Loading [MathJax]/jax/output/SVG/jax.js
Research article

The role of pseudo-hypersurfaces in non-holonomic motion

  • Received: 09 September 2019 Accepted: 20 April 2020 Published: 02 June 2020
  • MSC : 14J81, 37J60, 53A07, 53A17, 53B50, 58A17, 70F25

  • The geometry of hypersurfaces is generalized to pseudo-hypersurfaces, which are defined by Pfaff equations. The general methods are then applied to modeling the kinematics of motion constrained by a single linear, non-holonomic constraint. They are then applied to the example of a charge moving in an electromagnetic field, and the Lorentz equation of motion is shown to represent a geodesic that is constrained to lie in a pseudo-hypersurface that is defined by the potential 1-form.

    Citation: David Delphenich. The role of pseudo-hypersurfaces in non-holonomic motion[J]. AIMS Mathematics, 2020, 5(5): 4793-4829. doi: 10.3934/math.2020307

    Related Papers:

    [1] William Ramírez, Can Kızılateş, Daniel Bedoya, Clemente Cesarano, Cheon Seoung Ryoo . On certain properties of three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. AIMS Mathematics, 2025, 10(1): 137-158. doi: 10.3934/math.2025008
    [2] Letelier Castilla, William Ramírez, Clemente Cesarano, Shahid Ahmad Wani, Maria-Fernanda Heredia-Moyano . A new class of generalized Apostol–type Frobenius–Euler polynomials. AIMS Mathematics, 2025, 10(2): 3623-3641. doi: 10.3934/math.2025167
    [3] Mohra Zayed, Taghreed Alqurashi, Shahid Ahmad Wani, Cheon Seoung Ryoo, William Ramírez . Several characterizations of bivariate quantum-Hermite-Appell Polynomials and the structure of their zeros. AIMS Mathematics, 2025, 10(5): 11184-11207. doi: 10.3934/math.2025507
    [4] Mohra Zayed, Shahid Ahmad Wani . Properties and applications of generalized 1-parameter 3-variable Hermite-based Appell polynomials. AIMS Mathematics, 2024, 9(9): 25145-25165. doi: 10.3934/math.20241226
    [5] Mohra Zayed, Shahid Ahmad Wani, Georgia Irina Oros, William Ramírez . Unraveling multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials via fractional operators. AIMS Mathematics, 2024, 9(7): 17291-17304. doi: 10.3934/math.2024840
    [6] Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . New expressions for certain polynomials combining Fibonacci and Lucas polynomials. AIMS Mathematics, 2025, 10(2): 2930-2957. doi: 10.3934/math.2025136
    [7] Rajiniganth Pandurangan, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the Generalized ¯θ(t)-Fibonacci sequences and its bifurcation analysis. AIMS Mathematics, 2025, 10(1): 972-987. doi: 10.3934/math.2025046
    [8] Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in q-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303
    [9] Tingting Du, Li Wang . On the power sums problem of bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2024, 9(4): 7810-7818. doi: 10.3934/math.2024379
    [10] Tingting Du, Zhengang Wu . Some identities involving the bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2023, 8(3): 5838-5846. doi: 10.3934/math.2023294
  • The geometry of hypersurfaces is generalized to pseudo-hypersurfaces, which are defined by Pfaff equations. The general methods are then applied to modeling the kinematics of motion constrained by a single linear, non-holonomic constraint. They are then applied to the example of a charge moving in an electromagnetic field, and the Lorentz equation of motion is shown to represent a geodesic that is constrained to lie in a pseudo-hypersurface that is defined by the potential 1-form.


    Throughout this paper, N and Q are the set of all positive integers and rational numbers, respectively, N0:=N{0},R+:=[0,). Moreover, for the set X, we denote ntimesX×X××X by Xn. For any lN0,mN, t=(t1,,tm){1,1}m and x=(x1,,xm)Vm we write lx:=(lx1,,lxm) and tx:=(t1x1,,tmxm), where ra stands, as usual, for the rth power of an element a of the commutative group V.

    Let V be a commutative group, W be a linear space, and n2 be an integer. Recall from [15] that a mapping f:VnW is called multi-additive if it is additive (satisfies Cauchy's functional equation A(x+y)=A(x)+A(y)) in each variable. Some basic facts on such mappings can be found in [19] and many other sources, where their application to the representation of polynomial functions is also presented. Besides, f is said to be multi-quadratic if it is quadratic in each variable, i.e., it satisfies the quadratic equation

    Q(x+y)+Q(xy)=2Q(x)+2Q(y) (1.1)

    in each variable [14]. In [27], Zhao et al. proved that the mapping f:VnW is multi-quadratic if and only if the following relation holds.

    t{1,1}nf(x1+tx2)=2nj1,j2,,jn{1,2}f(x1j1,x2j2,,xnjn) (1.2)

    where xj=(x1j,x2j,,xnj)Vn with j{1,2}.

    The stability of a functional equation originated from a question raised by Ulam: “when is it true that the solution of an equation differing slightly from a given one must of necessity be close to the solution of the given equation?” (see [26]). The first answer (in the case of Cauchy's functional equation in Banach spaces) to Ulam's question was given by Hyers in [18]. Following his result, a great number of papers on the the stability problems of several functional equations have been extensively published as generalizing Ulam's problem and Hyers' theorem in various directions; see for instance [1,4,21,23,28], and the references given there.

    It is worth mentioning that the fixed point theorems have been considered for various mappings, integral and fractional equations in [3,12,13]. Some investigations have been carried out on the stability of functional equations via fixed point theorems in [5,6,7,11]. Moreover, the fixed point theorem were recently applied to obtain similar stability results in [9,16,22,25].

    In [14,15], Ciepliński studied the generalized Hyers-Ulam stability of multi-additive and multi-quadratic mappings in Banach spaces, respectively (see also [27]). Next, the stability of multi-Cauchy-Jensen mappings in non-Archimedean spaces are studied in [2] by applying the fixed point method, which was proved and used for the first time to investigate the Hyers-Ulam stability of functional equations in [11]. For more information about multi-quadratic, multi-cubic and multi-quartic mappings, we refer to [8,10,20,24].

    In this paper, we define the generalized multi-quadratic mappings and present a characterization of such mappings. In other words, we reduce the system of n equations defining the generalized multi-quadratic mappings to obtain a single functional equation. Then, we prove the generalized Hyers-Ulam stability of multi-quadratic mapping (which was recently introduced by Salimi and Bodaghi in [24]) in non-Archimedean normed spaces by a fixed point method.

    From now on, let V and W be vector spaces over Q, nN and xni=(xi1,xi2,,xin)Vn, where i{1,2}. Let lj{1,2}. Put

    Mni={x=(xl11,xl22,,xlnn)Vn|Card{lj:lj=1}=i}. (2.1)

    We shall denote xni and Mni by xi and Mi, respectively if there is no risk of ambiguity.

    A general form of (1.1), say the generalized quadratic functional equation is as follows:

    Q(ax+by)+Q(axby)=2a2Q(x)+2b2Q(y) (2.2)

    where a,b are the fixed non-zero numbers in Q. The mapping f:VnW is said to be generalized n-multi-quadratic or generalized multi-quadratic if f is generalized quadratic in each variable.

    Put n:={1,,n}, nN. For a subset T={j1,,ji} of n with 1j1<<jin and x=(x1,,xn)Vn,

    Tx:=(0,,0,xj1,0,,0,xji,0,,0)Vn

    denotes the vector which coincides with x in exactly those components, which are indexed by the elements of T and whose other components are set equal zero. Note that ϕx=0, nx=x. We use these notations in the proof of upcoming lemma.

    Let aQ be as in (2.2). We say the mapping f:VnW satisfies the r-power condition in the jth variable if

    f(z1,,zj1,azj,zj+1,,zn)=arf(z1,,zj1,zj,zj+1,,zn),

    for all (z1,,zn)Vn. In the sequel, (nk) is the binomial coefficient defined for all n,kN0 with nk by n!/(k!(nk)!). We shall to show that if a mapping f:VnW satisfies the equation

    q{1,1}nf(ax1+qbx2)=2nni=0a2ib2(ni)xMif(x), (2.3)

    where a,b are the fixed non-zero in Q with a+b1, then it is generalized multi-quadratic quadratic. In order to do this, we need the next lemma.

    Lemma 2.1. If the mapping f:VnW satisfies the Eq. (2.3) with 2-power condition in all variables, then f(x)=0 for any xVn with at least one component which is equal to zero.

    Proof. Putting x1=x2=(0,,0) in (2.3), we get

    2nf(0,,0)=2nni=0(ni)a2ib2(ni)f(0,,0)=2n(a+b)2nf(0,,0).

    Since a+b1, f(0,,0)=0. Letting x1k=0 for all k{1,,n}{j} and x2k=0 for 1kn in (2.3) and using f(0,,0)=0, we obtain

    2na2f(0,,0,x1j,0,,0)=2nf(0,,0,ax1j,0,,0)=2na2n1i=0(n1i)a2ib2(n1i)f(0,,0,x1j,0,,0)=2na2(a+b)2(n1)f(0,,0,x1j,0,,0).

    Hence, f(0,,0,x1j,0,,0)=0. We now assume that f(k1x1)=0 for 1kn1. We are going to show that f(kx1)=0. By assumptions, the above process can be repeated to obtain

    2nf(kx1)=2na2knki=0(nki)a2ib2(nki)f(kx1)=2na2k(a+b)2(nk)f(kx1), (2.4)

    where 1kn1 and so f(kx1)=0. This shows that f(x)=0 for any xVn with at least one component which is equal to zero.

    Theorem 2.2. Consider the mapping f:VnW. Then, the following assertions are equivalent:

    (ⅰ) f is generalized multi-quadratic;

    (ⅱ) f satisfies Eq. (2.3) with 2-power condition in all variables.

    Proof. (ⅰ)(ⅱ) We firstly note that it is not hard to show that f satisfies 2-power condition in all variables. We now prove that f satisfies Eq. (2.3) by induction on n. For n=1, it is trivial that f satisfies Eq. (2.2). Assume that (2.3) is valid for some positive integer n>1. Then,

    q{1,1}n+1f(axn+11+qbxn+12)=2a2q{1,1}nf(axn1+qbxn2,x1n+1)+2b2q{1,1}nf(axn1+qbxn2,x2n+1)=2n+1a2ni=0a2ib2(ni)xMnif(x,x1n+1)+2n+1b2ni=0a2ib2(ni)xMnif(x,x2n+1)=2n+1n+1i=0a2ib2(n+1i)xMn+1if(x).

    This means that (2.3) holds for n+1.

    (ⅱ)(ⅰ) Fix j{1,,n}, put x2k=0 for all k{1,,n}{j}. Using Lemma 2.1, we obtain

    2n1a2(n1)[f(x11,,x1j1,ax1j+bx2j,x1j+1,,x1n)+f(x11,,x1j1,ax1jbx2j,x1j+1,,x1n)]=2n1[f(ax11,,ax1j1,ax1j+bx2j,ax1j+1,,ax1n)+f(ax11,,ax1j1,ax1jbx2j,ax1j+1,,ax1n)]=2na2(n1)[a2f(x11,,x1j1,x1j,x1j+1,,x1n)+b2f(x11,,x1j1,x2j,x1j+1,,x1n)]. (2.5)

    It follows from relation (2.5) that f is quadratic in the jth variable. Since j is arbitrary, we obtain the desired result.

    An special case of (2.2) is the following quadratic functional equation when a=b=12.

    2Q(x+y2)+2Q(xy2)=Q(x)+Q(y). (3.1)

    A mapping f:VnW is called n-multi-quadratic or multi-quadratic if f is quadratic in each variable (see Eq. (3.1)). It is shown in [24, Proposition 2.2] (without extra 2-power condition in each variable) that a mapping f:VnW is multi-quadratic if and only if it satisfies the equation

    2nq{1,1}nf(x1+qx22)=l1,,ln{1,2}f(xl11,xl22,,xlnn). (3.2)

    In this section, we prove the generalized Hyers-Ulam stability of Eq. (3.2) in non-Archimedean spaces.

    We recall some basic facts concerning non-Archimedean spaces and some preliminary results. By a non-Archimedean field we mean a field K equipped with a function (valuation) || from K into [0,) such that |r|=0 if and only if r=0, |rs|=|r||s|, and |r+s| max{|r|,|s|} for all r,sK. Clearly |1|=|1|=1 and |n|1 for all nN.

    Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation ||. A function :XR is a non-Archimedean norm (valuation) if it satisfies the following conditions:

    (ⅰ) x=0 if and only if x=0;

    (ⅱ) rx=|r|x,(xX,rK);

    (ⅲ) the strong triangle inequality (ultrametric); namely,

    x+ymax{x,y}(x,yX).

    Then (X,) is called a non-Archimedean normed space. Due to the fact that

    xnxmmax{xj+1xj;mjn1}(nm)

    a sequence {xn} is Cauchy if and only if {xn+1xn} converges to zero in a non-Archimedean normed space X. By a complete non-Archimedean normed space we mean one in which every Cauchy sequence is convergent.

    In [17], Hensel discovered the p-adic numbers as a number theoretical analogue of power series in complex analysis. The most interesting example of non-Archimedean normed spaces is p-adic numbers. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: for all x,y>0, there exists an integer n such that x<ny.

    Let p be a prime number. For any non-zero rational number x=prmn in which m and n are coprime to the prime number p. Consider the p-adic absolute value |x|p=pr on Q. It is easy to check that || is a non-Archimedean norm on Q. The completion of Q with respect to || which is denoted by Qp is said to be the p-adic number field. One should remember that if p>2, then |2n| = 1 in for all integers n.

    Throughout, for two sets A and B, the set of all mappings from A to B is denoted by BA. The proof is based on a fixed point result that can be derived from [11, Theorem 1]. To present it, we introduce the following three hypotheses:

    (H1) E is a nonempty set, Y is a complete non-Archimedean normed space over a non-Archimedean field of the characteristic different from 2, jN, g1,,gj:EE and L1,,Lj:ER+,

    (H2) T:YEYE is an operator satisfying the inequality

    Tλ(x)Tμ(x)maxi{1,,j}Li(x)λ(gi(x))μ(gi(x)),λ,μYE,xE,

    (H3) Λ:RE+RE+ is an operator defined through

    Λδ(x):=maxi{1,,j}Li(x)δ(gi(x))δRE+,xE.

    Here, we highlight the following theorem which is a fundamental result in fixed point theory [11]. This result plays a key role in obtaining our goal in this paper.

    Theorem 3.1. Let hypotheses (H1)-(H3) hold and the function ϵ:ER+ and the mapping φ:EY fulfill the following two conditions:

    Tφ(x)φ(x)ϵ(x),limlΛlϵ(x)=0(xE).

    Then, for every xE, the limit limlTlφ(x)=:ψ(x) and the function ψYE, defined in this way, is a fixed point of T with

    φ(x)ψ(x)suplN0Λlϵ(x)(xE).

    Here and subsequently, given the mapping f:VnW, we consider the difference operator Γf:Vn×VnW by

    Γf(x1,x2)=2nq{1,1}nf(x1+qx22)l1,,ln{1,2}f(xl11,xl22,,xlnn).

    In the sequel, S stands for {0,1}n. With these notations, we have the upcoming result.

    Theorem 3.2. Let V be a linear space and W be a complete non-Archimedean normed space over a non-Archimedean field of the characteristic different from 2. Suppose that ϕ:Vn×VnR+ is a mapping satisfying the equality

    liml(1|2|2n)lmaxsSϕ(2l(sx1,sx2))=0 (3.3)

    for all x1,x2Vn. Assume also f:VnW is a mapping satisfying the inequality

    Γf(x1,x2)ϕ(x1,x2) (3.4)

    for all x1,x2Vn. Then, there exists a unique multi-quadratic mapping Q:VnW such that

    f(x)Q(x)suplN0(1|2|2n)l+1maxsSϕ(2lsx,0) (3.5)

    for all xVn.

    Proof. Replacing x=x1=(x11,,x1n),x2=(x21,,x2n) by 2x1,(0,,0) in (3.4), respectively, we have

    22nf(x)sSf(2sx)ϕ(2x,0) (3.6)

    for all xVn. Inequality (3.6) implies that

    f(x)Tf(x)ξ(x) (3.7)

    for all xVn, where ξ(x):=1|2|2nϕ(2x,0) and Tf(x):=122nsSf(2sx). Define Λη(x):=maxsS1|2|2nη(2sx) for all ηRVn+,xVn. It is easy to see that Λ has the form described in (H3) with E=Vn, gi(x):=gs(x)=2sx for all xVn and Li(x)=1|2|2n for any i. Moreover, for each λ,μWVn and xVn, we get

    Tλ(x)Tμ(x)maxsS1|2|2nλ(2sx)μ(2sx).

    The above inequality shows that the hypothesis (H2) holds. By induction on l, one can check that for any lN and xVn that

    Λlξ(x):=(1|2|2n)lmaxsSξ(2lsx) (3.8)

    for all xVn. Indeed, by definition of Λ, equality (3.8) is true for l=1. If (3.8) holds for lN, then

    Λl+1ξ(x)=Λ(Λlξ(x))=Λ((1|2|2n)lmaxsSξ(2lsx))=(1|2|2n)lmaxsSΛ(ξ(2lsx))=(1|2|2n)l+1maxsSξ(2l+1sx)

    for all xVn. Relations (3.7) and (3.8) necessitate that all assumptions of Theorem 3.1 are satisfied. Hence, there exists a unique mapping Q:VnW such that Q(x)=liml(Tlf)(x) for all xVn, and also (3.5) holds. We are going to show that

    Γ(Tlf)(x1,x2)(1|2|2n)lmaxsSϕ(2lsx1,2lsx2) (3.9)

    for all x1,x2Vn and lN. We argue by induction on l. For l=1 and for all x1,x2Vn, we have

    Γ(Tf)(x1,x2)=2nq{1,1}n(Tf)(x1+qx22)l1,,ln{1,2}(Tf)(xl11,xl22,,xlnn)=12nq{1,1}nsSf(sx1+sqx2)122nl1,,ln{1,2}sSf(2sxl11,2sxl22,,2sxlnn)=122nsSΓ(f)(2(sx1,sx2))1|2|2nmaxsSΓ(f)(2(sx1,sx2))1|2|2nmaxsSϕ(2(sx1,sx2))

    for all x1,x2Vn. Assume that (3.9) is true for an lN. Then

    Γ(Tl+1f)(x1,x2)=2nq{1,1}n(Tl+1f)(x1+qx22)l1,,ln{1,2}(Tl+1f)(xl11,xl22,,xlnn)=12nq{1,1}nsSTlf(sx1+sqx2)122nl1,,ln{1,2}sSTlf(2sxl11,2sxl22,,2sxlnn)=122nsSΓ(Tlf)(2(sx1,sx2))1|2|2nmaxsSΓ(Tlf)(2(sx1,sx2))(1|2|2n)l+1maxsSϕ(2l+1(sx1,sx2)) (3.10)

    for all x1,x2Vn. Letting l in (3.9) and applying (3.3), we arrive at ΓQ(x1,x2)=0 for all x1,x2Vn. This means that the mapping Q satisfies (3.2) and the proof is now completed.

    The following example is an application of Theorem 3.2 concerning the stability of multi-quadratic mappings when the norm of Γf(x1,x2) is controlled by the powers sum of norms of components of vectors x1 and x2 in Vn.

    Example 3.3. Let pR fulfills p>2n. Let V be a normed space and W be a complete non-Archimedean normed space over a non-Archimedean field of the characteristic different from 2 such that |2|<1. Suppose that f:VnW is a mapping satisfying the inequality

    Γf(x1,x2)2k=1nj=1xkjp

    for all x1,x2Vn. Putting ϕ(x1,x2)=2k=1nj=1xkjp, we have ϕ(2lx1,2lx2)=|2|lpϕ(x1,x2) and so

    liml(1|2|2n)lmaxsS2k=1nj=12lsxkjp=liml(|2|p|2|2n)l2k=1nj=1xkjp=0

    for all x1,x2Vn. On the other hand,

    suplN(1|2|2n)l+1maxsSϕ(2lsx,0)=1|2|2nnj=1x1jp.

    By Theorem 3.2, there exists a unique multi-quadratic mapping Q:VnW such that

    f(x)Q(x)1|2|2nnj=1x1jp

    for all xVn.

    Recall that a functional equation F is hyperstable if any mapping f satisfying the equation F approximately is a true solution of F. Under some conditions functional Eq. (3.2) can be hyperstable as follows.

    Corollary 3.4. Suppose that pkj>0 for k{1,2} and j{1,,n} fulfill 2k=1nj=1pkj>2n. Let V be a normed space and W be a complete non-Archimedean normed space over a non-Archimedean field of the characterisitic different from 2 such that |2|<1. If f:VnW is a mapping satifying the inequality

    Γf(x1,x2)2k=1nj=1xkjpkj

    for all x1,x2Vn, then f is multi-quadratic.

    The authors sincerely thank the anonymous reviewers for their careful reading, constructive comments and suggesting some related references to improve the quality of the first draft of paper.

    The authors declare no conflicts of interest.



    [1] P. Issaly, Étude géométrique sur la coubure des pseudosurfaces, Bull. Soc. Math. France, 17 (1889), 84-101.
    [2] H. Hertz, Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt, Leipzig: Johann Barth; English translation by Jones D and Walley J, 1899, Principles of Mechanics, presented in a new form, London: MacMillan, republished by Forgotten Books, 1894.
    [3] R. Lipschitz, Sätze aus dem Grenzgebiet der Mechanik und Geometrie, Math. Ann., 6 (1874), 416-435.
    [4] A. Voss, Ueber die Differentialgleichungen der Mechanik, Math. Ann., 25 (1885), 258-286. doi: 10.1007/BF01446410
    [5] J. Hadamard, Sur les mouvements de roulement. Note appended to P. Appell, Les mouvements de roulement en Dynamique, Scientia, 4 (1899), 47-68.
    [6] J. Hadamard, Sur certain systèmes d'équations aux différentielles totals. Note appended to P. Appell, Les mouvements de roulement en Dynamique Scientia, 4 (1899), 69-70.
    [7] S. Dautheville, Sur les systèmes non holonomes, Bull. Soc. Math. France, 37 (1909), 120-132.
    [8] P. Voronetz, Über die Bewegung eines starren Körper, der ohne Gleitung auf einer beliebigen Fläche rollt, Math. Ann., 70 (1911), 410-453. doi: 10.1007/BF01564505
    [9] I. Tzenoff, Sur les équations générales du mouvement des systèmes matériels non holonomes, J. Pures Et Appl., 3 (1920), 245-263.
    [10] I. Tzenoff, Sur les équations du mouvement des systèmes matériels non holonomes, Math. Ann., 91 (1924), 161-168. doi: 10.1007/BF01498387
    [11] I. Tzenoff, Sur les mouvement des systèmes non holonomes, J. Pures Et Appl., 4 (1925), 193-207.
    [12] P. Appel, Les mouvements de roulement en Dynamique, Scientia, 4 (1899), 1-46.
    [13] P. Appel, Sur une forme générale des équations de la dynamique, J. Reine Angew. Math., 121 (1900), 310-319.
    [14] P. Appel, Remarque d'ordre analytique su une nouvelle forme des équations de la Dynamique, J. Math. Pures Appl., 7 (1901), 5-12.
    [15] P. Appel, Sur une forme générale des équations de la dynamique, Mem. Sci. Math. Paris: Gauthier-Villars, 1925.
    [16] G. Hamel, Die Lagrange-Eulerschen Gleichungen der Mechanik, Zeit. Math. Phys., 50 (1904), 1-57.
    [17] G. Hamel, Über nichtholonome Systeme, Math. Ann., 92 (1924), 33-41. doi: 10.1007/BF01448428
    [18] G. Hamel, Das Hamiltonsche Prinzip bei nichtholonomen Systemen, Math. Ann., 111 (1935), 94-97. doi: 10.1007/BF01472207
    [19] E. Delassus, Sur les liaisons et les mouvements des systèmes matériels, Ann. sci. de l'E.N.S., 29 (1912), 305-369.
    [20] E. Delassus, Sur les mouvements des systèmes matériels dépendant d'un nombre fini de paramètres et soumis à des liaisons d'ordre quelconque, Ann. sci. de l'E.N.S., 30 (1913), 48-520.
    [21] J. Neĭmark, N. Fufaev, Dynamics of non-holonomic systems, v. 33, Trans. Math. Monographs, Providence, R. I.: Amer. Math. Soc., (1972). The original Russian version was published in Moscow in 1967.
    [22] R. von Lilienthal, Ueber die Krümmung der Curvenschaaren, Math. Ann., 32 (1888), 545-565. doi: 10.1007/BF01443582
    [23] R. von Lilienthal, Grundlagen einer Krümmungslehre der Curvenschaaren, Leipzig: Teubner, 1896.
    [24] R. von Lilienthal, Ueber kürzeste Integral curven einer Pfaff'schen Gleichung, Math. Ann., 52 (1899), 417-432. doi: 10.1007/BF01476167
    [25] G. Vranceanu, Les espaces non holonomes, Mem. Math. Sci., Fasc. 56, Paris: Gauthier-Villars, 1936.
    [26] Z. Horak, Sur une généralisation de la notion de variété, Publ. Fac. Sc. Univ. Masaryk, Brno, 86 (1927), 1-20.
    [27] Z. Horak, Sur les systèmes non holonomes, Bull. Int. Acad. Tchéque, 24 (1928), 1-18.
    [28] Z. Horak, Sur la courbure des variétés non holonomes, C. R. Acad. Sci. Paris, 187 (1928), 1273-1276.
    [29] Z. Horak, Sur la dynamique absolue des systèmes rhéonomes, Prac. Matemalyczno-Fizycznych, (1933), 25-39.
    [30] Z. Horak, Sur les équations absolues du movement, Časopis pro pěstovani matematiky a fysiky, 64 (1935), 229-230.
    [31] J. Synge, On the Geometry of Dynamics, Phil. Trans. Roy. Soc., A226 (1926), 31-106.
    [32] J. Synge, Geodesics in non-holonomic Geometry, Math. Ann., 99 (1928), 738-751. doi: 10.1007/BF01459122
    [33] D. Sintzov, Zur Krümmungstheorie der Integralkurven der Pfaffschen Gleichung, Math. Ann., 101 (1928), 261-272.
    [34] J. Schouten, On non holonomic connexions, Proc. Kon. Akad. V. Wetenschappen Amsterdam, 31 (1928), 291-299.
    [35] J. Schouten, Über nichtholonome Übertragungen in einer Ln, Math. Zeit., 30 (1929), 149-172. doi: 10.1007/BF01187758
    [36] J. Schouten, E. van Kampen, Zur Einbettungs-und Krümmungstheorie nichtholonomer Gebilde, Math. Ann., 103 (1930), 752-783. doi: 10.1007/BF01455718
    [37] P. Franklin, C. Moore, Geodesics of Pfaffians, J. Math. Phys., 10 (1931), 155-190.
    [38] A. Wundheiler, Über die Variationsgleichungen für affine geodätische Linien und nichtholonome, nichtconservative dynamische System, Prace Math. Fiz., 38 (1931), 129-147.
    [39] A. Wundheiler, Rheonome Geometrie. Absolute Mechanik, Prace Mat. Fiz., 40 (1932), 97-142.
    [40] V. Wagner, The inner geometry of non-linear non-holonomic manifolds, Recueil Mathématique, 13 (1943), 135-167.
    [41] Z. G. Gao, L. B. Zeng, B. He, et al., Type synthesis of non-holonomic spherical constraint underactuated parallel robotics, 152 (2018), 509-520.
    [42] B. He, S. Wang, Y. G. Liu, Underactuated robotics: A review, Int. J. Adv. Robotic Syst., 16 (2019), 1-29.
    [43] B. He, X. Y. Cao, Z. C. Gu, Kinematics of underactuated robotics for product carbon footprint, J. Cleaner Product., 257 (2020), 120491.
    [44] L. Eisenhart, An Introduction to Differential Geometry, Princeton: Princeton Univ. Press, 1940.
    [45] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, 2, London: Interscience, 1969.
    [46] D. Delphenich, The role of integrability in a large class of physical systems, arXiv:1210.4976. Available from: https://www.arxiv.org.
    [47] F. Warner, Differentiable Manifolds and Lie Groups, Glenview, IL: Scott Foresman, 1971.
    [48] H. Cartan, Differential Forms, Mineola, NY: Dover, 2006.
    [49] L. Kronecker, Über Systeme von Functionen mehrer Variablen, Monatsber. Kgl. Akad. Wiss. Berlin, 1869, 688-698.
    [50] C. Lanczos, The Variational Principles of Mechanics, 4 Eds., Mineola, NY: Dover, 1970.
    [51] A. Sommerfeld, Mechanics, Lectures on Mathematical Physics, 1, New York: Academic Press, 1964, translated from the German by Martin O. Stern.
    [52] E. Cartan, Sur certaines expressions différentielles et le problème de Pfaff, Ann. Sci. de l'E. N. S., 16 (1899), 239-332.
    [53] E. Cartan, L'intégration des systèmes d'équations aux différentielles totals, Ann. sci. de l'É. N. S., 18 (1901), 241-311.
    [54] E. Kähler, Einführung in die Theorie der Systeme von Differentialgleichungen, Leipzig: Teubner, 1934.
    [55] R. Bryant, S. S. Chern, Exterior Differential Systems, New York: Springer Science and Business Media, 2013.
    [56] T. Eguchi, P. Gilkey, A. Hanson, Gravitation, Gauge Theories, and Differential Geometry, Phys. Rep., 66 (1980), 213-393. doi: 10.1016/0370-1573(80)90130-1
    [57] T. Frenkel, The Geometry of Physics: an introduction, Cambridge: Cambridge University Press, 1997.
    [58] F. Hehl, Y. Obukhov, Foundations of Classical Electrodynamics, Boston: Birkhäuser, 2003.
    [59] D. Delphenich, Pre-metric electromagnetism, Spring Valley OH: Neo-classical Press, 2009. Available from: http://www.neo-classical-physics.info.
    [60] S. Lie, G. Scheffers, Geometrie der Berührungstransformationen, Leipzig: Teubner, 1896.
  • This article has been cited by:

    1. Hao Guan, Waseem Ahmad Khan, Can Kızılateş, Cheon Seoung Ryoo, On Certain Properties of Parametric Kinds of Apostol-Type Frobenius–Euler–Fibonacci Polynomials, 2024, 13, 2075-1680, 348, 10.3390/axioms13060348
    2. Maryam Salem Alatawi, Waseem Ahmad Khan, Can Kızılateş, Cheon Seoung Ryoo, Some Properties of Generalized Apostol-Type Frobenius–Euler–Fibonacci Polynomials, 2024, 12, 2227-7390, 800, 10.3390/math12060800
    3. Ugur Duran, Mehmet Acikgoz, A note on Fibonacci-Hermite polynomials, 2025, 117, 0350-1302, 91, 10.2298/PIM2531091D
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3601) PDF downloads(198) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog