Research article

A mathematical study of effects of delays arising from the interaction of anti-drug antibody and therapeutic protein in the immune response system

  • Received: 29 March 2020 Accepted: 11 August 2020 Published: 11 September 2020
  • MSC : 34A34, 92B05

  • Immunogenicity is the ability of substances to evoke an immune response such as a therapeutic protein drug that is considered as a foreign object in the human body. The rise of the immune response results in the production of Anti-Drug Antibody (ADA) that requires a certain period to be activated since it is influenced by the number of injected doses of the drug. The entry of ADA from the depot into the plasma also requires a certain period since the ADA must pass through a series of compartments, hence rises a delay. Both processes are considered as a natural process where the system experiences delay with different delay periods. Immunogenicity on therapeutic protein pharmacokinetics is modelled as a nonlinear delay differential system. From the formulated model, one positive equilibrium solution is obtained under some conditions. Qualitative analysis gives a pair of critical delays in terms of a time delay of the accumulation of protein drug injection and a time required by the ADA to enter the plasma and binding the drug in the plasma. Numerical simulations show that the critical delays result in the appearance of oscillatory behavior in the system. For the system to remain stable, the entering process of ADA into the plasma is delayed in accordance with the obtained critical delay. It is intended such that the injected therapeutic protein drugs provide an optimal effect.

    Citation: Kasbawati, Mariani, Nur Erawaty, Naimah Aris. A mathematical study of effects of delays arising from the interaction of anti-drug antibody and therapeutic protein in the immune response system[J]. AIMS Mathematics, 2020, 5(6): 7191-7213. doi: 10.3934/math.2020460

    Related Papers:

    [1] Antonio DeSimone, Natalie Grunewald, Felix Otto . A new model for contact angle hysteresis. Networks and Heterogeneous Media, 2007, 2(2): 211-225. doi: 10.3934/nhm.2007.2.211
    [2] Steinar Evje, Aksel Hiorth . A mathematical model for dynamic wettability alteration controlled by water-rock chemistry. Networks and Heterogeneous Media, 2010, 5(2): 217-256. doi: 10.3934/nhm.2010.5.217
    [3] Liping Yu, Hans Kleppe, Terje Kaarstad, Svein M. Skjaeveland, Steinar Evje, Ingebret Fjelde . Modelling of wettability alteration processes in carbonate oil reservoirs. Networks and Heterogeneous Media, 2008, 3(1): 149-183. doi: 10.3934/nhm.2008.3.149
    [4] Sharif Ullah, Obaid J. Algahtani, Zia Ud Din, Amir Ali . Numerical analysis of stretching/shrinking fully wet trapezoidal fin. Networks and Heterogeneous Media, 2024, 19(2): 682-699. doi: 10.3934/nhm.2024030
    [5] Oliver Kolb, Simone Göttlich, Paola Goatin . Capacity drop and traffic control for a second order traffic model. Networks and Heterogeneous Media, 2017, 12(4): 663-681. doi: 10.3934/nhm.2017027
    [6] Henri Berestycki, Jean-Pierre Nadal, Nancy Rodíguez . A model of riots dynamics: Shocks, diffusion and thresholds. Networks and Heterogeneous Media, 2015, 10(3): 443-475. doi: 10.3934/nhm.2015.10.443
    [7] Tong Li, Sunčica Čanić . Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks and Heterogeneous Media, 2009, 4(3): 527-536. doi: 10.3934/nhm.2009.4.527
    [8] Giuseppe Toscani, Andrea Tosin, Mattia Zanella . Kinetic modelling of multiple interactions in socio-economic systems. Networks and Heterogeneous Media, 2020, 15(3): 519-542. doi: 10.3934/nhm.2020029
    [9] Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa . A one dimensional free boundary problem for adsorption phenomena. Networks and Heterogeneous Media, 2014, 9(4): 655-668. doi: 10.3934/nhm.2014.9.655
    [10] Frédéric Coquel, Edwige Godlewski, Jean-Marc Hérard, Jacques Segré . Preface. Networks and Heterogeneous Media, 2010, 5(3): i-ii. doi: 10.3934/nhm.2010.5.3i
  • Immunogenicity is the ability of substances to evoke an immune response such as a therapeutic protein drug that is considered as a foreign object in the human body. The rise of the immune response results in the production of Anti-Drug Antibody (ADA) that requires a certain period to be activated since it is influenced by the number of injected doses of the drug. The entry of ADA from the depot into the plasma also requires a certain period since the ADA must pass through a series of compartments, hence rises a delay. Both processes are considered as a natural process where the system experiences delay with different delay periods. Immunogenicity on therapeutic protein pharmacokinetics is modelled as a nonlinear delay differential system. From the formulated model, one positive equilibrium solution is obtained under some conditions. Qualitative analysis gives a pair of critical delays in terms of a time delay of the accumulation of protein drug injection and a time required by the ADA to enter the plasma and binding the drug in the plasma. Numerical simulations show that the critical delays result in the appearance of oscillatory behavior in the system. For the system to remain stable, the entering process of ADA into the plasma is delayed in accordance with the obtained critical delay. It is intended such that the injected therapeutic protein drugs provide an optimal effect.




    [1] J. A. Pedras-Vasconcelos, The Immunogenicity of Therapeutic Proteins-What you Don't Know Can Hurt YOU and the Patient. SBIA REdI Fall, Ed.; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2014. Available from: https://www.fda.gov/files/drugs/published/The-immunogenicity-of-therapeutic-proteins--what-you-don%E2%80%99t-know-can-hurt-YOU-and-the-patient--Fall-2014.pdf.
    [2] J. M. Carton, W. R. Strohl, Chapter 4-Protein therapeutics (introduction to biopharmaceuticals), Intro. Biol. Small Mole. Drug Rese. Develop., (2013), 127-159.
    [3] N. Chirmule, V. Jawa, B. Meibohm, Immunogenicity to therapeutic proteins: Impact on PK/PD and Efficacy, AAPS J., 14 (2012), 296-302. doi: 10.1208/s12248-012-9340-y
    [4] K. D. Ratanji, J. P. Derrick, R. J. Dearman, et al. Immunogenicity of therapeutic proteins: Influence of aggregation, J. Immunotoxicol, 11 (2014), 99-109. doi: 10.3109/1547691X.2013.821564
    [5] A. Kuriakose, N. Chirmule, P. Nair, Immunogenicity of biotherapeutics: Causes and association with posttranslational modifications, J. Immunol. Res., 2016 (2016), 1-18.
    [6] S. Tourdot, T. P. Hickling, Nonclinical immunogenicity risk assessment of therapeutic proteins, Bioanalysis, 11 (2019), 1631-1643. doi: 10.4155/bio-2018-0246
    [7] G. Shankar, S. Arkin, L. Cocea, et al. Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides-harmonized terminology and tactical recommendations, AAPS J., 16 (2014), 658-673. doi: 10.1208/s12248-014-9599-2
    [8] B. Chen, J. Q. Dong, W. J. Pan, et al. Pharmacokinetics/pharmacodynamics model supported early drug development, Curr Pharm Biotechnol., 13 (2012), 1360-1375. doi: 10.2174/138920112800624436
    [9] A. Smith, H. Manoli, S. Jaw, et al. Unraveling the effect of immunogenicity on the PK/PD, efficacy, and safety of therapeutic proteins, J. Immunol. Res., 2016 (2016), 1-9.
    [10] W. H. Boehncke, N. C. Brembilla, Immunogenicity of biologic therapies: Causes and consequences, Exp. Rev. Clin. Immunol., 14 (2018), 513-523.
    [11] B. W. Neun, Y. Barenholz, J. Szebeni, et al. Understanding the Role of Anti-PEG Antibodies in the Complement Activation by Doxil in Vitro, Molecule, 23 (2018), 1700.
    [12] S. Kathman, T. M. Thway, L. Zhou, et al. Utility of a bayesian mathematical model to predict the impact of immunogenicity on pharmacokinetics of therapeutic proteins, AAPS J., 18 (2016), 424.
    [13] E. M. J. van Brummelen, W. Ros, G. Wolbink, et al. Antidrug antibody formation in oncology: Clinical relevance and challenges, Oncologist, 21 (2016), 1260-1268. doi: 10.1634/theoncologist.2016-0061
    [14] S. Gupta, S. R. Indelicato, V. Jethwa, et al. Recommendations for the design, optimization, and qualification of Cell-Based assays used for the detection of neutralizing antibody responses elicited to biologycal therapeutics, J. Immunol. Methods, 32 (2007), 1-18.
    [15] X. Chen, T. P. Hickling, P. Vicini, A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: Part 1-Theoretical model, CPT Pharmacometrics Syst. Pharmacol., 3 (2014), e133.
    [16] L. Hamuro, G. S. Tirucherai, S. M. Crawford, et al. Evaluating a multiscale mechanistic model of the immune system to predict human immunogenicity for a biotherapeutic in Phase 1, AAPS J., 21 (2019), 94.
    [17] G. I. Bell, Mathematical model of clonal selection and antibody production, J Theor Biol., 29 (1970), 191-232. doi: 10.1016/0022-5193(70)90019-6
    [18] H. Y. Lee, D. J. Topham, S. Y. Park, et al. Simulation and prediction of the adaptive immune response to influenza a virus infection, J. Virol., 83 (2009), 7151-7165. doi: 10.1128/JVI.00098-09
    [19] Z. H. Xu, H. Lee, T. Vu, et al. Populations pharmacokinetics of golimumab in patients with anklosing spondylitis: Impact of body weight and immunogenicity, Int J Clin Pharmacol Ther., 48 (2010), 596-607. doi: 10.5414/CPP48596
    [20] P. L. Bonate, C. Sung, K. Welch, et al. Conditional modeling of antibody titers using A Zero-Inflated poisson random effect model: Application to fabrazyme, J Pharmacokinet Phar., 35 (2009), 449-459.
    [21] X. Chen, T. P. Hickling, E. Kraynov, et al. A mathematical model of the effect of immunogenicity on therapeutic protein pharmacokinetics, AAPS J., 15 (2013), 1141-1154. doi: 10.1208/s12248-013-9517-z
    [22] J. Foote, C. Milstein, Kinetic maturation of an immune response, Nature, 352 (1991), 530-532. doi: 10.1038/352530a0
    [23] B. S. Alexandra, N. Radhika, H. Paul, Novel Approaches and Strategies for Biologics, Vaccines and Cancer Therapies, Chapter 9-Biobetter Biologics, New York: Academic Press, (2015), 199-217.
    [24] Pacific Immunology, Learning Center: Antibody Affinity and Affinity Maturation, 2020., Available from: https://www.pacificimmunology.com/resources/antibody-introduction/antibody-affinity-and-affinity-maturation/.
    [25] S. Yi, P. W. Nelson, A. G. Ulsoy, Time-delay sistems: Analysis and control using the Lambert W function, World Scientific, Singapore, 2010.
    [26] Kasbawati, A. Y. Gunawan, R. Hertadi, et al. Effects of time delay on the dynamics of a kinetic model of a microbial fermentation process, ANZIAM J., 55 (2014), 336-356.
    [27] J. D. Murray, (1990) Mathematical biology, 2Eds., New York: Springer.
    [28] L. F. Shampine, S. Thompson, Solving DDEs in MATLAB, Appl. Numer. Math. 37 (2001), 441-458. doi: 10.1016/S0168-9274(00)00055-6
  • This article has been cited by:

    1. Giovanni Noselli, Antonio DeSimone, A robotic crawler exploiting directional frictional interactions: experiments, numerics and derivation of a reduced model, 2014, 470, 1364-5021, 20140333, 10.1098/rspa.2014.0333
    2. J. Dohmen, N. Grunewald, F. Otto, M. Rumpf, 2008, Chapter 7, 978-3-540-77202-6, 75, 10.1007/978-3-540-77203-3_7
    3. Xiao-Ping Wang, Xianmin Xu, A dynamic theory for contact angle hysteresis on chemically rough boundary, 2017, 37, 1553-5231, 1061, 10.3934/dcds.2017044
    4. P. Gruber, D. Knees, S. Nesenenko, M. Thomas, Analytical and numerical aspects of time-dependent models with internal variables, 2010, 90, 00442267, 861, 10.1002/zamm.200900387
    5. Xianmin Xu, Yinyu Zhao, Xiaoping Wang, Analysis for Contact Angle Hysteresis on Rough Surfaces by a Phase-Field Model with a Relaxed Boundary Condition, 2019, 79, 0036-1399, 2551, 10.1137/18M1182115
    6. Mathilde Reyssat, David Quéré, Contact Angle Hysteresis Generated by Strong Dilute Defects, 2009, 113, 1520-6106, 3906, 10.1021/jp8066876
    7. G. Bellettini, Sh.Yu. Kholmatov, Minimizing movements for mean curvature flow of droplets with prescribed contact angle, 2018, 117, 00217824, 1, 10.1016/j.matpur.2018.06.003
    8. Alessandro Turco, François Alouges, Antonio DeSimone, Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model, 2009, 43, 0764-583X, 1027, 10.1051/m2an/2009016
    9. Xianmin Xu, Xiaoping Wang, Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces, 2011, 71, 0036-1399, 1753, 10.1137/110829593
    10. Jiwoong Jang, Capillary-type boundary value problems of mean curvature flows with force and transport terms on a bounded domain, 2023, 62, 0944-2669, 10.1007/s00526-023-02450-5
    11. Antonio DeSimone, Martin Kružík, Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation, 2013, 8, 1556-181X, 481, 10.3934/nhm.2013.8.481
    12. Antonio DeSimone, Paolo Gidoni, Giovanni Noselli, Liquid crystal elastomer strips as soft crawlers, 2015, 84, 00225096, 254, 10.1016/j.jmps.2015.07.017
    13. Livio Fedeli, Alessandro Turco, Antonio DeSimone, Metastable equilibria of capillary drops on solid surfaces: a phase field approach, 2011, 23, 0935-1175, 453, 10.1007/s00161-011-0189-6
    14. David Quéré, Wetting and Roughness, 2008, 38, 1531-7331, 71, 10.1146/annurev.matsci.38.060407.132434
    15. Abner J. Salgado, A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines, 2013, 47, 0764-583X, 743, 10.1051/m2an/2012047
    16. Giovanni Alberti, Antonio DeSimone, Quasistatic Evolution of Sessile Drops and Contact Angle Hysteresis, 2011, 202, 0003-9527, 295, 10.1007/s00205-011-0427-x
    17. William M. Feldman, Limit Shapes of Local Minimizers for the Alt–Caffarelli Energy Functional in Inhomogeneous Media, 2021, 240, 0003-9527, 1255, 10.1007/s00205-021-01635-6
    18. Antonio DeSimone, Livio Fedeli, Alessandro Turco, 2010, Chapter 4, 978-90-481-9194-9, 51, 10.1007/978-90-481-9195-6_4
    19. William M. Feldman, Inwon C. Kim, Liquid Drops on a Rough Surface, 2018, 71, 00103640, 2429, 10.1002/cpa.21793
    20. Mathilde Reyssat, Denis Richard, Christophe Clanet, David Quéré, Dynamical superhydrophobicity, 2010, 146, 1359-6640, 19, 10.1039/c000410n
    21. S. Cacace, A. Chambolle, A. DeSimone, L. Fedeli, Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations, 2013, 47, 0764-583X, 837, 10.1051/m2an/2012048
    22. A. DeSimone, F. Guarnieri, G. Noselli, A. Tatone, Crawlers in viscous environments: Linear vs non-linear rheology, 2013, 56, 00207462, 142, 10.1016/j.ijnonlinmec.2013.02.007
    23. P. Gidoni, G. Noselli, A. DeSimone, Crawling on directional surfaces, 2014, 61, 00207462, 65, 10.1016/j.ijnonlinmec.2014.01.012
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4477) PDF downloads(114) Cited by(3)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog