computing, 2017, 57, 118, 10.1016/j.asoc.2017.03.031
  • 8. Yangjin Kim, Seongwon Lee, Jisun Lim, Hopf bifurcation in a model of TGF-$\beta$ in regulation of the Th 17 phenotype, Discrete and Continuous Dynamical Systems - Series B, 2016, 21, 10, 3575, 10.3934/dcdsb.2016111
  • 9. Raluca Eftimie, Haneen Hamam, Modelling and investigation of the CD4+ T cells – Macrophages paradox in melanoma immunotherapies, Journal of Theoretical Biology, 2017, 420, 82, 10.1016/j.jtbi.2017.02.022
  • 10. Yingshui Yao, Lijun Zhu, Jie Li, Yuelong Jin, Lianping He, Association of HLA-DRB1 Gene Polymorphism with Risk of Asthma: A Meta-Analysis, Medical Science Monitor Basic Research, 2016, 22, 80, 10.12659/MSMBR.900193
  • 11. Shinji Nakaoka, Sota Kuwahara, Chang Lee, Hyejin Jeon, Junho Lee, Yasuhiro Takeuchi, Yangjin Kim, Chronic Inflammation in the Epidermis: A Mathematical Model, Applied Sciences, 2016, 6, 9, 252, 10.3390/app6090252
  • 12. Belen Tirado-Rodriguez, Guillermina Baay-Guzman, Rogelio Hernandez-Pando, Gabriela Antonio-Andres, Mario I. Vega, Leticia Rocha-Zavaleta, Laura C. Bonifaz, Sara Huerta-Yepez, Inhibition of tumor progression during allergic airway inflammation in a murine model: significant role of TGF-β, Cancer Immunology, Immunotherapy, 2015, 64, 9, 1205, 10.1007/s00262-015-1722-4
  • 13. Seongwon Lee, Se-woong Kim, Youngmin Oh, Hyung Ju Hwang, Mathematical modeling and its analysis for instability of the immune system induced by chemotaxis, Journal of Mathematical Biology, 2017, 75, 5, 1101, 10.1007/s00285-017-1108-7
  • 14. Abazar Arabameri, Davud Asemani, Jamshid Hajati, A structural methodology for modeling immune-tumor interactions including pro- and anti-tumor factors for clinical applications, Mathematical Biosciences, 2018, 10.1016/j.mbs.2018.07.006
  • 15. Wenchao Tang, Yi Shang, Bin Xiao, Peitong Wen, Ruoyun Lyu, Ke Ning, The Cell Research Trends of Asthma: A Stem Frequency Analysis of the Literature, Journal of Healthcare Engineering, 2018, 2018, 1, 10.1155/2018/9363820
  • 16. Parya Aghasafari, Uduak George, Ramana Pidaparti, A review of inflammatory mechanism in airway diseases, Inflammation Research, 2018, 10.1007/s00011-018-1191-2
  • 17. В.В Желткова, V.V Zheltkova, Modelling HIV infection: model identification and global sensitivity analysis, Математическая биология и биоинформатика, 2019, 14, 1, 19, 10.17537/2019.14.19
  • 18. Chia-Chen Hsieh, Keng-Fan Liu, Pei-Chun Liu, Yaw-Tsan Ho, Wei-Sung Li, Wen-Huang Peng, Jen-Chieh Tsai, Comparing the Protection Imparted by Different Fraction Extracts of Garlic (Allium sativum L.) against Der p–Induced Allergic Airway Inflammation in Mice, International Journal of Molecular Sciences, 2019, 20, 19, 4879, 10.3390/ijms20194879
  • 19. D. A. Serov, D. S. Kabanov, N. I. Kosyakova, I. R. Prokhorenko, INFLUENCE OF THERAPY UPON LPS-INDUCED CYTOKINE SECRETION BY THE BLOOD-DERIVED INNATE IMMUNITY CELLS OF THE BRONCHIAL ASTHMA PATIENTS, Medical Immunology (Russia), 2019, 21, 4, 789, 10.15789/1563-0625-2019-4-789-796

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved