AIMS Mathematics, 2020, 5(5): 4781-4792. doi: 10.3934/math.2020306

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Derivation of bounds of integral operators via convex functions

1 Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, Jiangsu, China
2 Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan
3 Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Vellore 632 014, Tamil Nadu, India
4 Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan
5 Department of Mathematics, Air Univeristy, Islamabad, Pakistan

Convex functions play a vital role in the derivation of inequalities. In this paper these functions are used to obtain certain bounds of a unified integral operator. A Hadamard inequality for these operators is established. Further bounds of several kinds of fractional and conformable integral operators are deduced in particular.
  Article Metrics


1. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, New York-London, 2006.

2. Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946-64953.    

3. S. Mubeen, A. Rehman, A note on k-Gamma function and Pochhammer k-symbol, J. Math. Sci., 6 (2014), 93-107.

4. M. Arshad, J. Choi, S. Mubeen, et al. A new extension of Mittag-Leffler function, Commun. Korean Math. Soc., 33 (2018), 549-560.

5. H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., 2011 (2011), 1-51.

6. G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2013), 4244-4253.

7. T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.

8. M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395.    

9. G. Farid, A unified integral operator and its consequences, Open J. Math. Anal., 4 (2020), 1-7.    

10. S. Mubeen, G. M. Habibullah, k-fractional integrals and applications, Int. J. Contemp. Math., 7 (2012), 89-94.

11. H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291.    

12. T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389.    

13. S. Habib, S. Mubeen, M. N. Naeem, Chebyshev type integral inequalities for generalized kfractional conformable integrals, J. Inequal. Spec. Funct., 9 (2018), 53-65.

14. M. Z. Sarikaya, M. Dahmani, M. E. Kiris, et al. (k, s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77-89.

15. F. Jarad, E. Ugurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1-16.    

16. T. Tunc, H. Budak, F. Usta, et al. On new generalized fractional integral operators and related fractional inequalities, Available from:

17. S. S. Dragomir, Inequalities of Jensens type for generalized k-g-fractional integrals of functions for which the composite fg-1 is convex, Fract. Differ. Calc., 8 (2018), 127-150.

18. T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Fract. Calc. Appl., 3 (2012), 1-13.    

19. H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210.

20. G. Farid, Existence of an integral operator and its consequences in fractional and conformable integrals, Open J. Math. Sci., 3 (2019), 210-216.    

21. A. W. Roberts, D. E. Varberg, Convex Functions, Acadamic press, New York and London, 1993.

22. G. Farid, Some Riemann-Liouville fractional integrals inequalities for convex function, J. Anal., 27 (2019), 1095-1102.    

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved