Processing math: 100%

A nonlinear L2-stability analysis for two-species population dynamics with dispersal

  • Received: 01 December 2004 Accepted: 29 June 2018 Published: 01 November 2005
  • MSC : 70K20, 76E30, 34D20, 37B25, 70K15, 93D30, 92A15,35K57.

  • The nonlinear L2-stability (instability) of the equilibrium states of two-species population dynamics with dispersal is studied. The obtained results are based on (i) the rigorous reduction of the L2-nonlinear stability to the stability of the zero solution of a linear binary system of ODEs and (ii) the introduction of a particular Liapunov functional V such that the sign of dVdt along the solutions is linked directly to the eigenvalues of the linear problem.

    Citation: Salvatore Rionero. A nonlinear L2-stability analysis for two-species population dynamics with dispersal[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 189-204. doi: 10.3934/mbe.2006.3.189

    Related Papers:

    [1] Ming Mei, Yau Shu Wong . Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences and Engineering, 2009, 6(4): 743-752. doi: 10.3934/mbe.2009.6.743
    [2] Yue Xia, Lijuan Chen, Vaibhava Srivastava, Rana D. Parshad . Stability and bifurcation analysis of a two-patch model with the Allee effect and dispersal. Mathematical Biosciences and Engineering, 2023, 20(11): 19781-19807. doi: 10.3934/mbe.2023876
    [3] Nazanin Zaker, Christina A. Cobbold, Frithjof Lutscher . The effect of landscape fragmentation on Turing-pattern formation. Mathematical Biosciences and Engineering, 2022, 19(3): 2506-2537. doi: 10.3934/mbe.2022116
    [4] Jin Zhong, Yue Xia, Lijuan Chen, Fengde Chen . Dynamical analysis of a predator-prey system with fear-induced dispersal between patches. Mathematical Biosciences and Engineering, 2025, 22(5): 1159-1184. doi: 10.3934/mbe.2025042
    [5] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [6] Muhammad Shoaib Arif, Kamaleldin Abodayeh, Asad Ejaz . On the stability of the diffusive and non-diffusive predator-prey system with consuming resources and disease in prey species. Mathematical Biosciences and Engineering, 2023, 20(3): 5066-5093. doi: 10.3934/mbe.2023235
    [7] Guangrui Li, Ming Mei, Yau Shu Wong . Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85
    [8] Dong Liang, Jianhong Wu, Fan Zhang . Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences and Engineering, 2005, 2(1): 111-132. doi: 10.3934/mbe.2005.2.111
    [9] Kuang-Hui Lin, Yuan Lou, Chih-Wen Shih, Tze-Hung Tsai . Global dynamics for two-species competition in patchy environment. Mathematical Biosciences and Engineering, 2014, 11(4): 947-970. doi: 10.3934/mbe.2014.11.947
    [10] Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
  • The nonlinear L2-stability (instability) of the equilibrium states of two-species population dynamics with dispersal is studied. The obtained results are based on (i) the rigorous reduction of the L2-nonlinear stability to the stability of the zero solution of a linear binary system of ODEs and (ii) the introduction of a particular Liapunov functional V such that the sign of dVdt along the solutions is linked directly to the eigenvalues of the linear problem.


  • This article has been cited by:

    1. A. A. Hill, Global stability for penetrative double-diffusive convection in a porous medium, 2008, 200, 0001-5970, 1, 10.1007/s00707-007-0575-0
    2. Bruno Buonomo, Salvatore Rionero, On the Lyapunov stability for SIRS epidemic models with general nonlinear incidence rate, 2010, 217, 00963003, 4010, 10.1016/j.amc.2010.10.007
    3. Salvatore Rionero, L2 L 2 -energy decay of convective nonlinear PDEs reaction–diffusion systems via auxiliary ODEs systems, 2015, 64, 0035-5038, 251, 10.1007/s11587-015-0231-2
    4. Isabella Torcicollo, On the non-linear stability of a continuous duopoly model with constant conjectural variation, 2016, 81, 00207462, 268, 10.1016/j.ijnonlinmec.2016.01.018
    5. Bruno Buonomo, Salvatore Rionero, Linear and nonlinear stability thresholds for a diffusive model of pioneer and climax species interaction, 2009, 32, 01704214, 811, 10.1002/mma.1068
    6. Salvatore Rionero, Isabella Torcicollo, On the dynamics of a nonlinear reaction–diffusion duopoly model, 2018, 99, 00207462, 105, 10.1016/j.ijnonlinmec.2017.11.005
    7. G. Mulone, B. Straughan, An operative method to obtain necessary and sufficient stability conditions for double diffusive convection in porous media, 2006, 86, 0044-2267, 507, 10.1002/zamm.200510272
    8. Brian Straughan, A note on convection with nonlinear heat flux, 2007, 56, 0035-5038, 229, 10.1007/s11587-007-0016-3
    9. Isabella Torcicollo, On the dynamics of a non-linear Duopoly game model, 2013, 57, 00207462, 31, 10.1016/j.ijnonlinmec.2013.06.011
    10. Salvatore Rionero, Isabella Torcicollo, Stability of a Continuous Reaction-Diffusion Cournot-Kopel Duopoly Game Model, 2014, 132, 0167-8019, 505, 10.1007/s10440-014-9932-x
    11. Salvatore Rionero, On the nonlinear stability of nonautonomous binary systems, 2012, 75, 0362546X, 2338, 10.1016/j.na.2011.10.032
    12. Bruno Buonomo, Deborah Lacitignola, Modeling peer influence effects on the spread of high–risk alcohol consumption behavior, 2014, 63, 0035-5038, 101, 10.1007/s11587-013-0167-3
    13. Eric Avila-Vales, Bruno Buonomo, Analysis of a mosquito-borne disease transmission model with vector stages and nonlinear forces of infection, 2015, 64, 0035-5038, 377, 10.1007/s11587-015-0245-9
    14. G. Mulone, S. Rionero, W. Wang, The effect of density-dependent dispersal on the stability of populations, 2011, 74, 0362546X, 4831, 10.1016/j.na.2011.04.055
    15. Florinda Capone, On the dynamics of predator-prey models with the Beddington–De Angelis functional response, under Robin boundary conditions, 2008, 57, 0035-5038, 137, 10.1007/s11587-008-0026-9
    16. Monica De Angelis, Pasquale Renno, Existence, uniqueness and a priori estimates for a nonlinear integro-differential equation, 2008, 57, 0035-5038, 95, 10.1007/s11587-008-0028-7
    17. Maurizio Gentile, Isabella Torcicollo, Nonlinear stability analysis of a chemical reaction–diffusion system, 2023, 0035-5038, 10.1007/s11587-023-00793-x
    18. Bruno Buonomo, Alberto d’Onofrio, The Rionero’s special type of Lyapunov function and its application to a diffusive epidemic model with information, 2023, 0035-5038, 10.1007/s11587-023-00807-8
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2861) PDF downloads(594) Cited by(18)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog