AIMS Mathematics, 2020, 5(5): 4136-4150. doi: 10.3934/math.2020265.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A mathematical model for tumor growth and treatment using virotherapy

1 Department of Mathematics, Winthrop University, 701 Oakland Ave., Rock Hill, SC 29733, USA
2 Department of Mathematics, North Carolina State University, 2108 SAS Hall, Raleigh, NC 27695

We present a system of four nonlinear differential equations to model the use of virotherapy as a treatment for cancer. This model describes interactions among infected tumor cells, uninfected tumor cells, effector T-cells, and virions. We establish a necessary and sufficient treatment condition to ensure a globally stable cure state, and we additionally show the existence of a cancer persistence state when this condition is violated. We provide numerical evidence of a Hopf bifurcation under estimated parameter values from the literature, and we conclude with a discussion on the biological implications of our results.
  Article Metrics

Keywords cancer; virotherapy; global stability; long-term dynamics

Citation: Zachary Abernathy, Kristen Abernathy, Jessica Stevens. A mathematical model for tumor growth and treatment using virotherapy. AIMS Mathematics, 2020, 5(5): 4136-4150. doi: 10.3934/math.2020265


  • 1. US Department of Health and Human Services, Nci dictionary of cancer terms, Available from:
  • 2. About virotherapy, Available from:
  • 3. Treatment, Available from:
  • 4. M. D. Liji Thomas, What is virotherapy? 2015. Available from:
  • 5. S. J. Russell, K. Peng, J. C. Bell, Oncolytic virotherapy, Nat. biotechnol., 30 (2012), 658-670.    
  • 6. S. X. staff, First study of oncolytic hsv-1 in children and young adults with cancer indicates safety, tolerability, 2017. Available from:
  • 7. K. A. Streby, J. I. Geller, M. A. Currier, et al. Intratumoral injection of hsv1716, an oncolytic herpes virus, is safe and shows evidence of immune response and viral replication in young cancer patients, 2017. Available from:
  • 8. T. Tadesse, A. Bekuma, A promising modality of oncolytic virotherapy for cancer treatment, J. Vet. Med. Res., 5 (2018), 1163.
  • 9. A. Reale, A. Vitiello, V. Conciatori, et al. Perspectives on immunotherapy via oncolytic viruses, Infect. agents canc., 14 (2016), 5.
  • 10. M. Agarwal, A. S. Bhadauria, et al. Mathematical modeling and analysis of tumor therapy with oncolytic virus. Appl. Math., 2 (2011), 131.
  • 11. J. Malinzi, P. Sibanda, H. Mambili-Mamboundou, Analysis of virotherapy in solid tumor invasion, Math. Biosci., 263 (2015), 102-110.    
  • 12. M. J. Piotrowska, An immune system-tumour interactions model with discrete time delay: Model analysis and validation, Commu. Nonlinear Sci., 34 (2016), 185-198.    
  • 13. A. Friedman, X. Lai, Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model, PloS one, 13 (2018), e0192449.
  • 14. A. L. Jenner, A. C. F. Coster, P. S. Kim, et al. Treating cancerous cells with viruses: insights from a minimal model for oncolytic virotherapy, Lett. Biomath., 5 (2018), S117-S136.
  • 15. A. L. Jenner, C. Yun, P. S. Kim, et al. Mathematical modelling of the interaction between cancer cells and an oncolytic virus: Insights into the effects of treatment protocols, B. Math. Biol., 80 (2018), 1615-1629.    
  • 16. D. Wodarz, Computational modeling approaches to the dynamics of oncolytic viruses, Wiley Interdiscip. Rev.: Syst. Biol. Med., 8 (2016), 242-252.    
  • 17. P. S. Kim, J. J. Crivelli, I. Choi, et al. Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics, Math. Biosci. Eng., 12 (2015), 841-858.    
  • 18. M. Nowak, R. M. May, Virus dynamics: Mathematical principles of immunology and virology: Mathematical principles of immunology and virology, Oxford University Press, UK, 2000.
  • 19. J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer Science Business Media, 2013.
  • 20. Y. A. Yuznetsov, Elements of Applied Bifurcation Theory, Springer, 2004.


Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved