Multiscale Image Registration

  • Received: 01 December 2005 Accepted: 29 June 2018 Published: 01 February 2006
  • MSC : Primary: 68U10; Secondary: 92C55, 62P10, 94A08.

  • A multiscale image registration technique is presented for the registration of medical images that contain significant levels of noise. An overview of the medical image registration problem is presented, and various registration techniques are discussed. Experiments using mean squares, normalized correlation, and mutual information optimal linear registration are presented that determine the noise levels at which registration using these techniques fails. Further experiments in which classical denoising algorithms are applied prior to registration are presented, and it is shown that registration fails in this case for significantly high levels of noise, as well. The hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [20] is presented, and accurate registration of noisy images is achieved by obtaining a hierarchical multiscale decomposition of the images and registering the resulting components. This approach enables successful registration of images that contain noise levels well beyond the level at which ordinary optimal linear registration fails. Image registration experiments demonstrate the accuracy and efficiency of the multiscale registration technique, and for all noise levels, the multiscale technique is as accurate as or more accurate than ordinary registration techniques.

    Citation: Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration[J]. Mathematical Biosciences and Engineering, 2006, 3(2): 389-418. doi: 10.3934/mbe.2006.3.389

    Related Papers:

    [1] Dana Paquin, Doron Levy, Lei Xing . Multiscale deformable registration of noisy medical images. Mathematical Biosciences and Engineering, 2008, 5(1): 125-144. doi: 10.3934/mbe.2008.5.125
    [2] Dana Paquin, Doron Levy, Lei Xing . Hybrid multiscale landmark and deformable image registration. Mathematical Biosciences and Engineering, 2007, 4(4): 711-737. doi: 10.3934/mbe.2007.4.711
    [3] Liwei Deng, Yuanzhi Zhang, Jingjing Qi, Sijuan Huang, Xin Yang, Jing Wang . Enhancement of cone beam CT image registration by super-resolution pre-processing algorithm. Mathematical Biosciences and Engineering, 2023, 20(3): 4403-4420. doi: 10.3934/mbe.2023204
    [4] Yuan-Nan Young, Doron Levy . Registration-Based Morphing of Active Contours for Segmentation of CT Scans. Mathematical Biosciences and Engineering, 2005, 2(1): 79-96. doi: 10.3934/mbe.2005.2.79
    [5] Luca Bertelli, Frédéric Gibou . Fast two dimensional to three dimensional registration of fluoroscopy and CT-scans using Octrees on segmentation maps. Mathematical Biosciences and Engineering, 2012, 9(3): 527-537. doi: 10.3934/mbe.2012.9.527
    [6] Hilly Gohain Baruah, Vijay Kumar Nath, Deepika Hazarika, Rakcinpha Hatibaruah . Local bit-plane neighbour dissimilarity pattern in non-subsampled shearlet transform domain for bio-medical image retrieval. Mathematical Biosciences and Engineering, 2022, 19(2): 1609-1632. doi: 10.3934/mbe.2022075
    [7] Xinran Zhang, Yongde Zhang, Jianzhi Yang, Haiyan Du . A prostate seed implantation robot system based on human-computer interactions: Augmented reality and voice control. Mathematical Biosciences and Engineering, 2024, 21(5): 5947-5971. doi: 10.3934/mbe.2024262
    [8] Jianhua Song, Lei Yuan . Brain tissue segmentation via non-local fuzzy c-means clustering combined with Markov random field. Mathematical Biosciences and Engineering, 2022, 19(2): 1891-1908. doi: 10.3934/mbe.2022089
    [9] Zijian Wang, Yaqin Zhu, Haibo Shi, Yanting Zhang, Cairong Yan . A 3D multiscale view convolutional neural network with attention for mental disease diagnosis on MRI images. Mathematical Biosciences and Engineering, 2021, 18(5): 6978-6994. doi: 10.3934/mbe.2021347
    [10] Linglei Meng, XinFang Shang, FengXiao Gao, DeMao Li . Comparative study of imaging staging and postoperative pathological staging of esophageal cancer based on smart medical big data. Mathematical Biosciences and Engineering, 2023, 20(6): 10514-10529. doi: 10.3934/mbe.2023464
  • A multiscale image registration technique is presented for the registration of medical images that contain significant levels of noise. An overview of the medical image registration problem is presented, and various registration techniques are discussed. Experiments using mean squares, normalized correlation, and mutual information optimal linear registration are presented that determine the noise levels at which registration using these techniques fails. Further experiments in which classical denoising algorithms are applied prior to registration are presented, and it is shown that registration fails in this case for significantly high levels of noise, as well. The hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [20] is presented, and accurate registration of noisy images is achieved by obtaining a hierarchical multiscale decomposition of the images and registering the resulting components. This approach enables successful registration of images that contain noise levels well beyond the level at which ordinary optimal linear registration fails. Image registration experiments demonstrate the accuracy and efficiency of the multiscale registration technique, and for all noise levels, the multiscale technique is as accurate as or more accurate than ordinary registration techniques.


  • This article has been cited by:

    1. Francesca Pizzorni Ferrarese, Flavio Simonetti, Roberto Foroni, Gloria Menegaz, 2010, Registration accuracy assessment on noisy neuroimages, 978-1-4244-6559-0, 1, 10.1109/ITAB.2010.5687654
    2. Eitan Tadmor, Hierarchical Construction of Bounded Solutions in Critical Regularity Spaces, 2016, 69, 00103640, 1087, 10.1002/cpa.21575
    3. Dana Paquin, Doron Levy, Lei Xing, Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy, 2008, 36, 00942405, 4, 10.1118/1.3026602
    4. Yafeng Li, A simultaneous cartoon and texture segmentation method within the fuzzy framework, 2016, 197, 09252312, 161, 10.1016/j.neucom.2016.02.067
    5. Jinpeng Zhang, Qian Wang, Guorong Wu, Dinggang Shen, 2016, Chapter 38, 978-3-319-43774-3, 415, 10.1007/978-3-319-43775-0_38
    6. Klas Modin, Adrian Nachman, Luca Rondi, A multiscale theory for image registration and nonlinear inverse problems, 2019, 346, 00018708, 1009, 10.1016/j.aim.2019.02.014
    7. Yafeng Li, Xiangchu Feng, A multiscale image segmentation method, 2016, 52, 00313203, 332, 10.1016/j.patcog.2015.10.004
    8. Yafeng Li, Xiangchu Feng, Image decomposition via learning the morphological diversity, 2012, 33, 01678655, 111, 10.1016/j.patrec.2011.09.036
    9. Wu Zhou, Yaoqin Xie, Interactive Multigrid Refinement for Deformable Image Registration, 2013, 2013, 2314-6133, 1, 10.1155/2013/532936
    10. Reza Shahidi, Cecilia Moloney, Introducing oriented Laplacian diffusion into a variational decomposition model, 2016, 2016, 1687-6180, 10.1186/s13634-016-0415-2
    11. Prashant Athavale, Eitan Tadmor, Integro-Differential Equations Based on (BV,L1) Image Decomposition, 2011, 4, 1936-4954, 300, 10.1137/100795504
    12. Eduard Schreibmann, Brian Thorndyke, Tianfang Li, Jing Wang, Lei Xing, Four-Dimensional Image Registration for Image-Guided Radiotherapy, 2008, 71, 03603016, 578, 10.1016/j.ijrobp.2008.01.042
    13. Liam Ellis, Nicholas Dowson, Jiri Matas, Richard Bowden, Linear Regression and Adaptive Appearance Models for Fast Simultaneous Modelling and Tracking, 2011, 95, 0920-5691, 154, 10.1007/s11263-010-0364-4
    14. Noémie Debroux, Carole Le Guyader, Luminita A. Vese, 2021, Chapter 10, 978-3-030-75548-5, 115, 10.1007/978-3-030-75549-2_10
    15. Wen Li, Elena Resmerita, Luminita A. Vese, Multiscale Hierarchical Image Decomposition and Refinements: Qualitative and Quantitative Results, 2021, 14, 1936-4954, 844, 10.1137/20M1369038
    16. Jianguo Xu, Cheng Wan, Weihua Yang, Bo Zheng, Zhipeng Yan, Jianxin Shen, A novel multi-modal fundus image fusion method for guiding the laser surgery of central serous chorioretinopathy, 2021, 18, 1551-0018, 4797, 10.3934/mbe.2021244
    17. Noémie Debroux, Carole Le Guyader, 2023, Chapter 49, 978-3-031-31974-7, 639, 10.1007/978-3-031-31975-4_49
    18. Noémie Debroux, Carole Le Guyader, Luminita A. Vese, A Multiscale Deformation Representation, 2023, 16, 1936-4954, 802, 10.1137/22M1510200
    19. Jun Qin, Huizhen Luo, Fei He, Guihe Qin, DSA‐Former: A Network of Hybrid Variable Structures for Liver and Liver Tumour Segmentation, 2024, 20, 1478-5951, 10.1002/rcs.70004
    20. Joel Barnett, Wen Li, Elena Resmerita, Luminita Vese, Multiscale Hierarchical Decomposition Methods for Images Corrupted by Multiplicative Noise, 2025, 67, 0924-9907, 10.1007/s10851-024-01220-y
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2714) PDF downloads(502) Cited by(20)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog