Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

On Predator-Prey Systems and Small-Gain Theorems

1. Department of Mathematics, University of Florida, Gainesville, FL 32611-8105
2. Dip. di Sistemi e Informatica, Universitá di Firenze, Via di S. Marta 3, 50139 Firenze
3. Department of Mathematics, Rutgers University, New Brunswick, NJ 08903

This paper deals with an almost global convergence result for Lotka-Volterra systems with predator-prey interactions. These systems can be written as (negative) feedback systems. The subsystems of the feedback loop are monotone control systems, possessing particular input-output properties. We use a small-gain theorem, adapted to a context of systems with multiple equilibrium points to obtain the desired almost global convergence result, which provides sufficient conditions to rule out oscillatory or more complicated behavior that is often observed in predator-prey systems.
  Article Metrics

Keywords monotone systems; feedback systems; Lotka- Volterra systems.; almost global stability

Citation: Patrick D. Leenheer, David Angeli, Eduardo D. Sontag. On Predator-Prey Systems and Small-Gain Theorems. Mathematical Biosciences and Engineering, 2005, 2(1): 25-42. doi: 10.3934/mbe.2005.2.25


This article has been cited by

  • 1. G.A. Enciso, H.L. Smith, E.D. Sontag, Nonmonotone systems decomposable into monotone systems with negative feedback, Journal of Differential Equations, 2006, 224, 1, 205, 10.1016/j.jde.2005.05.007
  • 2. Patrick De Leenheer, David Angeli, Eduardo D. Sontag, Crowding effects promote coexistence in the chemostat, Journal of Mathematical Analysis and Applications, 2006, 319, 1, 48, 10.1016/j.jmaa.2006.02.036
  • 3. Wieslaw Krajewski, Umberto Viaro, Locating the equilibrium points of a predator–prey model by means of affine state feedback, Journal of the Franklin Institute, 2008, 345, 5, 489, 10.1016/j.jfranklin.2008.02.001
  • 4. Eduardo D. Sontag, Monotone and near-monotone biochemical networks, Systems and Synthetic Biology, 2007, 1, 2, 59, 10.1007/s11693-007-9005-9
  • 5. Tomáš Gedeon, Eduardo D. Sontag, Oscillations in multi-stable monotone systems with slowly varying feedback, Journal of Differential Equations, 2007, 239, 2, 273, 10.1016/j.jde.2007.05.029
  • 6. Bhaskar DasGupta, German A. Enciso, Eduardo Sontag, Yi Zhang, , Experimental Algorithms, 2006, Chapter 23, 253, 10.1007/11764298_23
  • 7. Hamed Agahi, Application of the Hirsch Generic Convergence Statement to the Set‐Point Regulation of Excitable‐Transparent‐Monotone Systems, Asian Journal of Control, 2019, 21, 5, 2280, 10.1002/asjc.1839

Reader Comments

your name: *   your email: *  

Copyright Info: 2005, Patrick D. Leenheer, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved