Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Thresholds for Epidemic Outbreaks in Finite Scale-Free Networks

1. Istituto Nazionale di Ottica Applicata, Largo E. Fermi, 6 50125 Florence
2. Istituto Nazionale di Ottica Applicata, Largo E. Fermi, 6, 50125 Florence
3. Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza 50009
4. Department of Computer Science, University of Zaragoza, Zaragoza 50009

We numerically investigate the existence of a threshold for epidemic outbreaks in a class of scale-free networks characterized by a parametrical dependence of the scaling exponent, influencing the convergence of fluctuations in the degree distribution. In finite-size networks, finite thresholds for the spreading of an epidemic are always found. However, both the thresholds and the behavior of the epidemic prevalence are quite different with respect to the type of network considered and the system size. We also discuss agreements and differences with some analytical claims previously reported.
  Article Metrics

Keywords scale-free network.; epidemic threshold

Citation: Dong-Uk Hwang, S. Boccaletti, Y. Moreno, R. López-Ruiz. Thresholds for Epidemic Outbreaks in Finite Scale-Free Networks. Mathematical Biosciences and Engineering, 2005, 2(2): 317-327. doi: 10.3934/mbe.2005.2.317


This article has been cited by

  • 1. David Hiebeler, Moment Equations and Dynamics of a Household SIS Epidemiological Model, Bulletin of Mathematical Biology, 2006, 68, 6, 1315, 10.1007/s11538-006-9080-1
  • 2. Shunjiang Ni, Wenguo Weng, Hui Zhang, Modeling the effects of social impact on epidemic spreading in complex networks, Physica A: Statistical Mechanics and its Applications, 2011, 390, 23-24, 4528, 10.1016/j.physa.2011.07.042
  • 3. Constantinos I. Siettos, Lucia Russo, Mathematical modeling of infectious disease dynamics, Virulence, 2013, 4, 4, 295, 10.4161/viru.24041
  • 4. Mike J. Jeger, Marco Pautasso, Ottmar Holdenrieder, Mike W. Shaw, Modelling disease spread and control in networks: implications for plant sciences, New Phytologist, 2007, 174, 2, 279, 10.1111/j.1469-8137.2007.02028.x
  • 5. Silvio C. Ferreira, Claudio Castellano, Romualdo Pastor-Satorras, Epidemic thresholds of the susceptible-infected-susceptible model on networks: A comparison of numerical and theoretical results, Physical Review E, 2012, 86, 4, 10.1103/PhysRevE.86.041125
  • 6. Shunjiang Ni, Wenguo Weng, Shifei Shen, Weicheng Fan, Epidemic outbreaks in growing scale-free networks with local structure, Physica A: Statistical Mechanics and its Applications, 2008, 387, 21, 5295, 10.1016/j.physa.2008.05.051
  • 7. Shaofen Zou, Jianhong Wu, Yuming Chen, Multiple epidemic waves in delayed susceptible-infected-recovered models on complex networks, Physical Review E, 2011, 83, 5, 10.1103/PhysRevE.83.056121
  • 8. David E. Hiebeler, Andrew Audibert, Emma Strubell, Isaac J. Michaud, An epidemiological model of internet worms with hierarchical dispersal and spatial clustering of hosts, Journal of Theoretical Biology, 2017, 418, 8, 10.1016/j.jtbi.2017.01.035
  • 9. Wei-Ping Guo, Xiang Li, Xiao-Fan Wang, Epidemics and immunization on Euclidean distance preferred small-world networks, Physica A: Statistical Mechanics and its Applications, 2007, 380, 684, 10.1016/j.physa.2007.03.007
  • 10. Tad Dallas, Stephanie Foré, Chemical attraction of Dermacentor variabilis ticks parasitic to Peromyscus leucopus based on host body mass and sex, Experimental and Applied Acarology, 2013, 61, 2, 243, 10.1007/s10493-013-9690-x
  • 11. David E. Hiebeler, Amanda Keck Criner, Partially mixed household epidemiological model with clustered resistant individuals, Physical Review E, 2007, 75, 2, 10.1103/PhysRevE.75.022901
  • 12. Andreas I. Reppas, Konstantinos Spiliotis, Constantinos I. Siettos, On the effect of the path length of small-world networks on epidemic dynamics, Virulence, 2012, 3, 2, 146, 10.4161/viru.19131
  • 13. Carlo Piccardi, Renato Casagrandi, Inefficient epidemic spreading in scale-free networks, Physical Review E, 2008, 77, 2, 10.1103/PhysRevE.77.026113
  • 14. Carlo Piccardi, Renato Casagrandi, , Modelling, Estimation and Control of Networked Complex Systems, 2009, Chapter 5, 77, 10.1007/978-3-642-03199-1_5

Reader Comments

your name: *   your email: *  

Copyright Info: 2005, Dong-Uk Hwang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved