Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs

1. Department of Mathematics and Statistics, University of Winnipeg, Winnipeg, MB, Canada R3B 2E9
2. Department of Statistics, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
3. Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2
4. Department of Mathematics, Malaspina University-College, Nanaimo, BC, Canada V9R 5S5

This paper presents a statistical study of a deterministic model for the transmission dynamics and control of severe acute respiratory syndrome (SARS). The effect of the model parameters on the dynamics of the disease is analyzed using sensitivity and uncertainty analyses. The response (or output) of interest is the control reproduction number, which is an epidemiological threshold governing the persistence or elimination of SARS in a given population. The compartmental model includes parameters associated with control measures such as quarantine and isolation of asymptomatic and symptomatic individuals. One feature of our analysis is the incorporation of time-dependent functions into the model to reflect the progressive refinement of these SARS control measures over time. Consequently, the model contains continuous time-varying inputs and outputs. In this setting, sensitivity and uncertainty analytical techniques are used in order to analyze the impact of the uncertainty in the parameter estimates on the results obtained and to determine which parameters have the largest impact on driving the disease dynamics.
  Figure/Table
  Supplementary
  Article Metrics

Keywords epidemiological model; functional out-put; control reproduction number; Latin hypercube sampling; partial rank correlation coefficients.

Citation: Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences and Engineering, 2006, 3(3): 527-544. doi: 10.3934/mbe.2006.3.527

 

This article has been cited by

  • 1. A. O. Egonmwan, D. Okuonghae, Analysis of a mathematical model for tuberculosis with diagnosis, Journal of Applied Mathematics and Computing, 2018, 10.1007/s12190-018-1172-1
  • 2. CHANDRA N. PODDER, ABBA B. GUMEL, CHRIS S. BOWMAN, ROBERT G. MCLEOD, MATHEMATICAL STUDY OF THE IMPACT OF QUARANTINE, ISOLATION AND VACCINATION IN CURTAILING AN EPIDEMIC, Journal of Biological Systems, 2007, 15, 02, 185, 10.1142/S0218339007002180
  • 3. Folashade B. Agusto, Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus, Discrete and Continuous Dynamical Systems - Series B, 2016, 22, 3, 687, 10.3934/dcdsb.2017034
  • 4. Mohammad A. Safi, Mudassar Imran, Abba B. Gumel, Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation, Theory in Biosciences, 2012, 131, 1, 19, 10.1007/s12064-011-0148-6
  • 5. J. Wu, R. Dhingra, M. Gambhir, J. V. Remais, Sensitivity analysis of infectious disease models: methods, advances and their application, Journal of The Royal Society Interface, 2013, 10, 86, 20121018, 10.1098/rsif.2012.1018
  • 6. N. Hussaini, J. M-S Lubuma, K. Barley, A.B. Gumel, Mathematical analysis of a model for AVL–HIV co-endemicity, Mathematical Biosciences, 2016, 271, 80, 10.1016/j.mbs.2015.10.008
  • 7. Govind Prasad Sahu, Joydip Dhar, Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, Journal of Mathematical Analysis and Applications, 2015, 421, 2, 1651, 10.1016/j.jmaa.2014.08.019
  • 8. Mohammad A. Safi, Dessalegn Y. Melesse, Abba B. Gumel, Dynamics Analysis of a Multi-strain Cholera Model with an Imperfect Vaccine, Bulletin of Mathematical Biology, 2013, 75, 7, 1104, 10.1007/s11538-013-9845-2
  • 9. Folashade B. Agusto, Shamise Easley, Kenneth Freeman, Madison Thomas, Mathematical Model of Three Age-Structured Transmission Dynamics of Chikungunya Virus, Computational and Mathematical Methods in Medicine, 2016, 2016, 1, 10.1155/2016/4320514
  • 10. Mohammad A. Safi, Abba B. Gumel, Qualitative study of a quarantine/isolation model with multiple disease stages, Applied Mathematics and Computation, 2011, 218, 5, 1941, 10.1016/j.amc.2011.07.007
  • 11. F. B. Agusto, J. Cook, P. D. Shelton, M. G. Wickers, Mathematical Model of MDR-TB and XDR-TB with Isolation and Lost to Follow-Up, Abstract and Applied Analysis, 2015, 2015, 1, 10.1155/2015/828461
  • 12. C. N. Podder, O. Sharomi, A. B. Gumel, E. Strawbridge, Mathematical Analysis of a Model for Assessing the Impact of Antiretroviral Therapy, Voluntary Testing and Condom Use in Curtailing the Spread of HIV, Differential Equations and Dynamical Systems, 2011, 19, 4, 283, 10.1007/s12591-011-0090-6
  • 13. Folashade B Agusto, Miranda I Teboh-Ewungkem, Abba B Gumel, Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks, BMC Medicine, 2015, 13, 1, 10.1186/s12916-015-0318-3
  • 14. Farinaz Forouzannia, Abba B. Gumel, Mathematical analysis of an age-structured model for malaria transmission dynamics, Mathematical Biosciences, 2014, 247, 80, 10.1016/j.mbs.2013.10.011
  • 15. Adnan Khan, Sultan Sial, Mudassar Imran, Transmission Dynamics of Hepatitis C with Control Strategies, Journal of Computational Medicine, 2014, 2014, 1, 10.1155/2014/654050
  • 16. Mudassar Imran, Muhammad Hassan, Muhammad Dur-E-Ahmad, Adnan Khan, A comparison of a deterministic and stochastic model for Hepatitis C with an isolation stage, Journal of Biological Dynamics, 2013, 7, 1, 276, 10.1080/17513758.2013.859856
  • 17. Kamaldeen Okuneye, Abba B. Gumel, Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics, Mathematical Biosciences, 2017, 287, 72, 10.1016/j.mbs.2016.03.013
  • 18. Aliya A. Alsaleh, Abba B. Gumel, Analysis of Risk-Structured Vaccination Model for the Dynamics of Oncogenic and Warts-Causing HPV Types, Bulletin of Mathematical Biology, 2014, 76, 7, 1670, 10.1007/s11538-014-9972-4
  • 19. Abba B. Gumel, Ahmed Abdelrazec, Kamaldeen Okuneye, Mathematical analysis of a weather-driven model for the population ecology of mosquitoes, Mathematical Biosciences and Engineering, 2017, 15, 1, 57, 10.3934/mbe.2018003
  • 20. A. S. Hassan, S. M. Garba, A. B. Gumel, J. M.-S. Lubuma, Dynamics ofMycobacteriumandbovine tuberculosisin a Human-Buffalo Population, Computational and Mathematical Methods in Medicine, 2014, 2014, 1, 10.1155/2014/912306
  • 21. Mohammad A. Safi, Abba B. Gumel, Dynamics analysis of a quarantine model in two patches, Mathematical Methods in the Applied Sciences, 2015, 38, 2, 349, 10.1002/mma.3072
  • 22. ALIYA A. ALSALEH, ABBA B. GUMEL, DYNAMICS ANALYSIS OF A VACCINATION MODEL FOR HPV TRANSMISSION, Journal of Biological Systems, 2014, 22, 04, 555, 10.1142/S0218339014500211
  • 23. Nafiu Hussaini, Kamaldeen Okuneye, Abba B. Gumel, Mathematical analysis of a model for zoonotic visceral leishmaniasis, Infectious Disease Modelling, 2017, 2, 4, 455, 10.1016/j.idm.2017.12.002
  • 24. Mohammad A. Safi, Abba B. Gumel, The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay, Nonlinear Analysis: Real World Applications, 2011, 12, 1, 215, 10.1016/j.nonrwa.2010.06.009
  • 25. F. Nazari, A.B. Gumel, E.H. Elbasha, Differential characteristics of primary infection and re-infection can cause backward bifurcation in HCV transmission dynamics, Mathematical Biosciences, 2015, 263, 51, 10.1016/j.mbs.2015.02.002
  • 26. F.B. Agusto, S. Bewick, W.F. Fagan, Mathematical model of Zika virus with vertical transmission, Infectious Disease Modelling, 2017, 2, 2, 244, 10.1016/j.idm.2017.05.003
  • 27. Zuiyuan Guo, Dan Xiao, Dongli Li, Xiuhong Wang, Yayu Wang, Tiecheng Yan, Zhiqi Wang, Zhen Jin, Predicting and Evaluating the Epidemic Trend of Ebola Virus Disease in the 2014-2015 Outbreak and the Effects of Intervention Measures, PLOS ONE, 2016, 11, 4, e0152438, 10.1371/journal.pone.0152438
  • 28. Lindsay Simpson, Abba B. Gumel, Mathematical assessment of the role of pre-exposure prophylaxis on HIV transmission dynamics, Applied Mathematics and Computation, 2017, 293, 168, 10.1016/j.amc.2016.07.043
  • 29. KAMALDEEN O. OKUNEYE, JORGE X. VELASCO-HERNANDEZ, ABBA B. GUMEL, THE “UNHOLY” CHIKUNGUNYA–DENGUE–ZIKA TRINITY: A THEORETICAL ANALYSIS, Journal of Biological Systems, 2017, 25, 04, 545, 10.1142/S0218339017400046
  • 30. Mohammad A. Safi, Abba B. Gumel, Dynamics of a model with quarantine-adjusted incidence and quarantine of susceptible individuals, Journal of Mathematical Analysis and Applications, 2013, 399, 2, 565, 10.1016/j.jmaa.2012.10.015
  • 31. Jan M. Baetens, Bernard De Baets, , Cellular Automata, 2016, Chapter 9, 91, 10.1007/978-3-319-44365-2_9
  • 32. F.B. Agusto, M.A. Khan, Optimal Control Strategies for Dengue Transmission in Pakistan, Mathematical Biosciences, 2018, 10.1016/j.mbs.2018.09.007
  • 33. Kamaldeen Okuneye, Steffen E. Eikenberry, Abba B. Gumel, Weather-driven malaria transmission model with gonotrophic and sporogonic cycles, Journal of Biological Dynamics, 2019, 1, 10.1080/17513758.2019.1570363
  • 34. A. Nwankwo, D. Okuonghae, A Mathematical Model for the Population Dynamics of Malaria with a Temperature Dependent Control, Differential Equations and Dynamical Systems, 2019, 10.1007/s12591-019-00466-y
  • 35. Mohammad A. Safi, Global Stability Analysis of Two-Stage Quarantine-Isolation Model with Holling Type II Incidence Function, Mathematics, 2019, 7, 4, 350, 10.3390/math7040350
  • 36. F.B. Agusto, M.C.A. Leite, Optimal control and cost-effective analysis of the 2017 meningitis outbreak in Nigeria, Infectious Disease Modelling, 2019, 10.1016/j.idm.2019.05.003
  • 37. A. O. Egonmwan, D. Okuonghae, Mathematical analysis of a tuberculosis model with imperfect vaccine, International Journal of Biomathematics, 2019, 10.1142/S1793524519500736
  • 38. Pei-Yu Liu, Sha He, Li-Bin Rong, San-Yi Tang, The effect of control measures on COVID-19 transmission in Italy: Comparison with Guangdong province in China, Infectious Diseases of Poverty, 2020, 9, 1, 10.1186/s40249-020-00730-2
  • 39. I. Santamaría-Holek, V. Castaño, Possible fates of the spread of SARS-CoV-2 in the Mexican context, Royal Society Open Science, 2020, 7, 9, 200886, 10.1098/rsos.200886

Reader Comments

your name: *   your email: *  

Copyright Info: 2006, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved