Mathematical Biosciences and Engineering, 2011, 8(2): 591-603. doi: 10.3934/mbe.2011.8.591.

34A12, 34C60, 34D05, 34A34, 37N25, 92C50.

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

New approach to modeling of antiangiogenic treatment on the basis of Hahnfeldt et al. model

1. University of Warsaw, Faculty of Mathematics, Informatics and Mechanics, Institute of Applied Mathematics and Mechanics, Banacha 2, 02-097 Warsaw

In the paper we propose a new methodology in modeling of antiangiogenic treatment on the basis of well recognized model formulated by Hahnfeldt et al. in 1999. On the basis of the Hahnfeldt et al. model, with the usage of the optimal control theory, some protocols of antiangiogenic treatment were proposed. However, in our opinion the formulation of that model is valid only for the antivascular treatment, that is treatment that is focused on destroying endothelial cells. Therefore, we propose a modification of the original model which is valid in the case of the antiangiogenic treatment, that is treatment which is focused on blocking angiogenic signaling. We analyze basic mathematical properties of the proposed model and present some numerical simulations.
  Article Metrics

Keywords angiogenesis; Tumor; antiangiogenic treatment; ordinary differential equations.

Citation: Jan Poleszczuk, Marek Bodnar, Urszula Foryś. New approach to modeling of antiangiogenic treatment on the basis of Hahnfeldt et al. model. Mathematical Biosciences and Engineering, 2011, 8(2): 591-603. doi: 10.3934/mbe.2011.8.591


This article has been cited by

  • 1. Marek Bodnar, Monika Joanna Piotrowska, Stability analysis of the family of tumour angiogenesis models with distributed time delays, Communications in Nonlinear Science and Numerical Simulation, 2016, 31, 1-3, 124, 10.1016/j.cnsns.2015.08.002
  • 2. Katerina D. Argyri, Dimitra D. Dionysiou, Fay D. Misichroni, Georgios S. Stamatakos, Numerical simulation of vascular tumour growth under antiangiogenic treatment: addressing the paradigm of single-agent bevacizumab therapy with the use of experimental data, Biology Direct, 2016, 11, 1, 10.1186/s13062-016-0114-9
  • 3. U. Ledzewicz, H. Schättler, Multi-input Optimal Control Problems for Combined Tumor Anti-angiogenic and Radiotherapy Treatments, Journal of Optimization Theory and Applications, 2012, 153, 1, 195, 10.1007/s10957-011-9954-8
  • 4. F. A. Rihan, M. Safan, M. A. Abdeen, D. Abdel Rahman, Qualitative and Computational Analysis of a Mathematical Model for Tumor-Immune Interactions, Journal of Applied Mathematics, 2012, 2012, 1, 10.1155/2012/475720
  • 5. Anca Bucur, Jasper van Leeuwen, Nikolaos Christodoulou, Kamana Sigdel, Katerina Argyri, Lefteris Koumakis, Norbert Graf, Georgios Stamatakos, Workflow-driven clinical decision support for personalized oncology, BMC Medical Informatics and Decision Making, 2016, 16, S2, 10.1186/s12911-016-0314-3
  • 6. Jan Poleszczuk, Philip Hahnfeldt, Heiko Enderling, Domenico Ribatti, Therapeutic Implications from Sensitivity Analysis of Tumor Angiogenesis Models, PLOS ONE, 2015, 10, 3, e0120007, 10.1371/journal.pone.0120007
  • 7. M. Saleem, Tanuja Agrawal, Chaos in a Tumor Growth Model with Delayed Responses of the Immune System, Journal of Applied Mathematics, 2012, 2012, 1, 10.1155/2012/891095
  • 8. Monika J. Piotrowska, Urszula Foryś, Analysis of the Hopf bifurcation for the family of angiogenesis models, Journal of Mathematical Analysis and Applications, 2011, 382, 1, 180, 10.1016/j.jmaa.2011.04.046
  • 9. J.M. Chrobak, M. Bodnar, H. Herrero, About a generalized model of lymphoma, Journal of Mathematical Analysis and Applications, 2012, 386, 2, 813, 10.1016/j.jmaa.2011.08.043
  • 10. Nicoleta Tarfulea, , Mathematical and Computational Approaches in Advancing Modern Science and Engineering, 2016, Chapter 30, 319, 10.1007/978-3-319-30379-6_30
  • 11. Leonid Berezansky, Elena Braverman, Lev Idels, Effect of treatment on the global dynamics of delayed pathological angiogenesis models, Journal of Theoretical Biology, 2014, 363, 13, 10.1016/j.jtbi.2014.08.012
  • 12. Urszula Foryś, Monika Joanna Piotrowska, Marek Bodnar, Gompertz model with delays and treatment: Mathematical analysis, Mathematical Biosciences and Engineering, 2013, 10, 3, 551, 10.3934/mbe.2013.10.551
  • 13. Marek Bodnar, Pilar Guerrero, Ruben Perez-Carrasco, Monika J. Piotrowska, Grant Lythe, Deterministic and Stochastic Study for a Microscopic Angiogenesis Model: Applications to the Lewis Lung Carcinoma, PLOS ONE, 2016, 11, 5, e0155553, 10.1371/journal.pone.0155553
  • 14. Emad Attia, Marek Bodnar, Urszula Foryś, Angiogenesis model with Erlang distributed delays, Mathematical Biosciences and Engineering, 2016, 14, 1, 1, 10.3934/mbe.2017001
  • 15. J. Poleszczuk, M. J. Piotrowska, U. Foryś, S. Anita, N. Hritonenko, G. Marinoschi, A. Swierniak, Optimal Protocols for the Anti-VEGF Tumor Treatment, Mathematical Modelling of Natural Phenomena, 2014, 9, 4, 204, 10.1051/mmnp/20149412
  • 16. M. Sturrock, I. S. Miller, G. Kang, N. Hannis Arba’ie, A. C. O’Farrell, A. Barat, G. Marston, P. L. Coletta, A. T. Byrne, J. H. Prehn, Anti-angiogenic drug scheduling optimisation with application to colorectal cancer, Scientific Reports, 2018, 8, 1, 10.1038/s41598-018-29318-5
  • 17. Renee Brady, Heiko Enderling, Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to, Bulletin of Mathematical Biology, 2019, 10.1007/s11538-019-00640-x

Reader Comments

your name: *   your email: *  

Copyright Info: 2011, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved