The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model

  • Received: 01 June 2011 Accepted: 29 June 2018 Published: 01 March 2012
  • MSC : Primary: 92D30.

  • When a new pandemic influenza strain has been identified, mass-production of vaccines can take several months, and antiviral drugs are expensive and usually in short supply. Social distancing measures, such as school closures, thus seem an attractive means to mitigate disease spread. However, the transmission of influenza is seasonal in nature, and as has been noted in previous studies, a decrease in the average transmission rate in a seasonal disease model may result in a larger final size. In the studies presented here, we analyze a hypothetical pandemic using a SIR epidemic model with time- and age-dependent transmission rates; using this model we assess and quantify, for the first time, the the effect of the timing and length of widespread school closures on influenza pandemic final size and average peak time.
        We find that the effect on pandemic progression strongly depends on the timing of the start of the school closure. For instance, we determine that school closures during a late spring wave of an epidemic can cause a pandemic to become up to 20% larger, but have the advantage that the average time of the peak is shifted by up to two months, possibly allowing enough time for development of vaccines to mitigate the larger size of the epidemic. Our studies thus suggest that when heterogeneity in transmission is a significant factor, decisions of public health policy will be particularly important as to how control measures such as school closures should be implemented.

    Citation: Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng. The impact of school closures on pandemic influenza:Assessing potential repercussions using a seasonal SIR model[J]. Mathematical Biosciences and Engineering, 2012, 9(2): 413-430. doi: 10.3934/mbe.2012.9.413

    Related Papers:

  • When a new pandemic influenza strain has been identified, mass-production of vaccines can take several months, and antiviral drugs are expensive and usually in short supply. Social distancing measures, such as school closures, thus seem an attractive means to mitigate disease spread. However, the transmission of influenza is seasonal in nature, and as has been noted in previous studies, a decrease in the average transmission rate in a seasonal disease model may result in a larger final size. In the studies presented here, we analyze a hypothetical pandemic using a SIR epidemic model with time- and age-dependent transmission rates; using this model we assess and quantify, for the first time, the the effect of the timing and length of widespread school closures on influenza pandemic final size and average peak time.
        We find that the effect on pandemic progression strongly depends on the timing of the start of the school closure. For instance, we determine that school closures during a late spring wave of an epidemic can cause a pandemic to become up to 20% larger, but have the advantage that the average time of the peak is shifted by up to two months, possibly allowing enough time for development of vaccines to mitigate the larger size of the epidemic. Our studies thus suggest that when heterogeneity in transmission is a significant factor, decisions of public health policy will be particularly important as to how control measures such as school closures should be implemented.


    加载中
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2105) PDF downloads(590) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog