Morphogenesis of the tumor patterns

  • Received: 01 November 2007 Accepted: 29 June 2018 Published: 01 March 2008
  • MSC : 92C15, 82C31, 92C50.

  • The mathematical modeling of tumor growth allows us to describe the most important regularities of these systems. A stochastic model, based on the most important processes that take place at the level of individual cells, is proposed to predict the dynamical behavior of the expected radius of the tumor and its fractal dimension. It was found that the tumor has a characteristic fractal dimension, which contains the necessary information to predict the tumor growth until it reaches a stationary state. This fractal dimension is distorted by the effects of external fluctuations. The model predicts a phenomenon which indicates stochastic resonance when the multiplicative and the additive noise are correlated.

    Citation: Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Morphogenesis of the tumor patterns[J]. Mathematical Biosciences and Engineering, 2008, 5(2): 299-313. doi: 10.3934/mbe.2008.5.299

    Related Papers:

    [1] Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar . The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547
    [2] Elena Izquierdo-Kulich, José Manuel Nieto-Villar . Mesoscopic model for tumor growth. Mathematical Biosciences and Engineering, 2007, 4(4): 687-698. doi: 10.3934/mbe.2007.4.687
    [3] Avner Friedman, Yangjin Kim . Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371
    [4] H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaibi . Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem. Mathematical Biosciences and Engineering, 2023, 20(11): 19270-19299. doi: 10.3934/mbe.2023852
    [5] Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, José Manuel Nieto-Villar . Morphogenesis and aggressiveness of cervix carcinoma. Mathematical Biosciences and Engineering, 2011, 8(4): 987-997. doi: 10.3934/mbe.2011.8.987
    [6] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
    [7] Tuan Anh Phan, Jianjun Paul Tian . Basic stochastic model for tumor virotherapy. Mathematical Biosciences and Engineering, 2020, 17(4): 4271-4294. doi: 10.3934/mbe.2020236
    [8] Rafael Martínez-Fonseca, Cruz Vargas-De-León, Ramón Reyes-Carreto, Flaviano Godínez-Jaimes . Bayesian analysis of the effect of exosomes in a mouse xenograft model of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2023, 20(11): 19504-19526. doi: 10.3934/mbe.2023864
    [9] Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325
    [10] Marcelo E. de Oliveira, Luiz M. G. Neto . Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences and Engineering, 2016, 13(2): 333-341. doi: 10.3934/mbe.2015005
  • The mathematical modeling of tumor growth allows us to describe the most important regularities of these systems. A stochastic model, based on the most important processes that take place at the level of individual cells, is proposed to predict the dynamical behavior of the expected radius of the tumor and its fractal dimension. It was found that the tumor has a characteristic fractal dimension, which contains the necessary information to predict the tumor growth until it reaches a stationary state. This fractal dimension is distorted by the effects of external fluctuations. The model predicts a phenomenon which indicates stochastic resonance when the multiplicative and the additive noise are correlated.


  • This article has been cited by:

    1. E. Izquierdo-Kulich, J. M. Nieto-Villar, 2013, Chapter 48, 978-3-642-34069-7, 657, 10.1007/978-3-642-34070-3_48
    2. J.A. Llanos-Pérez, A. Betancourt-Mar, M.P. De Miguel, E. Izquierdo-Kulich, M. Royuela-García, E. Tejera, J.M. Nieto-Villar, Phase transitions in tumor growth: II prostate cancer cell lines, 2015, 426, 03784371, 88, 10.1016/j.physa.2015.01.038
    3. J.A. Llanos-Pérez, J.A. Betancourt-Mar, G. Cocho, R. Mansilla, José Manuel Nieto-Villar, Phase transitions in tumor growth: III vascular and metastasis behavior, 2016, 462, 03784371, 560, 10.1016/j.physa.2016.06.086
    4. Sheyla Montero, Reynaldo Martin, Ricardo Mansilla, Germinal Cocho, José Manuel Nieto-Villar, 2018, Chapter 8, 978-1-4939-7455-9, 125, 10.1007/978-1-4939-7456-6_8
    5. Elena Izquierdo-Kulich, Esther Alonso-Becerra, José M Nieto-Villar, Entropy Production Rate for Avascular Tumor Growth, 2011, 02, 2153-1196, 615, 10.4236/jmp.2011.226071
    6. Abicumaran Uthamacumaran, Hector Zenil, A Review of Mathematical and Computational Methods in Cancer Dynamics, 2022, 12, 2234-943X, 10.3389/fonc.2022.850731
    7. Luiza M.S. Miranda, Andre M.C. Souza, Fractality in tumor growth at the avascular stage from a generalization of the logistic-Gompertz dynamics, 2023, 03784371, 128664, 10.1016/j.physa.2023.128664
    8. A. Guerra, J. A. Betancourt-Mar, J. A. Llanos-Pérez, R. Mansilla, J. M. Nieto-Villar, 2024, Chapter 4, 978-1-0716-3576-6, 45, 10.1007/978-1-0716-3577-3_4
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2928) PDF downloads(530) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog