Regulation of Th1/Th2 cells in asthma development: A mathematical model

  • Received: 01 November 2012 Accepted: 29 June 2018 Published: 01 June 2013
  • MSC : Primary: 92C45, 92C50; Secondary: 92B05.

  • Airway exposure levels of lipopolysaccharide (LPS) determine type I versus type IIhelper T cell induced experimental asthma. While high LPS levels induce Th1-dominantresponses, low LPS levels derive Th2 cell inducedasthma. The present paper develops a mathematical model of asthma development whichfocuses on the relative balance of Th1 and Th2 cell induced asthma. In the present workwe representthe complex network of interactions between cells and molecules by a mathematical model.The model describes the behaviors of cells (Th0, Th1, Th2 and macrophages)and regulatory molecules (IFN-$\gamma$, IL-4, IL-12, TNF-α) in response tohigh, intermediate, and low levels of LPS.The simulations show howvariations in the levels of injected LPSaffect the development ofTh1 or Th2 cell responses through differential cytokine induction.The model also predicts the coexistence ofthese two types of responseunder certain biochemical and biomechanical conditions in the microenvironment.

    Citation: Yangjin Kim, Seongwon Lee, You-Sun Kim, Sean Lawler, Yong Song Gho, Yoon-Keun Kim, Hyung Ju Hwang. Regulation of Th1/Th2 cells in asthma development: A mathematical model[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 1095-1133. doi: 10.3934/mbe.2013.10.1095

    Related Papers:

    [1] Kazuo Yamazaki, Xueying Wang . Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences and Engineering, 2017, 14(2): 559-579. doi: 10.3934/mbe.2017033
    [2] C. Connell McCluskey . Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences and Engineering, 2012, 9(4): 819-841. doi: 10.3934/mbe.2012.9.819
    [3] Ram P. Sigdel, C. Connell McCluskey . Disease dynamics for the hometown of migrant workers. Mathematical Biosciences and Engineering, 2014, 11(5): 1175-1180. doi: 10.3934/mbe.2014.11.1175
    [4] Peter Witbooi, Gbenga Abiodun, Mozart Nsuami . A model of malaria population dynamics with migrants. Mathematical Biosciences and Engineering, 2021, 18(6): 7301-7317. doi: 10.3934/mbe.2021361
    [5] Junli Liu . Threshold dynamics of a time-delayed hantavirus infection model in periodic environments. Mathematical Biosciences and Engineering, 2019, 16(5): 4758-4776. doi: 10.3934/mbe.2019239
    [6] Tao-Li Kang, Hai-Feng Huo, Hong Xiang . Dynamics and optimal control of tuberculosis model with the combined effects of vaccination, treatment and contaminated environments. Mathematical Biosciences and Engineering, 2024, 21(4): 5308-5334. doi: 10.3934/mbe.2024234
    [7] Jie He, Zhenguo Bai . Global Hopf bifurcation of a cholera model with media coverage. Mathematical Biosciences and Engineering, 2023, 20(10): 18468-18490. doi: 10.3934/mbe.2023820
    [8] Zhong-Kai Guo, Hai-Feng Huo, Hong Xiang . Global dynamics of an age-structured malaria model with prevention. Mathematical Biosciences and Engineering, 2019, 16(3): 1625-1653. doi: 10.3934/mbe.2019078
    [9] Xia Wang, Yuming Chen . An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences and Engineering, 2018, 15(5): 1099-1116. doi: 10.3934/mbe.2018049
    [10] Cuicui Jiang, Kaifa Wang, Lijuan Song . Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1233-1246. doi: 10.3934/mbe.2017063
  • Airway exposure levels of lipopolysaccharide (LPS) determine type I versus type IIhelper T cell induced experimental asthma. While high LPS levels induce Th1-dominantresponses, low LPS levels derive Th2 cell inducedasthma. The present paper develops a mathematical model of asthma development whichfocuses on the relative balance of Th1 and Th2 cell induced asthma. In the present workwe representthe complex network of interactions between cells and molecules by a mathematical model.The model describes the behaviors of cells (Th0, Th1, Th2 and macrophages)and regulatory molecules (IFN-$\gamma$, IL-4, IL-12, TNF-α) in response tohigh, intermediate, and low levels of LPS.The simulations show howvariations in the levels of injected LPSaffect the development ofTh1 or Th2 cell responses through differential cytokine induction.The model also predicts the coexistence ofthese two types of responseunder certain biochemical and biomechanical conditions in the microenvironment.


    [1] J. Immunol., 166 (2001), 7556-7562.
    [2] Nat. Med., 8 (2002), 1024-1032.
    [3] J. Clin. Invest., 102 (1998), 98-106.
    [4] J. Allergy Clin. Immunol., 119 (2007), 780-791.
    [5] Prog. Biophys. Mol. Biol., 85 (2004), 451-472.
    [6] Annu. Rev. Physiol., 72 (2010), 495-516.
    [7] Immunity, 27 (2007), 89-99.
    [8] Curr. Opin. HIV AIDS, 5 (2010), 114-119.
    [9] Respir. Res., 2 (2001), 64-65.
    [10] J. Theor. Biol., 190 (1998), 161-178.
    [11] in "Dynamical Modeling In Biotechnology," Lectures Presented at the EU Advanced Workshop, Universität Leipzig NTZ 48/1997, World Scientific, Singapore, (2000), 227-243.
    [12] Curr. Opin. Pharmacol., 7 (2007), 279-282.
    [13] Annu. Rev. Immunol., 12 (1994), 295-335.
    [14] Clin. Pharm., 11 (1992), 834-850.
    [15] JAMA, 295 (2006), 2275-2285.
    [16] Am. J. Respir. Crit. Care Med., 160 (1999), 1816-1823.
    [17] Garland Pub., 2000.
    [18] J. Exp. Med., 186 (1997), 1223-1232.
    [19] Immunology, 115 (2005), 21-33.
    [20] Int. Immunol., 7 (1995), 1265-1277.
    [21] Am. J. Respir. Crit. Care Med., 171 (2005), 224-230.
    [22] Biophys. J., 87 (2004), 2215-2220.
    [23] Allergy, 66 (2011), 989-998.
    [24] J. Allergy Clin. Immunol., 125 (2010), 222-230.
    [25] Histopathology, 2 (1978), 407-421.
    [26] J. Immunol., 170 (2003), 4963-4972.
    [27] Clin. Exp. Metastasis, 18 (2000), 589-597.
    [28] Immunopharmacology, 4 (1982), 23-39.
    [29] J. Exp. Med., 196 (2002), 1645-1651.
    [30] J. Theor. Biol., 160 (1993), 311-342.
    [31] J. Theor. Biol., 170 (1994), 25-56.
    [32] Bull. Math. Biol., 61 (1999), 403-436.
    [33] Proc. Natl. Acad. Sci. USA, 94 (1997), 12258-12262.
    [34] J. Immunol., 166 (2001), 6855-6860.
    [35] Lancet., 355 (2000), 1680-1683.
    [36] Nat. Immunol., 1 (2000), 239-244.
    [37] Am. Rev. Respir. Dis., 139 (1989), 320-329.
    [38] J. Theor. Biol., 269 (2011), 70-78.
    [39] Science, 282 (1998), 2261-2263.
    [40] J. Immunol., 162 (1999), 5212-5223.
    [41] Annu. Rev. Physiol., 71 (2009), 489-507.
    [42] Expert. Rev. Mol. Med., 2 (2000), 1-20.
    [43] J. Neurooncol., 67 (2004), 147-157.
    [44] Journal of Controlled Release, 118 (2007), 161-168.
    [45] Thorax, 60 (2005), 1012-1018.
    [46] Immunol. Cell Biol., 84 (2006), 218-226.
    [47] Immunology and Cell Biology, 85 (2007), 189-196.
    [48] J. Allergy Clin. Immunol., 120 (2007), 803-812.
    [49] Int. Immunol., 10 (1998), 1325-1334.
    [50] Bull. Math. Biol., 72 (2010), 1029-1068.
    [51] J. Theo. Biol., 260 (2009), 359-371.
    [52] 2009 Proceedings of the Fourth SIAM Conference on Mathematics for Industry (MI09), (2010), 84-92.
    [53] J. Immunol., 178 (2007), 5375-5382.
    [54] Progress in Biophysics and Molecular Biology, 106 (2011), 353-379.
    [55] J. Immunol., 183 (2009), 5113-5120.
    [56] J. Math. Biol., 61 (2010), 401-421.
    [57] J. Exp. Med., 186 (1997), 1269-1275.
    [58] J. Math. Biol., 37 (1998), 235-252.
    [59] J. Bacteriology, 89 (1965), 462-469.
    [60] J. Immunol., 171 (2003), 3645-3654.
    [61] Inflamm. Allergy Drug Targets, 5 (2006), 253-256.
    [62] J. Exp. Med., 201 (2005), 233-240.
    [63] Immunity, 30 (2009), 92-107.
    [64] Immunity, 31 (2009), 438-449.
    [65] The Journal of Biological Chemistry, 271 (1996), 16139-16143.
    [66] Proc. Natl. Acad. Sci. USA, 100 (2003), 7749-7754.
    [67] Am. J. Respir. Crit. Care Med., 161 (2000), 1790-1796.
    [68] J. Theor. Biol., 254 (2008), 178-196.
    [69] Allergy, 59 (2004), 469-478.
    [70] Allergy, 55 (2000), 6-9.
    [71] Clin. Exp. Allergy, 21 (1991), 441-448.
    [72] Science, 296 (2002), 1869-1873.
    [73] Allergy, 65 (2010), 1093-1103.
    [74] in "Theoretical and Experimental Insights into Immunology" (eds. A. S. Perelson and G. Weisbuch), chapter H66 Nato ASI, Springer-Verlag, Berlin, Germany, (1992), 171-189.
    [75] Drug Discovery Today: Therapeutic Strategies, 3 (2006), 309-316.
    [76] Exp. Rev. Resp. Med., 1 (2007), 51-63.
    [77] J. Immunol., 136 (1986), 2348-2357.
    [78] Annu. Rev. Immunol., 7 (1989), 145-173.
    [79] J. Biol. Syst., 3 (1995), 397-408.
    [80] In Focus Series, Pharmaceutical Press, 2007.
    [81] $7^{th}$ edition, Garland Science Publishing, New York, 2007.
    [82] Biochemistry, 35 (1996), 11454-11460.
    [83] J. Immunol, 160 (1998), 3705-3712.
    [84] Prog. Clin. Biol. Res., 231 (1987), 475-487.
    [85] Lymphokine Cytokine Res., 12 (1993), 115-120.
    [86] Math. Bios., 136 (1996), 35-63.
    [87] Mucosal. Immunol., 3 (2010), 216-229.
    [88] Journal of Theoretical Medicine, 4 (2002), 119-132.
    [89] Clin. Exp. Allergy., 39 (2009), 1314-1323.
    [90] Immunity, 7 (1997), 123-134.
    [91] Eur. J. Immunol., 30 (2000), 2056-2064.
    [92] Cell, 101 (2000), 455-458.
    [93] Toxicol. in Vitro, 23 (2009), 531-538.
    [94] J. Allergy Clin. Immunol., 104 (1999), 983-990.
    [95] J. Leukoc. Biol., 38 (1985), 383-401.
    [96] J. Theor. Biol., 152 (1991), 377-403.
    [97] Int. J. Mol. Med., 17 (2006), 801-809.
    [98] J. Immunol., 166 (2001), 232-240.
    [99] Immunity, 5 (1996), 217-228.
    [100] J. Math. Biol., 41 (2000), 455-475.
    [101] in "Mathematical Modeling of Biological Systems," Volume II (eds. A. Deutsch, R. Parra, R. J. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky, and H. Metz), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, (2008), 145-155.
    [102] Immunology, 130 (2010), 166-171.
    [103] J. Exp. Med., 207 (2010), 2479-2491.
    [104] Science, 282 (1998), 2258-2261.
    [105] Nat. Rev. Immunol., 1 (2001), 69-75.
    [106] J. Exp. Med., 191 (2000), 355-364.
    [107] Clin. Exp. Allergy, 40 (2010), 163-173.
    [108] Chest., 138 (2010), 1282-1283.
    [109] J. Theor. Biol., 206 (2000), 539-560.
    [110] J. Theor. Biol., 231 (2004), 181-196.
    [111] Science, 296 (2002), 490-494.
    [112] Int. Arch. Allergy Immunol., 151 (2010), 297-307.
    [113] Nat. Immunol., 8 (2007), 967-974.
    [114] Proc. Natl. Acad. Sci. USA, 94 (1997), 11875-11880.
  • This article has been cited by:

    1. Y. Ma, C. R. Horsburgh, L. F. White, H. E. Jenkins, Quantifying TB transmission: a systematic review of reproduction number and serial interval estimates for tuberculosis, 2018, 146, 0950-2688, 1478, 10.1017/S0950268818001760
    2. Chuanqing Xu, Xiaoxiao Wei, Jingan Cui, Xiaojing Wang, Dashun Xu, Mixing in regional-structure model about the influence of floating population and optimal control about TB in Guangdong province of China, 2017, 10, 1793-5245, 1750106, 10.1142/S1793524517501066
    3. Ping Bi, Shigui Ruan, Bifurcations in Delay Differential Equations and Applications to Tumor and Immune System Interaction Models, 2013, 12, 1536-0040, 1847, 10.1137/120887898
    4. Luju Liu, Weiyun Cai, Shifei Wang, 2012, Global Stability for an SIR Infectious Diseases Model with Dispersal, 978-1-4673-1365-0, 333, 10.1109/CSO.2012.81
    5. Ming-Zhen Xin, Bin-Guo Wang, Stationary distribution and extinction of a stochastic tuberculosis model, 2020, 545, 03784371, 123741, 10.1016/j.physa.2019.123741
    6. Haitao Song, Qiaochu Wang, Weihua Jiang, Stability and Hopf Bifurcation of a Computer Virus Model with Infection Delay and Recovery Delay, 2014, 2014, 1110-757X, 1, 10.1155/2014/929580
    7. David W. Dowdy, Andrew S. Azman, Emily A. Kendall, Barun Mathema, Transforming the Fight Against Tuberculosis: Targeting Catalysts of Transmission, 2014, 59, 1537-6591, 1123, 10.1093/cid/ciu506
    8. Sara C Auld, Anne G Kasmar, David W Dowdy, Barun Mathema, Neel R Gandhi, Gavin J Churchyard, Roxana Rustomjee, N Sarita Shah, Research Roadmap for Tuberculosis Transmission Science: Where Do We Go From Here and How Will We Know When We’re There?, 2017, 216, 0022-1899, S662, 10.1093/infdis/jix353
    9. Min Yu, Yueping Dong, Yasuhiro Takeuchi, Dual role of delay effects in a tumour–immune system, 2017, 11, 1751-3758, 334, 10.1080/17513758.2016.1231347
    10. Victor Moreno, Baltazar Espinoza, Kamal Barley, Marlio Paredes, Derdei Bichara, Anuj Mubayi, Carlos Castillo-Chavez, The role of mobility and health disparities on the transmission dynamics of Tuberculosis, 2017, 14, 1742-4682, 10.1186/s12976-017-0049-6
    11. Szu-Chieh Chen, Tzu-Yun Wang, Hsin-Chieh Tsai, Chi-Yun Chen, Tien-Hsuan Lu, Yi-Jun Lin, Shu-Han You, Ying-Fei Yang, Chung-Min Liao, Demographic Control Measure Implications of Tuberculosis Infection for Migrant Workers across Taiwan Regions, 2022, 19, 1660-4601, 9899, 10.3390/ijerph19169899
    12. Wei Lu, Limei Zhu, Qiao Liu, Cheng Chen, Peng Lu, Xiaoyan Ding, Yan Shao, Yan Li, 2022, Chapter 8, 978-981-19-2198-8, 151, 10.1007/978-981-19-2199-5_8
    13. Roger Detels, Quarraisha Abdool Karim, Fran Baum, Liming Li, Alastair H. Leyland, Roxana Rustomjee, 2021, 0198816804, 213, 10.1093/med/9780198816805.003.0072
    14. Saurabh RamBihariLal Shrivastava, Prateek Sudhakar Bobhate, Prithvi Brahmanand Petkar, Harshal Gajanan Mendhe, Gulshan Ruprao Bandre, Strengthening Tuberculosis Control Among Migrant Workers, 2024, 9, 2414-6366, 274, 10.3390/tropicalmed9110274
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4615) PDF downloads(878) Cited by(34)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog