AIMS Mathematics, 2020, 5(5): 4830-4848. doi: 10.3934/math.2020308

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

New subclass of q-starlike functions associated with generalized conic domain

1 School of Mathematics and Computer Sciences, Chifeng University, Chifeng 024000, Inner Mongolia, People’s Republic of China
2 Department of Mathematics, Riphah International University, 44000 Islamabad, Pakistan
3 Department of Mathematics, COMSATS University Islamabad, Abbottabad campus 22060, Pakistan
4 Mathematics and Natural Science division, Higher Colleges of Technology, Fujairah Men’s, Fujairah, United Arab Emirates

In this paper, the concepts of quantum (or q-) calculus and conic regions are combined to define a new domain Ωk,q,γ which represents the generalized conic regions. Then by using a certain generalized conic domain Ωk,q,γ we define and investigate a new subclass of normalized analytic functions in open unit disk E. We also investigate a number of useful properties and characteristics of this subclass such as, structural formula, necessary and sufficient condition, coefficient estimates, Feketo-Szego problem, distortion inequalities, closure theorem, and subordination result. We also highlight some known consequences of our main results as corollaries.
  Figure/Table
  Supplementary
  Article Metrics

References

1. A. W. Goodman, Univalent Functions, vols. I, II. Polygonal Publishing House, New Jersey 1983.

2. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.    

3. W. Ma, D. Minda, Uniformly convex functions, Ann. Polon. Math., 57 (1992), 165-175.    

4. S. Kanas, A. Wisniowska, Conic domains and k-starlike functions, Rev. Roum. Math. Pure Appl., 45 (2000), 647-657.

5. F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Am. Math. Soc., 118 (1993), 189-196.    

6. K. G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam, et al. Subclasses of uniformly convex and uniformly starlike functions, Math. Jpn., 42 (1995), 517-522.

7. S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327-336.    

8. E. Deniz, M. Caglar, H. Orhan, The Fekete-Szego problem for a class of analytic functions defined by Dziok-Srivastava operator, Kodai Math. J., 35 (2012), 439-462.    

9. E. Deniz, H. Orhan, J. Sokol, Classes of analytic functions defined by a differential operator related to conic domains, Ukr. Math. J., 67 (2016), 1367-1385.    

10. S. Shams, S. R. Kulkarni, J. M. Jahangiri, Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci., 55, (2004), 2959-2961.

11. H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: H. M. Srivastava, S. Owa, Univalent functions, fractional Calculus, and Their Applications, John Wiley Sons, New York, etc. 1989.

12. F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46 (1908), 253-281.

13. A. Aral, V. Gupta, On q-Baskakov type operators, Demon-stratio Math., 42, (2009), 109-122.

14. A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Comput. Anal. Appl., 8 (2006), 249-261.

15. S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196.

16. M. Arif, H. M. Srivastava, S. Uma, Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211-1221.    

17. M. Arif, Z. G. Wang, R. Khan, et al. Coefficient inequalities for Janowski-Sakaguchi type functions associated with conic regions, Hacet. J. Math. Stat., 47 (2018), 261-271.

18. L. Shi, M. Raza, K. Javed, et al. Class of analytic functions defined by q-integral operator in a symmetric region, Symmetry, 11 (2019), 1042.

19. H. M. Srivastava, S. Khan, Q. Z. Ahmad, et al. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babe s-Bolyai Math., 63 (2018), 419-436.    

20. G. Gasper, M. Rahman, Basic Hpergeometric series, vol. 35 of Encyclopedia of Mathematics and its applications, Ellis Horwood, Chichester, UK, 1990.

21. M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77-84.

22. H. E. O. Uçar, Coefficient inequality for q-starlike Functions, Appl. Math. Comput., 76 (2016), 122-126.

23. W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc., 48 (1943), 48-82.

24. Y. J. Sim, O. S. Kwon, N. E. Cho, et al. Some classes of analytic functions associated with conic regions, Taiwan J. Math., 16 (2012), 387-408.    

25. K. I. Noor, M. Arif, W. Ul-Haq, On k-uniformly close-to-convex functions of complex order, Appl. Math. Comput., 215, (2009), 629-635.

26. W. Ma, D. Minda, A unified treatment of some special classes of univalent functions. In: Z. Li, F. Ren, L. Yang, et al. (Eds.) Proceedings of the Conferene on Complex Analysis, Int. Press Inc. (1992), 157-169.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved